Difference between revisions of "Question Answering (State of the art)"

From ACL Wiki
Jump to navigation Jump to search
m
Line 57: Line 57:
 
| 0.709
 
| 0.709
 
| 0.770
 
| 0.770
 +
|-
 +
| Yu (2014) - TRAIN-ALL bigram+count
 +
| Yu et al. (2014)
 +
| 0.711
 +
| 0.785
 
|-
 
|-
 
|}
 
|}
Line 71: Line 76:
 
* Yih, Wen-tau and Chang, Ming-Wei and Meek, Christopher and Pastusiak, Andrzej. 2013. [http://research.microsoft.com/pubs/192357/QA-SentSel-Updated-PostACL.pdf Question Answering Using Enhanced Lexical Semantic Models]. In ACL 2013.
 
* Yih, Wen-tau and Chang, Ming-Wei and Meek, Christopher and Pastusiak, Andrzej. 2013. [http://research.microsoft.com/pubs/192357/QA-SentSel-Updated-PostACL.pdf Question Answering Using Enhanced Lexical Semantic Models]. In ACL 2013.
 
* Severyn, Aliaksei and Moschitti, Alessandro. 2013. [http://www.aclweb.org/anthology/D13-1044.pdf Automatic Feature Engineering for Answer Selection and Extraction]. In EMNLP 2013.
 
* Severyn, Aliaksei and Moschitti, Alessandro. 2013. [http://www.aclweb.org/anthology/D13-1044.pdf Automatic Feature Engineering for Answer Selection and Extraction]. In EMNLP 2013.
 +
* Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. 2014 [http://arxiv.org/pdf/1412.1632v1.pdf Deep Learning for Answer Sentence Selection]. In NIPS deep learning workshop.
  
 
[[Category:State of the art]]
 
[[Category:State of the art]]

Revision as of 16:15, 11 May 2015

Answer Sentence Selection

The task of answer sentence selection is designed for the open-domain question answering setting. Given a question and a set of candidate sentences, the task is to choose the correct sentence that contains the exact answer and can sufficiently support the answer choice.


Algorithm Reference MAP MRR
Punyakanok (2004) Wang et al. (2007) 0.419 0.494
Cui (2005) Wang et al. (2007) 0.427 0.526
Wang (2007) Wang et al. (2007) 0.603 0.685
H&S (2010) Heilman and Smith (2010) 0.609 0.692
W&M (2010) Wang and Manning (2010) 0.595 0.695
Yao (2013) Yao et al. (2013) 0.631 0.748
S&M (2013) Severyn and Moschitti (2013) 0.678 0.736
Shnarch (2013) - Backward Shnarch (2013) 0.686 0.754
Yih (2013) - LCLR Yih et al. (2013) 0.709 0.770
Yu (2014) - TRAIN-ALL bigram+count Yu et al. (2014) 0.711 0.785


References