Difference between revisions of "Employment opportunities, postdoctoral positions, summer jobs"

From ACL Wiki
Jump to: navigation, search
m (Post-doctoral fellow -- KU Leuven)
(Scientific System Developer, UKP Lab, TU Darmstadt)
 
(217 intermediate revisions by 80 users not shown)
Line 1: Line 1:
 
<!-- START OF HEADER -->
 
<!-- START OF HEADER -->
 
<!-- PLEASE DO NOT EDIT THIS HEADER -->
 
<!-- PLEASE DO NOT EDIT THIS HEADER -->
<div class="usermessage">
+
* '''[[Instructions for Posting Job Ads]]'''
* [[Instructions for Posting Job Ads]]
+
* See also the [http://linguistlist.org/jobs Linguist Job List].
</div>
 
* See also the [http://linguistlist.org/jobs/index.html Linguist Job List].
 
 
* Archived postings:
 
* Archived postings:
** [[Employment opportunities posted 2012|2012]] - [[Employment opportunities posted 2011|2011]] - [[Employment opportunities posted 2010|2010]] - [[Employment opportunities posted 2009|2009]] - [[Employment opportunities posted 2008|2008]] - [[Employment opportunities posted 2007|2007]]
+
** [[Employment opportunities posted 2016|2016]] - [[Employment opportunities posted 2015|2015]] - [[Employment opportunities posted 2014|2014]] - [[Employment opportunities posted 2013|2013]] - [[Employment opportunities posted 2012|2012]] - [[Employment opportunities posted 2011|2011]] - [[Employment opportunities posted 2010|2010]] - [[Employment opportunities posted 2009|2009]] - [[Employment opportunities posted 2008|2008]] - [[Employment opportunities posted 2007|2007]]
 
<!-- PLEASE DO NOT EDIT THIS HEADER -->
 
<!-- PLEASE DO NOT EDIT THIS HEADER -->
 
<!-- PLEASE BE CAREFUL NOT TO DAMAGE ANOTHER PERSON'S AD -->
 
<!-- PLEASE BE CAREFUL NOT TO DAMAGE ANOTHER PERSON'S AD -->
 
<!-- USE "SHOW PREVIEW" TO VERIFY YOUR EDITS -->
 
<!-- USE "SHOW PREVIEW" TO VERIFY YOUR EDITS -->
 
<!-- INSERT YOUR JOB AD IMMEDIATELY BELOW THIS HEADER -->
 
<!-- INSERT YOUR JOB AD IMMEDIATELY BELOW THIS HEADER -->
<!-- END OF HEADER -->
 
  
 +
== Scientific System Developer, UKP Lab, TU Darmstadt ==
  
== Post-doctoral fellow -- KU Leuven ==
+
* Employer: [https://www.ukp.tu-darmstadt.de/ UKP Lab], [https://www.informatik.tu-darmstadt.de/ Technische Universität Darmstadt], Germany
 +
* Title: Scientific System Developer
 +
* Specialty: Argument Mining, Machine Learning, Big Data Analysis
 +
* Location: Darmstadt
 +
* Deadline: May 31, 2017
 +
* Date posted: May 3, 2017
 +
* Contact: [mailto:jobs@ukp.informatik.tu-darmstadt.de jobs@ukp.informatik.tu-darmstadt.de]
  
* Employer: Department of Computer Science, KU Leuven, Belgium
+
The Ubiquitous Knowledge Processing (UKP) Lab at the Department of Computer Science, Technische Universität (TU) Darmstadt, Germany has an opening for a
* Rank or Title: Post-doctoral fellow
 
* Specialty: Information Extraction, text understanding, machine reading
 
* Location: Leuven, Belgium
 
* Deadline: March 15, 2013
 
* Date Posted: March 2, 2013
 
* Contact email: Marie-Francine.Moens@cs.kuleuven.be
 
  
'''Position description'''
+
'''Scientific System Developer'''<br>
The KU Leuven offers an F+ fellowship to an outstanding postdoctoral researcher who is specialized in natural language processing and machine learning. The work will be conducted in the framework of the EU FP7 MUSE research project (http://www.muse-project.eu/) granted under the Future and Emerging Technologies ICT call. The candidate is holder of a PhD degree, and should have published several papers in any of the following journals or conferences:
+
'''(PostDoc- or PhD-level; time-limited project position until April 2020)'''
* Computational Linguistics, Computer Speech and Language, Artificial Intelligence, Journal of Machine Learning Research, Machine Learning, IEEE Intelligent Systems, ACM Transactions on Information Systems, or equivalent venues
 
* Proceedings of ACL, EACL, NAACL-HLT, COLING, IJCAI, SIGIR, CIKM, ICML, ECAI, ECML, or equivalent venues.
 
  
 +
to strengthen the group’s profile in the area of Argument Mining, Machine Learning and Big Data Analysis. The UKP Lab is a research group comprising over 30 team members who work on various aspects of Natural Language Processing (NLP), of which Argument Mining is one of the rapidly developing focus areas in collaboration with industrial partners.
  
'''Application instructions '''
+
We ask for applications from candidates in Computer Science preferably with expertise in research and development projects, and strong communication skills in English and German. The successful applicant will work in projects including research activities in the area of Argument Mining (e.g. automatic evidence detection, decision support, large-scale web mining on heterogeneous source and data management), and development activities to create new products or industrial product prototypes. Prior work in the above areas is a definite advantage. Ideally, the candidates should have demonstrable experience in designing and implementing complex (NLP) systems in Java and Python as well as experience in information retrieval, large-scale data processing and machine learning. Experience with continuous system integration and testing and distributed/cluster computing is a strong plus. Combining fundamental NLP research with industrial applications from different application domains will be highly encouraged.
  
Please send your application to Marie-Francine Moens (marie-francine.moens@cs.kuleuven.be) the latest by March 15, 2013. Please add a CV, grade transcripts, and publication list. Reference letters may be useful as well.
+
UKP’s wide cooperation network both within its own research community and with partners from industry provides an excellent environment for the position to be filled. The Department of Computer Science of TU Darmstadt is regularly ranked among the top ones in respective rankings of German universities. Its unique and recently established Research Training Group “Adaptive Information Processing of Heterogeneous Content” (AIPHES) funded by the DFG emphasizes NLP, text mining, machine learning, as well as scalable infrastructures for the assessment and aggregation of knowledge. UKP Lab is a highly dynamic research group committed to high-quality research results, technologies of the highest industrial standards, cooperative work style and close interaction of team members working on common goals.
  
 +
Applications should include a detailed CV, a motivation letter and an outline of previous working or research experience (if available).
  
'''Other considerations'''
+
Applications from women are particularly encouraged. All other things being equal, candidates with disabilities will be given preference. Please send the application to: [mailto:jobs@ukp.informatik.tu-darmstadt.de jobs@ukp.informatik.tu-darmstadt.de] by 31.05.2017. The position is open until filled. Later applications may be considered if the position is still open.
  
Situated in the heart of Western Europe, KU Leuven has been a centre of learning for almost six centuries. KU Leuven is a research-intensive, internationally oriented university that carries out both fundamental and applied research. It is strongly inter- and multidisciplinary in focus and strives for international excellence. To this end, KU Leuven works together actively with its research partners at home and abroad.
+
Questions about the position can be directed to: [mailto:jobs@ukp.informatik.tu-darmstadt.de Johannes Daxenberger]; phone: [+49] (0)6151 16-25297
 +
We look forward to receiving your application!
  
The postdoctoral position will be for one year starting in the late Spring or Summer 2013 and can be prolonged. He or she has a large interest in "machine reading" and semantic processing of text. The candidate has completed the PhD with success as evidenced by multiple publications in the venues cited above. He or she must have obtained a PhD from a university other than KU Leuven and must preferably have an international profile. He or she has a master degree (cum laude) in computer science, electrical engineering, mathematics, physics or a related discipline. The candidate does not have a postdoctoral status for more than six years. In order to be taken into consideration, the candidate must be available on a full-time basis. Furthermore, the candidate has excellent English language skills (written and spoken), good communication skills especially for guiding master and PhD students, good programming skills (e.g., Java, C++, MATLAB, Python) and has the capability to work independently and in a team.
 
  
== Post-doctoral fellows -- University of Alberta ==
+
== Two postdoc positions on plausible reasoning with vector space embeddings at Cardiff University ==
  
* Employer: Department of Computing Science, University of Alberta
+
* Employer: Cardiff University
* Rank or Title: Post-doctoral fellow
+
* Title: Postdoctoral Research Associate
* Specialty: Information Extraction
+
* Specialty: vector space embeddings, statistical relational learning, knowledge representation, neural networks, explainable AI
* Location: Edmonton, AB, Canada
+
* Location: Cardiff, UK
* Deadline: March 15 2013, but applications are accepted until positions are filled
+
* Deadline: May 20, 2017
* Date Posted: 26 February 2013
+
* Date posted: April 20, 2017
* Contact email: denilson@ualberta.ca
+
* Contact: [mailto:schockaerts1@cardiff.ac.uk Steven Schockaert]
  
'''Position Description'''
+
Applications are invited for two Postdoctoral Research Associate posts at Cardiff University’s School of Computer Science & Informatics:
 +
* The focus of the first position will be on developing methods for exploiting entity embeddings in statistical relational learning, to enable robust plausible reasoning from sparse relational data. Entity embeddings can be used to identify plausible formulas that are missing from a given knowledge base, intuitively by applying a kind of similarity or analogy based reasoning. Statistical relational learning can also be used to infer plausible formulas, but instead relies on modelling statistical dependencies among relational facts at the symbolic level. Unifying both methodologies will allow us to develop powerful inference methods that combine their complementary strengths. The resulting method will be applied to zero and one shot learning tasks, with a focus on automated knowledge base completion.
 +
*The focus of the second position will be on learning vector space embeddings of events and the causal relations between them. In contrast to existing approaches, the learned embeddings will explicitly model which entities participate in the events, how they are related, and how their relationships are affected by different events. This will require combining ideas from neural network models for event embedding (e.g. based on LSTMs) with ideas from knowledge graph embedding models. Among others, the resulting model will allow us to uncover more intricate causal relationships, to generate supporting explanations for causal predictions, to incorporate prior knowledge, and to transfer learned knowledge between domains. Intended applications include recognising textual entailment, stock market prediction, and event-focused information retrieval.
  
The Department of Computing Science at the University of Alberta is seeking applicants for post-doctoral fellows to work on a project related to information extraction. The ideal candidates are recent PhDs in Computer Science with strong background in information retrieval, linked open data, natural language processing, and information extraction from the web. Other areas where expertise is desirable include graph data management, network analysis, data analytics, and the semantic web.
+
Successful candidates are expected to have a strong background in natural language processing, machine learning, or knowledge representation. This research will be part of Steven Schockaert's FLEXILOG project, which is funded by the European Research Council (ERC)
  
The projects will be conducted in the context of the NSERC Business Intelligence Network (http://bin.cs.utoronto.ca/), a collaborative research initiative involving several top Canadian Universities and key industrial partners IBM Canada, SAP Canada, and Palomino System Innovations Inc.  
+
Cardiff University is a member of the Russell Group of research universities, and was ranked 5th in the UK based on the quality of research in the 2014 Research Evaluation Framework. The university has a successful School of Computer Science & Informatics with an international reputation for its teaching and research activities. Cardiff is a strong and vibrant capital city with good transportation links and an excellent range of housing available.  
  
The fellows will work under the supervision of PI Denilson Barbosa, within a team of PhD and MSc students, and build on ongoing work in information extraction with applications in business and environmental data. These positions will require the development of practical prototypes and proof-of-concept systems, as well as dissemination of research results in top venues. As such, emphasis should be given on the application materials to hands-on experience with large-scale datasets.
 
  
Qualified candidates must hold a PhD at the time of appointment. The stipend will be in accordance with NSERC standards (CAD$ 40,000 plus benefits), with the possibility of a 10-20% top-up depending on qualifications.
+
'''More information'''
 +
For more details about the positions, please contact Steven Schockaert (SchockaertS1@cardiff.ac.uk). For instructions on how to apply, please go to www.cardiff.ac.uk/jobs and search for job 5878BR. Please note the requirement to evidence all essential criteria in the supporting statement.
  
'''Application instructions '''
 
  
To apply, send an updated CV, cover letter, and the names and official contact information (university or company email and phone number) of three references to Denilson Barbosa <denilson@ualberta.ca>.
+
== Postdoc in Machine Learning for Multimodal Behavior and Mental State Analysis, University of Colorado Boulder ==
  
Applications received by March 15, 2013 will receive full consideration, but applications will be considered until the positions are filled.
+
* Employer: University of Colorado Boulder
 +
* Title: Postdoctoral Research Associate
 +
* Specialty: Advanced Machine Learning
 +
* Location: Boulder, Colorado, United States
 +
* Deadline: Ongoing, desired start Summer/Fall 2017
 +
* Date posted: March 31, 2017
 +
* Contact: [mailto:sidney.dmello@gmail.com Dr. Sidney D’Mello]
  
'''Other Considerations'''
+
'''Postdoc in Machine Learning for Multimodal Behavior and Mental State Analysis''' <br/>
 +
(Institute of Cognitive Science and Department of Computer Science at the University of Colorado Boulder)
  
The University of Alberta, one of Canada's largest research universities is situated in Edmonton, a metropolitan area of over one million people with a vibrant research community and an excellent standard of living. The Department of Computing Science at the University of Alberta is widely recognized as a leading CS department, both within Canada and worldwide.
+
The Institute of Cognitive Science (ICS) and Department of Computer Science at the University of Colorado Boulder anticipates hiring a full time  postdoctoral fellow starting Summer/Fall 2017 for one year and renewable for a second year. The position includes a competitive salary commensurate with experience and full benefits. Review of applications will begin immediately and continue until the position is filled.
  
All qualified candidates are encouraged to apply; however, Canadians and permanent residents will be given priority.
+
The postdoc will develop and apply machine learning techniques in the hierarchical and temporal domains to model behavioral and mental states (e.g., affect, attention, workload) from multimodal data (e.g., video, audio, physiology, eye gaze) across a range of interaction contexts (e.g., online learning, in-class learning, collaborative problem solving).
  
The University of Alberta hires on the basis of merit. We are committed to the principle of equity in employment. We welcome diversity and encourage applications from all qualified women and men, including persons with disabilities, members of visible minorities, and Aboriginal persons.
+
The candidate will work under the supervision of Dr. Sidney D’Mello and will play a collaborative and co-leadership role in a vibrant research team encompassing researchers in Computer Science, Cognitive Science, and Education.
  
== Research Scientist - Xerox Research Centre Europe ==
+
The position offers a unique postdoctoral training experience and unsurpassed publishing opportunities within multi-department and multi-institution grant-funded projects. The postdoc will be encouraged to develop advanced technical skills, strengthen their research portfolios via peer-reviewed publications, gain interdisciplinary experience by working with a diverse team, develop leadership skills by mentoring students, and gain expertise in co-authoring grant proposals.
  
* Employer: Xerox Research Centre Europe (XRCE) http://www.xrce.xerox.com/
+
'''Required'''
* Rank or Title: Research Scientist
+
* Ph.D. in Computer Science, Artificial Intelligence, or a related field (at the time of hire)
* Specialty: Statistical Natural Language Processing
+
* Research experience in advanced machine learning for temporal and hierarchical domains (e.g., probabilistic graphical models, deep recurrent neural networks) applied to human behavior and mental state analysis (e.g., affective computing, dyadic/triadic interaction)
* Location: Grenoble, France
+
* Self-motivated with a strong work ethic and writing proficiency as evidenced by a strong publication record
* Deadline: Applications accepted until position is filled
 
* Date Posted: 14 February 2013
 
* Contact email: James.Henderson@xrce.xerox.com
 
  
'''Position Description'''
+
'''Desired'''
 +
* Research experience in one or more of the following areas (computer vision, eye tracking, computational psychophysiology, fMRI, multimodal fusion, collaborative problem solving, real-world sensing)
 +
* Experience mentoring graduate and undergraduate students
  
The Parsing & Semantics research area at Xerox Research Centre Europe (XRCE) is currently looking for an experienced researcher in statistical natural language processing (NLP), with a deep understanding of machine learning and/or information extraction (e.g. event extraction).  The ideal candidate would also have experience or knowledge of textual entailment, knowledge representation, and combining machine learning with expert knowledge.  The applicant should have good coding skills (e.g. Java programming), with the ability to develop research prototypes and pilots.
+
'''Job Details'''
 +
* 1-2 year position. Initial contract is for one year (providing renewal after 6-month probationary period). Second year contract is based on performance and availability of funds.
 +
* Start date is negotiable, but anticipated for Summer/Fall 2017.
 +
* Competitive salary with benefits commensurate with qualifications. This position is eligible for medical, dental and life insurance, retirement benefits programs, and is eligible for monthly vacation and sick leave accruals.
  
The successful candidate will be expected to identify challenging problems, develop new solutions, and work with business and development teams to ensure that these solutions have a significant impact. We work together with top academic partners and expect our researchers to publish results in top-tier conferences and journals. We also have multiple open innovation collaborations with academic partners world-wide.  
+
'''How to apply''' <br/>
 +
Please complete Faculty/University Staff EEO Data (application) form ([https://goo.gl/YC9g94 https://goo.gl/YC9g94]) and upload the following required documents: 1—Cover letter; 2—Curriculum Vitae 3—List of Three References 4-One or two representative publications.
  
The Parsing & Semantics group concentrates on automatically making sense of electronic documents using semantic analysis. The group focuses on natural language processing methods for robust parsing, semantic analysis, and information discovery, including the role of context in determining meaning. We are particularly interested in theoretical models of communication, language, computation, learning and inference which take into account the context in which these activities occur. The Parsing & Semantics group collaborates closely with the Machine Learning for Services group and the Machine Learning for Document Access and Translation group. We are also interested in applying research results to practical applications and real-world problems.  Our general application focus is on converting unstructured text into structured information. The solutions we develop are expected to play a key role in Xerox’ next generation document and business process outsourcing services in domains such as customer care, healthcare, and financial services.  
+
Special Instructions to Applicants: The University of Colorado Boulder conducts background checks on all final applicants being considered for employment, prior to the issuance of an offer letter. The University of Colorado Boulder is committed to providing a safe and productive learning, living and working community. To achieve this goal, we conduct background investigations for all final applicants being considered for employment. Background investigations include a criminal history record check, and an EPLS (Excluded Parties List System) check. The Immigration Reform and Control Act requires that verification of employment eligibility be documented for all new employees by the end of the third day of work.
  
See also http://www.xrce.xerox.com/About-XRCE/Career-opportunities
+
The University of Colorado is an equal opportunity and affirmative action employer committed to assembling a diverse, broadly trained faculty and staff. In compliance with applicable laws and in furtherance of its commitment to fostering an environment that welcomes and embraces diversity, the University of Colorado does not discriminate on the basis of race, color, creed, religion, national origin, sex (including pregnancy), disability, age, veteran status, sexual orientation, gender identity or expression, genetic information, political affiliation or political philosophy in its programs or activities, including employment, admissions, and educational programs. Inquiries may be directed to the Boulder Campus Title IX Coordinator by calling 303-492-2127. In accordance with the Americans with Disabilities Act, alternative formats of this ad can be provided upon request for individuals with disabilities by contacting Human Resources at [mailto:adacoordinator@colorado.edu adacoordinator@colorado.edu].
  
'''Requirements'''  
+
'''Questions''' <br/>
 +
Please email [mailto:sidney.dmello@gmail.com Dr. Sidney D’Mello]
  
* PhD in Computer Science or Computational Linguistics
 
* NLP knowledge and experience
 
* Knowledge or experience in machine learning or information extraction
 
* Object oriented programming skills (e.g. java)
 
* Strong written and oral communications skills in English
 
  
'''Application instructions '''
+
== Researcher in Machine Learning and NLP, DFKI, Germany ==
  
The application deadline is '''March 1, 2013''', but applications will be considered beyond this date until the position is filled.  
+
* Employer: [http://www.dfki.de/ DFKI GmbH], Germany
 +
* Title: Researcher
 +
* Specialty: Machine Learning and Natural Language Processing, Deep Learning, Machine Translation
 +
* Location: Saarbruecken
 +
* Deadline: March 31, 2017
 +
* Date posted: March 13, 2017
 +
* Contact: [mailto:mlt-sek@dfki.de Prof. Josef van Genabith]
  
Informal inquiries can be made to James.Henderson@xrce.xerox.com or Tonya.Love@xerox.com.
+
The Multilingual Technologies (MLT) Lab at DFKI is looking to expand its expertise in Machine Learning with a focus on Deep Learning, Machine Translation and possibly other areas of NLP. Depending on experience, the position is available at the Junior/Researcher/Senior/Principal Researcher level.
To submit an application, please send your CV and cover letter to both xrce-candidates@xrce.xerox.com and to Tonya.Love@xerox.com. You should also include in your CV at least three referees we can contact for letters of recommendation.  
 
  
 +
'''Key research responsibilities''' include:
 +
* machine and deep learning for natural language processing/machine translation
 +
* software development and integration
 +
* publication in top-tier conferences and journals
  
== 15 Research Positions (MT, Parsing, IR/E, Text Analytics, NLP) at CNGL at DCU ==
+
'''General responsibilities''' include:
 +
* engagement with industry partners and contract research
 +
* identification of funding opportunities and engagement in proposal writing
 +
* contribution to teaching and supervision in accordance with University and DFKI rules and regulations
 +
* administrative work associated with programmes of research
  
* Employer: CNGL, Dublin City University http://www.cngl.ie
+
'''Requirements:'''
* Rank or Title: PhD, Post-Doc and Research Programmer
+
* MSc/PhD in computer science, machine learning, natural language processing, computational linguistics or similar
* Specialty:  Machine Translation, Natural Language Processing, Parsing, Information Retrieval/Extraction, Text Analytics
+
* Strong background and track record in machine learning, neural nets and deep learning
* Location: Dublin, Ireland
+
* Strong background and track record in NLP and MT - Excellent programming skills
* Deadline: February 25, 2013
+
* Excellent problem solving skills, independent and creative thinking
* Date Posted: January 30, 2013
+
* Excellent team working and communication skills
* Start Date: March, 2013
+
* Excellent command of written and oral English
* Duration: 3 year (PhD), up to 2.5 years (Post-Doc)
+
* Command of German and other  languages not a requirement but helpful
* Contact email: dgroves@computing.dcu.ie
 
  
'''For More Details'''
+
The successful applicant will work in the DFKI MLT lab led by Prof. Josef van Genabith (Scientific Director MLT, DFKI, and Chair of Translation-Oriented Language Technologies, Saarland University).
  
http://www.cngl.ie/vacancies.html
+
'''Working environment:'''
 +
DFKI is one of the largest AI research institutes worldwide, with several sites in Germany, covering basic research and applications. DFKI is a not-for-profit company with more than 500 researchers from 60+ countries across the globe. DFKI is based on a shareholder model including globally operating companies such as Intel, Google, Microsoft, Nuance, SAP, BMW, VW, Bosch, Deutsche Telekom, several SMEs, three German universities and three German Federal States.
  
'''Position Description'''
+
The DFKI Multilingual Technologies lab partners in international, national and industry funded research projects in all areas of Language Technologies (including machine translation, question answering, information extraction, human-robot communication, speech and the multi-lingual web). The MLT lab currently leads the H2020 European Research project [http://www.qt21.eu/ QT21] on MT, the EU CEF funded [http://lr-coordination.eu/ ELRC] project and the EU funded [http://www.tradr-project.eu/ TRADR] project on human-robot collaboration in disaster response scenarios.
  
CNGL is a €50M+ Academia-Industry partnership, funded jointly by Science Foundation Ireland (SFI) and our industry partners, and is entering its second cycle of funding. CNGL is looking to fill multiple posts associated with its second phase which will focus on expansion of our work into the challenging areas of social text sources and multimedia content.
+
The MLT lab is part of the DFKI site at the Saarland University campus in Saarbrücken, Germany. Saarland University has exceptionally strong Computer Science and Computational Linguistics departments, two Max Plank Institutes in Computer Science, an Excellence Cluster in [http://www.mmci.uni-saarland.de/en/start Multimodal Computing and Interaction] and several International Doctoral and Master programmes in Computer Science and Computational Linguistics. DFKI staff regularly engage in teaching and supervision at Saarland University.
  
CNGL is an active collaboration between researchers at Dublin City University (DCU), Trinity College Dublin (TCD), University College Dublin (UCD), University of Limerick (UL), as well as 10 industrial partners, including SMEs, Microsoft, Symantec, Intel, DNP, and Welocalize.  
+
'''Geographical environment:'''
 +
[http://www.saarbruecken.de/en Saarbrücken] is the capital of Saarland with approximately 190,000 inhabitants. It is located right in the heart of Europe and is the cultural center of this border region of Germany, France and Luxembourg. Some of the closest larger cities are Trier, Nancy, Mannheim, Karlsruhe and Frankfurt. Paris can be reached by train in just under 2 hours. Living costs are modest in comparison with other large cities in Germany and elsewhere in Europe.
  
CNGL comprises over 100 researchers across the various institutions developing novel technologies addressing key challenges in the global digital content and services supply chain. CNGL is involved in a large number of European FP7 projects, as well as commercial projects in the areas of language technologies, information retrieval and digital content management. CNGL provides a world class collaborative research infrastructure, including excellent computing facilities, and administrative, management and fully integrated and dedicated on-site commercialisation support.
+
'''Starting date, duration, salary:'''
 +
Preferred starting date is May/June 2017. The position is available until June 30, 2020, with opportunities for extension depending on performance and future funding. Compensation is competitive and reflects individual competence, seniority and special skills.
  
The successful candidates will become part of the research team based at DCU, joining two leading academic MT/NLP/IR and Translation research groups (www.nclt.dcu.ie/, cttsdcu.wordpress.com/). The team’s location at DCU, minutes from Dublin city centre, offers a highly conducive environment for research, collaboration and innovation with a wealth of amenities on campus.
+
'''Application:'''
 +
Applications are required to include a short cover letter, a CV, list of publications, a brief summary of research interests, and contact information for three references. Please send your electronic application (preferably in PDF format) to [mailto:mlt-sek@dfki.de Prof. Josef van Genabith] referring to job opening no. 22/17-JvG. Deadline for applications is March 31st, 2017. The position remains open until filled. Please contact [mailto:josef.van_genabith@dfki.de Prof. van Genabith] for informal inquiries.
  
DCU is ranked in the TOP 50 of young universities worldwide (under 50 years old) (QS Ranking) and in the TOP 100 under the Times Higher Education (under 50 years) ranking scheme.
 
  
The research is supervised by Dr. Jennifer Foster, Dr. Sharon O'Brien, Dr. Gareth Jones, Prof. Qun Liu and Prof. Josef van Genabith.
+
== Associate Research Scientist, UKP Lab, TU Darmstadt ==
  
'''PhD Studentships'''
+
* Employer: [https://www.ukp.tu-darmstadt.de/ UKP Lab], [https://www.informatik.tu-darmstadt.de/ Technische Universität Darmstadt], Germany
 +
* Title: Associate Research Scientist
 +
* Specialty: Interactive Machine Learning (IML) or Natural Language Processing for Language Learning
 +
* Location: Darmstadt
 +
* Deadline: March 8, 2017
 +
* Date posted: February 21, 2017
 +
* Contact: [mailto:jobs@ukp.informatik.tu-darmstadt.de Prof. Iryna Gurevych]
  
*Parsing, Analytics and Information Extraction:
+
The Ubiquitous Knowledge Processing (UKP) Lab at the Department of Computer Science, Technische Universität (TU) Darmstadt, Germany has two openings for an
**Tuning Text Analytics to User-Generated Content: Parse quality estimation and targeted self-training.
 
**Extracting Events and Opinions from User-Generated Content: Deep parsing-based methods.
 
*Information Retrieval:
 
**Self-Managing Information Retrieval Technologies: Query, search technique and parameter selection in information retrieval applications
 
**Indexing and Search for Multimodal (Spoken/Visual) Content: Locating relevant content in multimodal sources
 
**Application of Text Analytics in Information Retrieval: Enhancing information retrieval using features from text analysis
 
**Investigating Human-Computer Interaction Issues for Search and Discovery with Multimodal (spoken/Visual) Content
 
*Machine Translation:
 
**Syntax- and Semantics-Enhanced Machine Learning Based MT
 
**Domain Adaptation Based on Multi-Dimensional Quality Estimation, Similarity Metrics, Clustering and Search
 
**Human interaction with MT output: Usability, Acceptability, Post-editing Research
 
**MT and Multimodal Interaction
 
**MT for Multimodal Cross Language Information Retrieval
 
  
'''Post-Doctoral Positions'''
+
'''Associate Research Scientist'''<br />
 +
'''(PostDoc- or PhD-level; for an initial term of two years)'''
  
*Parsing, Analytics and Information Extraction:
+
to strengthen the group’s profile in the areas of Interactive Machine
**Extracting Events and Opinions from User-Generated Content: Parsing-based deep methods (up to 2 year contract)
+
Learning (IML) or Natural Language Processing for Language Learning.
**Extracting Events and Opinions from UGC: Shallow methods, including unsupervised methods (up to 2.5 year contract)
+
The UKP Lab is a research group comprising over 30 team members who
*Machine Translation:
+
work on various aspects of Natural Language Processing (NLP), of
**User/Human Centric MT (up to 2.5 year contract)
+
which Interactive Machine Learning and Natural Language Processing
 +
for Language Learning are the focus areas researched in collaboration
 +
with partners in research and industry.
  
'''Post-Doctoral Positions'''
+
We ask for applications from candidates in Computer Science with a
 +
specialization in Machine Learning or Natural Language Processing,
 +
preferably with expertise in research and development projects, and
 +
strong communication skills in English and German.
  
*Research Programmer (up to 2.5 year contract)
+
* The successful applicant in the area of Interactive Machine Learning will work on research activities regarding its application to end-user content annotation, information structuring and recommendation, or semantic text analysis, and development activities to create functional and attractive user-oriented product prototypes.
 +
* The successful applicant in the area of Natural Language Processing for Language Learning will work on research activities in automatically assessing language competencies and readability as well as on generating exercise material for language learners in intelligent real-time learning systems.  
  
For more information please see: http://www.cngl.ie/vacancies.html
+
Prior work in the above areas is a definite advantage. Ideally, the
 +
candidates should have demonstrable experience in designing and
 +
implementing complex (NLP and/or ML) systems, experience in
 +
large-scale data analysis, large-scale knowledge bases, and strong
 +
programming skills incl. Java. Experience with neural network
 +
architectures and a sense for user experience design are a strong
 +
plus. Combining fundamental NLP research on Interactive Machine
 +
Learning or Natural Language Processing with practical applications
 +
in different domains including education will be highly encouraged.
  
== Assistant Professor Position in Computational Linguistics in NAIST (Nara, Japan) ==
+
UKP’s wide cooperation network both within its own research community
 +
and with partners from research and industry provides an excellent
 +
environment for the position to be filled. The Department of Computer
 +
Science of TU Darmstadt is regularly ranked among the top ones in  
 +
respective rankings of German universities. Its unique research
 +
initiative "Knowledge Discovery in the Web" and the Research Training
 +
Group [https://www.aiphes.tu-darmstadt.de/ "Adaptive Information Processing of Heterogeneous Content" (AIPHES)] funded by the DFG emphasize NLP, machine learning, text
 +
mining, as well as scalable infrastructures for the assessment and
 +
aggregation of knowledge. UKP Lab is a highly dynamic research group
 +
committed to high-quality research results, technologies of the
 +
highest industrial standards, cooperative work style and close
 +
interaction of team members working on common goals.
  
* Employer: Nara Insititute of Science and Technology
+
Applications should include a detailed CV, a motivation letter and an
http://www.naist.jp/en/
+
outline of previous working or research experience (if available).
* Rank or Title: Assistant Professor
 
* Specialty:  Foundation and/or Application areas of Natural Language Processing, Machine Translation, Web Mining and Grammatical Error Correction/Detection
 
* Location: Nara, Japan
 
* Deadline: February 28, 2013
 
* Date Posted: January 30, 2013
 
* Start Date: after April, 2013
 
* Duration: 5 years (reappointment is possible)
 
* Contact email: matsu@is.naist.jp
 
  
'''For Detailed Description'''
+
Applications from women are particularly encouraged. All other things
 +
being equal, candidates with disabilities will be given preference.
 +
Please send the applications to:
 +
[mailto:jobs@ukp.informatik.tu-darmstadt.de jobs@ukp.informatik.tu-darmstadt.de] by 08.03.2017. The positions
 +
are open until filled. Later applications may be considered if the
 +
position is still open.
  
http://www.naist.jp/en/about_naist/job_opportunities/academic_positions/index_130129.html
+
==  Postdoctoral Fellowship in Linguistics and Cognitive Science at Northwestern University ==
 +
*Employer: Northwestern University, USA
 +
*Title: Postdoctoral Fellowship in Linguistics and Cognitive Science at Northwestern University
 +
*Speciality: Open area
 +
*Location: Evanston, IL, USA
 +
*Deadline: April 1, 2017
 +
*Date posted: February 17, 2017
 +
*Contact: matt-goldrick@northwestern.edu
  
==Researchers - AT&T Labs Research==
+
The Department of Linguistics at Northwestern University invites applications for a full-time, non-renewable, two year postdoctoral fellowship in any area of linguistics. We are looking for candidates who pursue an integrated, interdisciplinary approach to the scientific study of language, utilizing experimental methods, corpus analysis, and/or computational modeling to inform linguistic theory and its applications. The fellowship period begins September 1, 2017. Each year, the fellow will be expected to teach one undergraduate-level course in the Department of Linguistics. The fellow will also serve as an undergraduate adviser for the Cognitive Science Program, working with students pursuing the major and minor on academic issues (e.g., course selection, research opportunities, progress on degree requirements).
* Employer: AT&T Labs - Research
+
* Rank or Title: Researchers and Research Software Engineers
+
The fellow will join a vibrant interdisciplinary community of researchers from across the cognitive sciences (including communication sciences, computer science, learning sciences, music cognition, neuroscience, philosophy, and psychology). The fellow’s research will be supported by the facilities of the Department of Linguistics.
* Specialty: Natural Language Processing, Speech Processing, Machine Learning
+
* Location: NJ
+
To receive fullest consideration, applications should arrive by April 1, 2017. Candidates must hold a Ph.D. in Linguistics or a related field (e.g., Cognitive Neuroscience, Cognitive Science, Computer Science, Philosophy, Psychology, Speech and Hearing Sciences) by the start date. Please include a CV that includes contact information, brief statements of research and teaching interests (1-3 pages each), up to 3 reprints or other written work (including thesis chapters for ABD applicants), teaching evaluations (if available), and the names and contact information for three references. Please visit http://www.linguistics.northwestern.edu/ for online application instructions.
* Deadline: Applications accepted until position is filled
+
* Date Posted: 8 January 2013
+
E-mail inquiries should be directed to Matt Goldrick, Chair of the Department of Linguistics (matt-goldrick@northwestern.edu). Northwestern University is an Equal Opportunity, Affirmative Action Employer of all protected classes including veterans and individuals with disabilities. Women and minorities are encouraged to apply. Hiring is contingent upon eligibility to work in the United States.
* Contact email: vkumar@research.att.com
 
  
'''Position Description'''
+
==  Postdoctoral Research Position in Interpretable Machine Learning at Cardiff University, UK ==
 +
*Employer: Cardiff University, UK
 +
*Title: Research Associate in Artificial Intelligence / Machine Learning
 +
*Speciality: Vector Space Models, Deep Learning, Interpretable Machine Learning, Symbolic Models
 +
*Location: Cardiff, UK
 +
*Deadline: March 2, 2017
 +
*Date posted: February 13, 2017
 +
*Contact: schockaerts1@cardiff.ac.uk
  
AT&T Research, one of the premier industrial research laboratories in the world, is looking for
+
Applications are invited for a Postdoctoral Research Associate post in Cardiff University’s School of Computer Science & Informatics. This is a full-time, fixed-term post for 30 months, starting on 1 May 2017 or as soon as possible thereafter. The successful candidate will be dedicated to finding creative solutions and have a genuine curiosity and enthusiasm to undertake world-class research in the field of Machine Learning / Artificial Intelligence. Specifically, the aim of this post will be to develop novel methods for learning interpretable/symbolic models from diverse sources of information, including knowledge graphs, vector space models and natural language text. These models will then be used as background theories in applications such as recognising textual entailment, automated knowledge base completion, or zero-shot learning. You will work closely with Steven Schockaert. You will possess or be near the completion of a PhD in Computer Science or a related area, or have relevant industrial experience.  
talented individuals to make a difference in the world of communications. Our researchers and
 
research software engineers are dedicated to solving real problems in speech and language
 
processing, and are involved in inventing, creating and deploying innovative services. We also
 
explore fundamental research problems in these areas. Outstanding Ph.D.-level candidates at
 
all levels of experience are encouraged to apply.  Candidates must demonstrate excellence in  
 
research, a collaborative spirit and strong communication and software skills.  
 
  
Areas of particular interest are
+
This research will be part of the FLEXILOG project, which is funded by the European Research Council (ERC)
  
    * Large-vocabulary automatic speech recognition
+
'''Essential criteria'''
    * Acoustic and language modeling
 
    * Robust speech recognition
 
    * Signal processing
 
    * Text-to-speech synthesis
 
    * Natural language understanding and dialog
 
    * Machine translation (speech and text)
 
    * Speaker biometrics
 
    * Voice and multimodal search
 
    * Software engineering for speech and language processing
 
  
Speech and language positions are based in Bedminster, NJ; New York, NY and Middletown, NJ (note: we are moving from our Florham Park office).
+
* Postgraduate degree at PhD level, or near to completion of a PhD in a related subject area or relevant industrial experience
 +
* An established expertise and proven portfolio of research and/or relevant industrial experience within at least two of the following research fields: Machine Learning, Knowledge Representation, Natural Language Processing.
 +
* A strong background in statistics and linear algebra.
 +
* Excellent programming skills.
 +
* Knowledge of current status of research in specialist field.
 +
* Proven ability to publish in relevant journals (e.g. Artificial Intelligence, Journal of Artificial Intelligence Research, Journal of Machine Learning Research, Machine Learning) or top-tier conferences (e.g. IJCAI, AAAI, ECAI, NIPS, ICML, KDD, ACL, EMNLP).
 +
* Ability to understand and apply for competitive research funding.
 +
* Proven ability in effective and persuasive communication.
 +
* Ability to supervise the work of others to focus team efforts and motivate individuals.
 +
* Proven ability to demonstrate creativity, innovation and team-working within work.
  
Outstanding PhD-level candidates at all levels of experience and experienced M.S. candidates
+
'''Background about the university'''
are encouraged to apply.  Interviews will be conducted in early 2013.  For more information,
 
visit http://www.research.att.com/ and click on "Working with us", or access the page directly:
 
  
http://www.research.att.com/evergreen/working_with_us/careers.html
+
Cardiff is a strong and vibrant capital city with good transportation links and an excellent range of housing available. Various surveys have ranked it as one of the most liveable cities in Europe. Cardiff University is a member of the Russell Group of research universities, and was ranked 5th in the UK based on the quality of research in the 2014 Research Evaluation Framework. The university has a successful School of Computer Science & Informatics with an international reputation for its teaching and research activities. The school has a strong research track record recognised for its outstanding impact in terms of reach and significance, with 79% of its outputs deemed world-leading or internationally excellent in the 2014 Research Excellence Framework.  
  
Candidates must demonstrate a proven research track record and the ability to identify technical
+
'''Background about the project'''
problems and research opportunities. Candidates with strong analytical and programming skills (Python, C, C++)
 
are desired. Access to massive amounts of real-world data, the ability to work with internal and external
 
collaborators across departments, the possibility of making an impact by developing solutions that will be used
 
by millions, and the freedom to publish your results are some of the reasons AT&T Labs -
 
Research is an exciting place to work.
 
  
AT&T Companies are Equal Opportunity Employers. Applications will continue to be considered until positions are filled.
+
Vector space embeddings have become a popular representation framework in many areas of natural language processing and knowledge representation. In the context of knowledge base completion, for example, their ability to capture important statistical dependencies in relational data has proven remarkably powerful. These vector space models, however, are typically not interpretable, which can be problematic for at least two reasons. First, in applications it is often important that we can provide an intuitive justification to the end user as to why a given statement is believed, and such justifications are moreover invaluable for debugging or assessing the performance of a system. Second, the black box nature of these representations makes it difficult to integrate them with other sources of information, such as statements derived from natural language, or from structured domain theories. Symbolic representations, on the other hand, are easy to interpret, but classical inference is not sufficiently robust (e.g. in case of inconsistency) and too inflexible (e.g. in case of missing knowledge) for most applications.  
  
==Engineer 4, NLP Software Development - Comcast Corporation (Washington DC or Philadelphia PA)==
+
The overall aim of the FLEXILOG project is to develop novel forms of reasoning that combine the transparency of logical methods with the flexibility and robustness of vector space representations. For example, symbolic inference can be augmented with inductive reasoning patterns (based on cognitive models of human commonsense reasoning), by relying on fine-grained semantic relationships that are derived from vector space representations. Conversely, logical formulas can be interpreted as spatial constraints on vector space representations. This duality between logical theories and vector space representations opens up various new possibilities for learning interpretable domain theories from data, which will enable new ways of tackling applications such as recognising textual entailment, automated knowledge base completion, or zero-shot learning.
* Employer: Comcast
 
* Rank or Title: Engineer 4
 
* Specialty: Natural Language Processing, Speech Recognition, Machine Learning
 
* Location: Washington DC or Philadelphia
 
* Deadline: Applications accepted until position is filled
 
* Date Posted: 6 December 2012
 
* Contact email: brian_curtis@cable.comcast.com
 
  
'''Position Description'''
+
'''More information'''
  
Comcast is the largest cable TV company in the world. We are looking for talented engineers to help us shape the future of content discovery for television.  
+
For more details about the project and instructions on how to apply, please go to www.cardiff.ac.uk/jobs and search for job 5545BR. Please note the requirement to evidence all essential criteria in the supporting statement.
  
To help get us there, we are hiring an experienced software engineer to develop new technology and adapt/apply existing technologies to NLP problems for the Comcast Voice Control platform. This position is part of a small team that uses Speech Recognition, Natural Language Understanding/Processing, Machine Learning along with search technologies such as SOLR/Lucene, tf/idf and relevance ranking, to extract contextually correct entity and verb semantics from speech and apply them to real world solutions across millions of connected homes.
+
==  Research Associates in Natural Language Processing / Text Mining,  University of Manchester, UK ==
 +
*Employer: National Centre for Text Mining (NaCTeM), School of Computer Science, University of Manchester, UK
 +
*Title: Research Associates in Natural Language Processing / Text Mining
 +
*Speciality: Natural Language Processing, Text Mining
 +
*Location: Manchester, UK
 +
*Deadline: March 13, 2017
 +
*Date posted: February 10, 2017
 +
*Contact: sophia.ananiadou@manchester.ac.uk
  
'''About you'''
+
The School of Computer Science, National Centre for Text Mining at the University of Manchester seeks to appoint two Research Associates in Natural Language Processing-based Text Mining to expand its text mining research portfolio.
  
* Education Level: Bachelors Degree or Equivalent
+
They will join a strong team of 12+ staff who work on numerous national and international research projects, including industry, in areas of information extraction, disambiguation, topic analysis, natural language processing, biomedical text mining and machine learning.
* Field of Study: Computer Science, Engineering
 
* Extensive experience using Java technologies including J2SE, XML/XSLT, Apache Jakarta components and other open source software.
 
* Experience with statistical/modeling techniques such as CRF, HMM, SVM, KNN.
 
* Experience with Topic Classification, Parsing, Narrative Thread analysis, parts of speech tagging, Sphinx, metadata extraction.
 
* Experience with machine learning and/or algorithms.
 
* Experience with Hibernate, MySQL and/or NoSQL, preferably Hadoop/HBase.
 
* Experience with search technologies such as SOLR/Lucene and/or recommender systems.
 
* Experience with and understanding of Unix systems (RHEL) desirable.
 
* Experience in Agile development methodologies.
 
* Strong problem solving ability with excellent written/verbal communication and presentation skills.  
 
  
 +
'''Skills'''
  
If you are interested in this position and you think you might have what it takes, send your resume to brian_curtis@cable.comcast.com.  
+
You should have a PhD in Computer Science with an emphasis on Natural Language Processing and Text Mining. The focus of your research will be in developing (semi)-supervised methods for information extraction, in particular relation, event extraction and normalisation; a proven ability to develop algorithms for NLP/text mining problems using deep learning will be highly desirable; knowledge of developing text mining workflows using UIMA based environment will be a plus. You should have excellent programming skills, preferably in Java.  
  
 +
* Duration of post: Immediately until 31st October 2018
 +
* Salary: £31,076-£38,183 per annum
  
 +
'''Research Team'''
  
 +
The National Centre for Text Mining (http://www.nactem.ac.uk) has been a leading centre for text mining since 2004, with areas of expertise in information extraction, terminology, text classification, text mining infrastructures and semantic search systems. NaCTeM is located in the Manchester Institute of Biotechnology (http://www.mib.ac.uk) and its staff belong to the 4th ranked Computer Science school in the UK (REF2014) which has been further assessed as having the "best environment in the UK for computer science and informatics research”.
  
==NLP Research Scientist - Nuance Communications, Inc. (Sunnyvale, CA Research Group)==
+
Informal enquiries:  Prof. Sophia Ananiadou (Sophia.ananiadou@manchester.ac.uk).  
* Employer: Nuance Communications, Inc.
 
* Rank or Title: NLP Research Scientist
 
* Specialty: Computational Linguistics, Natural Language Processing, Dialog Systems
 
* Location: Sunnyvale, CA, USA
 
* Deadline: Applications accepted until position is filled
 
* Date Posted: November 20th, 2012
 
* Contact email: Jennifer.Garvale@nuance.com
 
  
'''General Description'''
+
Deadline of applications: 13/03/2017
  
Nuance is the world-wide leader in voice technologies. We are now making substantial research and development investments to add natural language processing capabilities to our speech infrastructure. We are expanding our new Silicon Valley Natural Language Research laboratory. The goal of this group is to develop the next generation of intelligent, conversational agents. We seek research scientists with the following backgrounds:
+
Application forms and further particulars: https://www.jobs.manchester.ac.uk/displayjob.aspx?jobid=12975
 
 
* Dialog processing
 
* Discourse and anaphora resolution
 
* Multimodal generation
 
* Parsing
 
* Entity recognition
 
* Morphology
 
* Multilingual NLP
 
* Semantic interpretation
 
 
 
'''Responsibilities'''
 
 
 
* Ownership of a major component of the conversational system.
 
* Conduct research on the dialog, generation, or reasoning components, and incorporate the latest advances from major conferences in the field.
 
* Adapt existing components within Nuance and from previous research in the field to a new problem space and domain.
 
* Understand the trade-offs between multiple competing approaches, and choose the ones that are likely to have future impact on the company's products.
 
* Design components in a way that will generalize across domains. Minimize the code change and human effort needed for the system to work in a new domain.
 
* Collaborate with other scientists and engineers inside and outside of the team.
 
* Patent or publish experimental results or designs when appropriate.
 
 
 
'''Education/Experience'''
 
* Ph.D. in computer science, computational linguistics, linguistics, or another technical field with a focus on natural language processing.
 
* Solid track record in both projects and publications for natural language processing.
 
* Solid implementation skills in C++, Java, scripting languages.
 
* Knowledge of both statistical and rule-based methods for natural language processing.
 
 
 
 
 
Interested candidates should contact Jennifer Garvale at Jennifer.Garvale@nuance.com.  For additional information about the technical aspects of the position, feel free to contact Joel Tetreault at Joel.Tetreault@nuance.com. 
 
 
 
 
 
 
 
==Postdoctoral Fellowship - Natural Language Processing==
 
* Employer: University of Cincinnati and Cincinnati Children's Hospital Medical Center
 
* Rank or Title: Postdoctoral Fellow - Natural Language Processing
 
* Specialty: Computational Linguistics, Natural Language Processing, Natural Language Generation
 
* Location: Cincinnati, OH, USA
 
* Deadline: Applications accepted until position is filled
 
* Date Posted: November 9th, 2012
 
* Contact email Imre.Solti@cchmc.org
 
 
 
'''Position and Requirements'''
 
Are you a recent PhD graduate or getting ready to graduate with a degree in computational linguistics, computer science, artificial intelligence or closely related field? Do you want to apply your computational skills, machine learning and NLP experience to solve real world challenges to help patients by automating the clinical decision making? Do you have excellent command of both written and oral English, and first author peer reviewed journal publications?
 
 
 
If the answers are yes and you would like to join our team of seven dedicated researchers, programmers and annotators then please, send your most recent CV, a brief research statement and three publications in PDF file format to: Imre.Solti@cchmc.org (include "Postdoctoral Fellow - ACL Wiki" in the subject line).
 
 
 
We provide competitive salaries and excellent benefits. We will sponsor H1B visas for qualified candidates as necessary.
 
 
 
'''About the Institution'''
 
Cincinnati Children's has over one million physician-patient encounters a year and is the second largest recipient of NIH funding among children hospitals. The hospital has over 12,000 employees. The Division of Biomedical Informatics manages a state-of-the-art 500+ CPU computing cluster. The research of the Solti Lab is funded from institutional and external (NIH) grants.
 
 
 
 
 
== Research Programmer position - speech and language processing ==
 
* Employer: University of Minnesota
 
* Location: Minneapolis, Minnesota, USA
 
* Deadline: open until filled
 
* Date posted: November 7, 2012
 
* Duration: Minimum 2 years committment
 
* Informal inquiries can be sent to Serguei Pakhomov at spakh001@gmail.com
 
 
 
'''General Description'''
 
The College of Pharamcy at the University of Minnesota is seeking a talented, pro-active and innovative individual for a Research Programmer position to work on several projects in Center for Clinical and Cognitive Neuropharmacology (C3N). C3N is engaged in conducting interdisciplinary research focused on cognitive effects of medications and neurodegenerative disorders such as Alzheimer’s disease. Computerized assessment is used to measure these cognitive effects. The successful candidate for this position will be responsible for a variety of computer-related tasks including creating and maintaining innovative computer-based neuropsychological testing applications that involve spontaneous speech and language collection and analysis. The successful candidate will also be expected to interact with graduate and undergraduate students on specific programming and research projects to meet the needs of the Center.
 
 
 
'''Skills and characteristics'''
 
 
 
* Education: Master’s degree in computer science, electrical engineering, computational linguistics or equivalent combination of training and experience
 
 
 
* Required Skills: Excellent analytical, technical and problem-solving skills. Deep understanding and experience with audio and speech processing. Strong application programming skills in C/C++,  Java, Python and/or Perl programming languages. Familiarity with speech recognition toolkits and APIs (e.g., HTK, Sphinx, KALDI, SRILM), acoustic analysis tools (e.g., Praat) and good understanding or experience with speech recognition and analysis technology.
 
 
 
* Preferred skills and characteristics: Familiarity with natural language processing (NLP) techniques and toolkits (e.g., NLTK). Experience with programming applications for mobile devices. Familiarity with computerized or paper-and-pencil neuropsychological testing.
 
 
 
* Other: The successful candidate will be a self-motivated and proactive individual, a good communicator interested in working in an academic environment. Participating in research and experimentation leading to scientific publication are not required but would be highly encouraged and supported.
 
 
 
If you are someone who has the necessary skills and thrives on working in an exciting and dynamic research environment, please send us a letter stating your interest and qualifications, and a resume. Please use this website to apply: https://employment.umn.edu/applicants/jsp/shared/position/JobDetails_css.jsp?postingId=576008.
 

Latest revision as of 06:41, 3 May 2017

Scientific System Developer, UKP Lab, TU Darmstadt

The Ubiquitous Knowledge Processing (UKP) Lab at the Department of Computer Science, Technische Universität (TU) Darmstadt, Germany has an opening for a

Scientific System Developer
(PostDoc- or PhD-level; time-limited project position until April 2020)

to strengthen the group’s profile in the area of Argument Mining, Machine Learning and Big Data Analysis. The UKP Lab is a research group comprising over 30 team members who work on various aspects of Natural Language Processing (NLP), of which Argument Mining is one of the rapidly developing focus areas in collaboration with industrial partners.

We ask for applications from candidates in Computer Science preferably with expertise in research and development projects, and strong communication skills in English and German. The successful applicant will work in projects including research activities in the area of Argument Mining (e.g. automatic evidence detection, decision support, large-scale web mining on heterogeneous source and data management), and development activities to create new products or industrial product prototypes. Prior work in the above areas is a definite advantage. Ideally, the candidates should have demonstrable experience in designing and implementing complex (NLP) systems in Java and Python as well as experience in information retrieval, large-scale data processing and machine learning. Experience with continuous system integration and testing and distributed/cluster computing is a strong plus. Combining fundamental NLP research with industrial applications from different application domains will be highly encouraged.

UKP’s wide cooperation network both within its own research community and with partners from industry provides an excellent environment for the position to be filled. The Department of Computer Science of TU Darmstadt is regularly ranked among the top ones in respective rankings of German universities. Its unique and recently established Research Training Group “Adaptive Information Processing of Heterogeneous Content” (AIPHES) funded by the DFG emphasizes NLP, text mining, machine learning, as well as scalable infrastructures for the assessment and aggregation of knowledge. UKP Lab is a highly dynamic research group committed to high-quality research results, technologies of the highest industrial standards, cooperative work style and close interaction of team members working on common goals.

Applications should include a detailed CV, a motivation letter and an outline of previous working or research experience (if available).

Applications from women are particularly encouraged. All other things being equal, candidates with disabilities will be given preference. Please send the application to: jobs@ukp.informatik.tu-darmstadt.de by 31.05.2017. The position is open until filled. Later applications may be considered if the position is still open.

Questions about the position can be directed to: Johannes Daxenberger; phone: [+49] (0)6151 16-25297 We look forward to receiving your application!


Two postdoc positions on plausible reasoning with vector space embeddings at Cardiff University

  • Employer: Cardiff University
  • Title: Postdoctoral Research Associate
  • Specialty: vector space embeddings, statistical relational learning, knowledge representation, neural networks, explainable AI
  • Location: Cardiff, UK
  • Deadline: May 20, 2017
  • Date posted: April 20, 2017
  • Contact: Steven Schockaert

Applications are invited for two Postdoctoral Research Associate posts at Cardiff University’s School of Computer Science & Informatics:

  • The focus of the first position will be on developing methods for exploiting entity embeddings in statistical relational learning, to enable robust plausible reasoning from sparse relational data. Entity embeddings can be used to identify plausible formulas that are missing from a given knowledge base, intuitively by applying a kind of similarity or analogy based reasoning. Statistical relational learning can also be used to infer plausible formulas, but instead relies on modelling statistical dependencies among relational facts at the symbolic level. Unifying both methodologies will allow us to develop powerful inference methods that combine their complementary strengths. The resulting method will be applied to zero and one shot learning tasks, with a focus on automated knowledge base completion.
  • The focus of the second position will be on learning vector space embeddings of events and the causal relations between them. In contrast to existing approaches, the learned embeddings will explicitly model which entities participate in the events, how they are related, and how their relationships are affected by different events. This will require combining ideas from neural network models for event embedding (e.g. based on LSTMs) with ideas from knowledge graph embedding models. Among others, the resulting model will allow us to uncover more intricate causal relationships, to generate supporting explanations for causal predictions, to incorporate prior knowledge, and to transfer learned knowledge between domains. Intended applications include recognising textual entailment, stock market prediction, and event-focused information retrieval.

Successful candidates are expected to have a strong background in natural language processing, machine learning, or knowledge representation. This research will be part of Steven Schockaert's FLEXILOG project, which is funded by the European Research Council (ERC)

Cardiff University is a member of the Russell Group of research universities, and was ranked 5th in the UK based on the quality of research in the 2014 Research Evaluation Framework. The university has a successful School of Computer Science & Informatics with an international reputation for its teaching and research activities. Cardiff is a strong and vibrant capital city with good transportation links and an excellent range of housing available.


More information For more details about the positions, please contact Steven Schockaert (SchockaertS1@cardiff.ac.uk). For instructions on how to apply, please go to www.cardiff.ac.uk/jobs and search for job 5878BR. Please note the requirement to evidence all essential criteria in the supporting statement.


Postdoc in Machine Learning for Multimodal Behavior and Mental State Analysis, University of Colorado Boulder

  • Employer: University of Colorado Boulder
  • Title: Postdoctoral Research Associate
  • Specialty: Advanced Machine Learning
  • Location: Boulder, Colorado, United States
  • Deadline: Ongoing, desired start Summer/Fall 2017
  • Date posted: March 31, 2017
  • Contact: Dr. Sidney D’Mello

Postdoc in Machine Learning for Multimodal Behavior and Mental State Analysis
(Institute of Cognitive Science and Department of Computer Science at the University of Colorado Boulder)

The Institute of Cognitive Science (ICS) and Department of Computer Science at the University of Colorado Boulder anticipates hiring a full time postdoctoral fellow starting Summer/Fall 2017 for one year and renewable for a second year. The position includes a competitive salary commensurate with experience and full benefits. Review of applications will begin immediately and continue until the position is filled.

The postdoc will develop and apply machine learning techniques in the hierarchical and temporal domains to model behavioral and mental states (e.g., affect, attention, workload) from multimodal data (e.g., video, audio, physiology, eye gaze) across a range of interaction contexts (e.g., online learning, in-class learning, collaborative problem solving).

The candidate will work under the supervision of Dr. Sidney D’Mello and will play a collaborative and co-leadership role in a vibrant research team encompassing researchers in Computer Science, Cognitive Science, and Education.

The position offers a unique postdoctoral training experience and unsurpassed publishing opportunities within multi-department and multi-institution grant-funded projects. The postdoc will be encouraged to develop advanced technical skills, strengthen their research portfolios via peer-reviewed publications, gain interdisciplinary experience by working with a diverse team, develop leadership skills by mentoring students, and gain expertise in co-authoring grant proposals.

Required

  • Ph.D. in Computer Science, Artificial Intelligence, or a related field (at the time of hire)
  • Research experience in advanced machine learning for temporal and hierarchical domains (e.g., probabilistic graphical models, deep recurrent neural networks) applied to human behavior and mental state analysis (e.g., affective computing, dyadic/triadic interaction)
  • Self-motivated with a strong work ethic and writing proficiency as evidenced by a strong publication record

Desired

  • Research experience in one or more of the following areas (computer vision, eye tracking, computational psychophysiology, fMRI, multimodal fusion, collaborative problem solving, real-world sensing)
  • Experience mentoring graduate and undergraduate students

Job Details

  • 1-2 year position. Initial contract is for one year (providing renewal after 6-month probationary period). Second year contract is based on performance and availability of funds.
  • Start date is negotiable, but anticipated for Summer/Fall 2017.
  • Competitive salary with benefits commensurate with qualifications. This position is eligible for medical, dental and life insurance, retirement benefits programs, and is eligible for monthly vacation and sick leave accruals.

How to apply
Please complete Faculty/University Staff EEO Data (application) form (https://goo.gl/YC9g94) and upload the following required documents: 1—Cover letter; 2—Curriculum Vitae 3—List of Three References 4-One or two representative publications.

Special Instructions to Applicants: The University of Colorado Boulder conducts background checks on all final applicants being considered for employment, prior to the issuance of an offer letter. The University of Colorado Boulder is committed to providing a safe and productive learning, living and working community. To achieve this goal, we conduct background investigations for all final applicants being considered for employment. Background investigations include a criminal history record check, and an EPLS (Excluded Parties List System) check. The Immigration Reform and Control Act requires that verification of employment eligibility be documented for all new employees by the end of the third day of work.

The University of Colorado is an equal opportunity and affirmative action employer committed to assembling a diverse, broadly trained faculty and staff. In compliance with applicable laws and in furtherance of its commitment to fostering an environment that welcomes and embraces diversity, the University of Colorado does not discriminate on the basis of race, color, creed, religion, national origin, sex (including pregnancy), disability, age, veteran status, sexual orientation, gender identity or expression, genetic information, political affiliation or political philosophy in its programs or activities, including employment, admissions, and educational programs. Inquiries may be directed to the Boulder Campus Title IX Coordinator by calling 303-492-2127. In accordance with the Americans with Disabilities Act, alternative formats of this ad can be provided upon request for individuals with disabilities by contacting Human Resources at adacoordinator@colorado.edu.

Questions
Please email Dr. Sidney D’Mello


Researcher in Machine Learning and NLP, DFKI, Germany

  • Employer: DFKI GmbH, Germany
  • Title: Researcher
  • Specialty: Machine Learning and Natural Language Processing, Deep Learning, Machine Translation
  • Location: Saarbruecken
  • Deadline: March 31, 2017
  • Date posted: March 13, 2017
  • Contact: Prof. Josef van Genabith

The Multilingual Technologies (MLT) Lab at DFKI is looking to expand its expertise in Machine Learning with a focus on Deep Learning, Machine Translation and possibly other areas of NLP. Depending on experience, the position is available at the Junior/Researcher/Senior/Principal Researcher level.

Key research responsibilities include:

  • machine and deep learning for natural language processing/machine translation
  • software development and integration
  • publication in top-tier conferences and journals

General responsibilities include:

  • engagement with industry partners and contract research
  • identification of funding opportunities and engagement in proposal writing
  • contribution to teaching and supervision in accordance with University and DFKI rules and regulations
  • administrative work associated with programmes of research

Requirements:

  • MSc/PhD in computer science, machine learning, natural language processing, computational linguistics or similar
  • Strong background and track record in machine learning, neural nets and deep learning
  • Strong background and track record in NLP and MT - Excellent programming skills
  • Excellent problem solving skills, independent and creative thinking
  • Excellent team working and communication skills
  • Excellent command of written and oral English
  • Command of German and other languages not a requirement but helpful

The successful applicant will work in the DFKI MLT lab led by Prof. Josef van Genabith (Scientific Director MLT, DFKI, and Chair of Translation-Oriented Language Technologies, Saarland University).

Working environment: DFKI is one of the largest AI research institutes worldwide, with several sites in Germany, covering basic research and applications. DFKI is a not-for-profit company with more than 500 researchers from 60+ countries across the globe. DFKI is based on a shareholder model including globally operating companies such as Intel, Google, Microsoft, Nuance, SAP, BMW, VW, Bosch, Deutsche Telekom, several SMEs, three German universities and three German Federal States.

The DFKI Multilingual Technologies lab partners in international, national and industry funded research projects in all areas of Language Technologies (including machine translation, question answering, information extraction, human-robot communication, speech and the multi-lingual web). The MLT lab currently leads the H2020 European Research project QT21 on MT, the EU CEF funded ELRC project and the EU funded TRADR project on human-robot collaboration in disaster response scenarios.

The MLT lab is part of the DFKI site at the Saarland University campus in Saarbrücken, Germany. Saarland University has exceptionally strong Computer Science and Computational Linguistics departments, two Max Plank Institutes in Computer Science, an Excellence Cluster in Multimodal Computing and Interaction and several International Doctoral and Master programmes in Computer Science and Computational Linguistics. DFKI staff regularly engage in teaching and supervision at Saarland University.

Geographical environment: Saarbrücken is the capital of Saarland with approximately 190,000 inhabitants. It is located right in the heart of Europe and is the cultural center of this border region of Germany, France and Luxembourg. Some of the closest larger cities are Trier, Nancy, Mannheim, Karlsruhe and Frankfurt. Paris can be reached by train in just under 2 hours. Living costs are modest in comparison with other large cities in Germany and elsewhere in Europe.

Starting date, duration, salary: Preferred starting date is May/June 2017. The position is available until June 30, 2020, with opportunities for extension depending on performance and future funding. Compensation is competitive and reflects individual competence, seniority and special skills.

Application: Applications are required to include a short cover letter, a CV, list of publications, a brief summary of research interests, and contact information for three references. Please send your electronic application (preferably in PDF format) to Prof. Josef van Genabith referring to job opening no. 22/17-JvG. Deadline for applications is March 31st, 2017. The position remains open until filled. Please contact Prof. van Genabith for informal inquiries.


Associate Research Scientist, UKP Lab, TU Darmstadt

  • Employer: UKP Lab, Technische Universität Darmstadt, Germany
  • Title: Associate Research Scientist
  • Specialty: Interactive Machine Learning (IML) or Natural Language Processing for Language Learning
  • Location: Darmstadt
  • Deadline: March 8, 2017
  • Date posted: February 21, 2017
  • Contact: Prof. Iryna Gurevych

The Ubiquitous Knowledge Processing (UKP) Lab at the Department of Computer Science, Technische Universität (TU) Darmstadt, Germany has two openings for an

Associate Research Scientist
(PostDoc- or PhD-level; for an initial term of two years)

to strengthen the group’s profile in the areas of Interactive Machine Learning (IML) or Natural Language Processing for Language Learning. The UKP Lab is a research group comprising over 30 team members who work on various aspects of Natural Language Processing (NLP), of which Interactive Machine Learning and Natural Language Processing for Language Learning are the focus areas researched in collaboration with partners in research and industry.

We ask for applications from candidates in Computer Science with a specialization in Machine Learning or Natural Language Processing, preferably with expertise in research and development projects, and strong communication skills in English and German.

  • The successful applicant in the area of Interactive Machine Learning will work on research activities regarding its application to end-user content annotation, information structuring and recommendation, or semantic text analysis, and development activities to create functional and attractive user-oriented product prototypes.
  • The successful applicant in the area of Natural Language Processing for Language Learning will work on research activities in automatically assessing language competencies and readability as well as on generating exercise material for language learners in intelligent real-time learning systems.

Prior work in the above areas is a definite advantage. Ideally, the candidates should have demonstrable experience in designing and implementing complex (NLP and/or ML) systems, experience in large-scale data analysis, large-scale knowledge bases, and strong programming skills incl. Java. Experience with neural network architectures and a sense for user experience design are a strong plus. Combining fundamental NLP research on Interactive Machine Learning or Natural Language Processing with practical applications in different domains including education will be highly encouraged.

UKP’s wide cooperation network both within its own research community and with partners from research and industry provides an excellent environment for the position to be filled. The Department of Computer Science of TU Darmstadt is regularly ranked among the top ones in respective rankings of German universities. Its unique research initiative "Knowledge Discovery in the Web" and the Research Training Group "Adaptive Information Processing of Heterogeneous Content" (AIPHES) funded by the DFG emphasize NLP, machine learning, text mining, as well as scalable infrastructures for the assessment and aggregation of knowledge. UKP Lab is a highly dynamic research group committed to high-quality research results, technologies of the highest industrial standards, cooperative work style and close interaction of team members working on common goals.

Applications should include a detailed CV, a motivation letter and an outline of previous working or research experience (if available).

Applications from women are particularly encouraged. All other things being equal, candidates with disabilities will be given preference. Please send the applications to: jobs@ukp.informatik.tu-darmstadt.de by 08.03.2017. The positions are open until filled. Later applications may be considered if the position is still open.

Postdoctoral Fellowship in Linguistics and Cognitive Science at Northwestern University

  • Employer: Northwestern University, USA
  • Title: Postdoctoral Fellowship in Linguistics and Cognitive Science at Northwestern University
  • Speciality: Open area
  • Location: Evanston, IL, USA
  • Deadline: April 1, 2017
  • Date posted: February 17, 2017
  • Contact: matt-goldrick@northwestern.edu

The Department of Linguistics at Northwestern University invites applications for a full-time, non-renewable, two year postdoctoral fellowship in any area of linguistics. We are looking for candidates who pursue an integrated, interdisciplinary approach to the scientific study of language, utilizing experimental methods, corpus analysis, and/or computational modeling to inform linguistic theory and its applications. The fellowship period begins September 1, 2017. Each year, the fellow will be expected to teach one undergraduate-level course in the Department of Linguistics. The fellow will also serve as an undergraduate adviser for the Cognitive Science Program, working with students pursuing the major and minor on academic issues (e.g., course selection, research opportunities, progress on degree requirements).

The fellow will join a vibrant interdisciplinary community of researchers from across the cognitive sciences (including communication sciences, computer science, learning sciences, music cognition, neuroscience, philosophy, and psychology). The fellow’s research will be supported by the facilities of the Department of Linguistics.

To receive fullest consideration, applications should arrive by April 1, 2017. Candidates must hold a Ph.D. in Linguistics or a related field (e.g., Cognitive Neuroscience, Cognitive Science, Computer Science, Philosophy, Psychology, Speech and Hearing Sciences) by the start date. Please include a CV that includes contact information, brief statements of research and teaching interests (1-3 pages each), up to 3 reprints or other written work (including thesis chapters for ABD applicants), teaching evaluations (if available), and the names and contact information for three references. Please visit http://www.linguistics.northwestern.edu/ for online application instructions.

E-mail inquiries should be directed to Matt Goldrick, Chair of the Department of Linguistics (matt-goldrick@northwestern.edu). Northwestern University is an Equal Opportunity, Affirmative Action Employer of all protected classes including veterans and individuals with disabilities. Women and minorities are encouraged to apply. Hiring is contingent upon eligibility to work in the United States.

Postdoctoral Research Position in Interpretable Machine Learning at Cardiff University, UK

  • Employer: Cardiff University, UK
  • Title: Research Associate in Artificial Intelligence / Machine Learning
  • Speciality: Vector Space Models, Deep Learning, Interpretable Machine Learning, Symbolic Models
  • Location: Cardiff, UK
  • Deadline: March 2, 2017
  • Date posted: February 13, 2017
  • Contact: schockaerts1@cardiff.ac.uk

Applications are invited for a Postdoctoral Research Associate post in Cardiff University’s School of Computer Science & Informatics. This is a full-time, fixed-term post for 30 months, starting on 1 May 2017 or as soon as possible thereafter. The successful candidate will be dedicated to finding creative solutions and have a genuine curiosity and enthusiasm to undertake world-class research in the field of Machine Learning / Artificial Intelligence. Specifically, the aim of this post will be to develop novel methods for learning interpretable/symbolic models from diverse sources of information, including knowledge graphs, vector space models and natural language text. These models will then be used as background theories in applications such as recognising textual entailment, automated knowledge base completion, or zero-shot learning. You will work closely with Steven Schockaert. You will possess or be near the completion of a PhD in Computer Science or a related area, or have relevant industrial experience.

This research will be part of the FLEXILOG project, which is funded by the European Research Council (ERC)

Essential criteria

  • Postgraduate degree at PhD level, or near to completion of a PhD in a related subject area or relevant industrial experience
  • An established expertise and proven portfolio of research and/or relevant industrial experience within at least two of the following research fields: Machine Learning, Knowledge Representation, Natural Language Processing.
  • A strong background in statistics and linear algebra.
  • Excellent programming skills.
  • Knowledge of current status of research in specialist field.
  • Proven ability to publish in relevant journals (e.g. Artificial Intelligence, Journal of Artificial Intelligence Research, Journal of Machine Learning Research, Machine Learning) or top-tier conferences (e.g. IJCAI, AAAI, ECAI, NIPS, ICML, KDD, ACL, EMNLP).
  • Ability to understand and apply for competitive research funding.
  • Proven ability in effective and persuasive communication.
  • Ability to supervise the work of others to focus team efforts and motivate individuals.
  • Proven ability to demonstrate creativity, innovation and team-working within work.

Background about the university

Cardiff is a strong and vibrant capital city with good transportation links and an excellent range of housing available. Various surveys have ranked it as one of the most liveable cities in Europe. Cardiff University is a member of the Russell Group of research universities, and was ranked 5th in the UK based on the quality of research in the 2014 Research Evaluation Framework. The university has a successful School of Computer Science & Informatics with an international reputation for its teaching and research activities. The school has a strong research track record recognised for its outstanding impact in terms of reach and significance, with 79% of its outputs deemed world-leading or internationally excellent in the 2014 Research Excellence Framework.

Background about the project

Vector space embeddings have become a popular representation framework in many areas of natural language processing and knowledge representation. In the context of knowledge base completion, for example, their ability to capture important statistical dependencies in relational data has proven remarkably powerful. These vector space models, however, are typically not interpretable, which can be problematic for at least two reasons. First, in applications it is often important that we can provide an intuitive justification to the end user as to why a given statement is believed, and such justifications are moreover invaluable for debugging or assessing the performance of a system. Second, the black box nature of these representations makes it difficult to integrate them with other sources of information, such as statements derived from natural language, or from structured domain theories. Symbolic representations, on the other hand, are easy to interpret, but classical inference is not sufficiently robust (e.g. in case of inconsistency) and too inflexible (e.g. in case of missing knowledge) for most applications.

The overall aim of the FLEXILOG project is to develop novel forms of reasoning that combine the transparency of logical methods with the flexibility and robustness of vector space representations. For example, symbolic inference can be augmented with inductive reasoning patterns (based on cognitive models of human commonsense reasoning), by relying on fine-grained semantic relationships that are derived from vector space representations. Conversely, logical formulas can be interpreted as spatial constraints on vector space representations. This duality between logical theories and vector space representations opens up various new possibilities for learning interpretable domain theories from data, which will enable new ways of tackling applications such as recognising textual entailment, automated knowledge base completion, or zero-shot learning.

More information

For more details about the project and instructions on how to apply, please go to www.cardiff.ac.uk/jobs and search for job 5545BR. Please note the requirement to evidence all essential criteria in the supporting statement.

Research Associates in Natural Language Processing / Text Mining, University of Manchester, UK

  • Employer: National Centre for Text Mining (NaCTeM), School of Computer Science, University of Manchester, UK
  • Title: Research Associates in Natural Language Processing / Text Mining
  • Speciality: Natural Language Processing, Text Mining
  • Location: Manchester, UK
  • Deadline: March 13, 2017
  • Date posted: February 10, 2017
  • Contact: sophia.ananiadou@manchester.ac.uk

The School of Computer Science, National Centre for Text Mining at the University of Manchester seeks to appoint two Research Associates in Natural Language Processing-based Text Mining to expand its text mining research portfolio.

They will join a strong team of 12+ staff who work on numerous national and international research projects, including industry, in areas of information extraction, disambiguation, topic analysis, natural language processing, biomedical text mining and machine learning.

Skills

You should have a PhD in Computer Science with an emphasis on Natural Language Processing and Text Mining. The focus of your research will be in developing (semi)-supervised methods for information extraction, in particular relation, event extraction and normalisation; a proven ability to develop algorithms for NLP/text mining problems using deep learning will be highly desirable; knowledge of developing text mining workflows using UIMA based environment will be a plus. You should have excellent programming skills, preferably in Java.

  • Duration of post: Immediately until 31st October 2018
  • Salary: £31,076-£38,183 per annum

Research Team

The National Centre for Text Mining (http://www.nactem.ac.uk) has been a leading centre for text mining since 2004, with areas of expertise in information extraction, terminology, text classification, text mining infrastructures and semantic search systems. NaCTeM is located in the Manchester Institute of Biotechnology (http://www.mib.ac.uk) and its staff belong to the 4th ranked Computer Science school in the UK (REF2014) which has been further assessed as having the "best environment in the UK for computer science and informatics research”.

Informal enquiries: Prof. Sophia Ananiadou (Sophia.ananiadou@manchester.ac.uk).

Deadline of applications: 13/03/2017

Application forms and further particulars: https://www.jobs.manchester.ac.uk/displayjob.aspx?jobid=12975