RTE Knowledge Resources

From ACL Wiki
Revision as of 10:40, 22 December 2009 by Celct (Talk | contribs)

Jump to: navigation, search

Knowledge resources have shown their relevance for applied semantic inference, and are extensively used by applied inference systems, such as those developed within the Textual Entailment framework.

This page presents a list of the knowledge resources used by systems that have participated in the last RTE challenges. The first table lists the publicly available resources, the second one lists unpublished resources. Both tables are sortable by Resource name, type, author and number of users.

RTE Participants are encouraged to add information about all kind of knowledge resources used, from standard existing resources (e.g. WordNet) to knowledge collections created for specific purposes, which can be made available to the community.


Call for Resources

RTE6 - Call for Resources

Ablation Tests

RTE5 - Ablation Tests

Publicly available Resources

Resource Type Author Brief description PAST Users [1] RTE4 Users[2] RTE5 Users[3] Usage info
WordNet Lexical DB Princeton University Lexical database of English nouns, verbs, adjectives and adverbs 3 21 18 Users
eXtended Wordnet Lexical DB Human Language Technology Research Institute, University of Texas at Dallas Extension of WordNet based on the exploitation of the information contained in WordNet definitional glosses: the glosses are syntactically parsed, transformed into logic forms and content words are semantically disambiguated. The Extended Wordnet is an ongoing project. 0 0 2 Users
Augmented Wordnet Lexical DB Stanford University The resource is the result of the application of a learning algorithm for inducing semantic taxonomies from parsed text. The algorithm automatically acquires items of world knowledge, and uses these to produce significantly enhanced versions of WordNet (up to 40,000 synsets more). 0 0 1 Users
Verbnet Lexical DB University of Colorado Boulder Lexicon for English verbs organized into classes extending Levin (1993) classes through refinement and addition of subclasses to achieve syntactic and semantic coherence among members of a class 2 2 1 Users
VerbOcean Lexical DB Information Sciences Institute, University of Southern California Broad-coverage semantic network of verbs 2 3 6 Users
FrameNet Lexical DB ICSI (International Computer Science Institute) - Berkley University Lexical resource for English words, based on frame semantics (valences) and supported by corpus evidence 1 1 2 Users
NomBank Lexical DB New York University Lexical resource containing syntactic frames for nouns, extracted from annotated corpora 2 1 0 Users
PropBank Lexical DB University of Colorado Boulder Lexical resource containing syntactic frames for verbs, extracted from annotated corpora 2 1 1 Users
Nomlex Plus Lexical DB New York University Dictionary of English nominalizations: it describes the allowed complements for a nominalization and relates the nominal complements to the arguments of the corresponding verb 0 1 0 Users
Dekang Lin’s Thesaurus Thesaurus University of Alberta Thesaurus automatically constructed using a parsed corpus, based on distributional similarity scores 0 1 1 Users
Grady Ward's Moby Thesaurus Thesaurus University of Sheffield Thesaurus containing 30,260 root words, with 2,520,264 synonyms and related terms. Grady Ward placed this thesaurus in the public domain in 1996. 0 0 1 Users
Roget's Thesaurus Thesaurus Peter Mark Roget (Electronic version distributed by University of Chicago) Roget's Thesaurus is a widely-used English thesaurus, created by Dr. Peter Mark Roget in 1805. The original edition had 15,000 words, and each new edition has been larger. The electronic edition (version 1.02) is made available by University of Chicago. 1 0 1 Users
Wikipedia Encyclopedia Free encyclopedia. Used for extraction of lexical-semantic rules (from its more structured parts), named entity recognition, geographical information etc. 0 3 6 Users
Umbel Ontology Structured Dynamics LLC, Coralville, IA UMBEL stands for Upper Mapping and Binding Exchange Layer and is a lightweight ontology structure for relating Web content and data to a standard set of subject concepts 0 0 1 Users
YAGO Ontology Max-Planck Institute for Informatics, Saarbrücken, Germany Light-weight and extensible ontology. It contains more than 2 million entities and 20 million facts about these entities. The facts have been automatically extracted from Wikipedia and unified with WordNet. 0 0 1 Users
DBpedia Ontology Open community project DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. The DBpedia knowledge base currently describes more than 2.9 million things in 91 different languages and consists of 479 million pieces of information. 0 0 1 Users
DIRT Paraphrase Collection Collection of paraphrases University of Alberta DIRT (Discovery of Inference Rules from Text) is both an algorithm and a resulting knowledge collection. The DIRT knowledge collection is the output of the DIRT algorithm over a 1GB set of newspaper text. 2 4 3 Users
TEASE Collection Collection of Entailment Rules Bar-Ilan University Output of the TEASE algorithm 0 0 0 Users
BADC Acronym and Abbreviation List Word List BADC (British Atmospheric Data Centre) Acronym and Abbreviation List 0 1 1 Users
Acronym Guide Word List Acronym-Guide.com Acronym and Abbreviation Lists for English, branched in thematic directories 1 1 3 Users
Web1T 5-grams Word list Linguistic Data Consortium, University of Pennsylvania; Google Inc. Data set containing English word n-grams and their observed frequency counts. The n-gram counts were generated from approximately 1 trillion word tokens of text from publicly accessible Web pages 0 1 0 Users
Normalized Google Distance (RTE3&RTE4) Word Pair Co-occurrence Saarland University Co-occurrence of the word pairs in RTE3 and RTE4 using Normalized Google Distance (Cilibrasi and Vitanyi, 2004). The word pairs are all the possible combinations of content words in T and H. In practice, we used Yahoo! as the search engine. 0 0 1 Users
Normalized Google Distance (RTE5) Word Pair Co-occurrence Saarland University Co-occurrence of the word pairs in RTE3 and RTE4 using Normalized Google Distance (Cilibrasi and Vitanyi, 2004). The word pairs are all the possible combinations of content words in T and H. In practice, we used Yahoo! as the search engine. 0 0 1 Users
GNIS - Geographic Names Information System Gazetteer USGS (United States Geological Survey) Database containing the Federal and national standard toponyms for USA, associated areas and Antarctica 0 1 0 Users
Geonames Gazetteer Database containing eight million geographical names. It is integrating geographical data such as names of places in various languages, elevation, population and others from various sources. 0 1 0 Users
Sekine's Paraphrase Database Collection of paraphrases Department of Computer Science, New York University Data-base created using Sekine's method, NOT cleaned up by human. It includes 19,975 sets of paraphrases with 191,572 phrases. 0 0 0 Users
Microsoft Research Paraphrase Corpus Collection of paraphrases Microsoft Research Text file containing 5800 pairs of sentences which have been extracted from news sources on the web, along with human annotations indicating whether each pair captures a paraphrase/semantic equivalence relationship. 0 0 0 Users
Downward entailing operators Collection of entailing operators Department of Computer Science, Cornell University, Ithaca NY System output of an unsupervised algorithm recovering many Downward Entailing operators, like 'doubt'. 0 0 1 Users
WikiRules! Lexical Reference rule-base Bar-Ilan University Extraction of lexical reference rules from the text body (first sentence) and from metadata (links, redirects, parentheses) of Wikipedia 0 1 1 Users
New resource Participants are encouraged to contribute Users



Not available Resources

The following table lists the unpublished resources used by RTE participants. Some of them have been developed by Users themselves specifically for RTE. Interested people may turn to authors to obtain further information.

Resource Type Author Brief description PAST Users RTE4 Users RTE5 Users Usage info
PARC Polarity Lexicon Lexical DB PARC - Palo Alto Research Center Verbs classification with respect to semantic polarity 0 1 0 Users
Gazetteer from TREC Gazetteer NIST - National Institute of Standards and Technology Cities and other geographical names 1 0 0 Users
DFKI Geographic Ontology
(to be released)
Ontology DFKI - German Research Center for Artificial Intelligence Ontology containing geographic terms and two kinds of relations: the directional part-of relation, and the equal relation for synonyms and abbreviations of the same geographic area (e.g the United Kingdom, the UK, Great Britain, etc.) 0 1 0 Users
Geo Collection of Entailment Rules Bar-Ilan University; Tel-Aviv University Meronymy entailment rules, based on TREC’s TIPSTER gazetteer. 0 0 1 Users
Regex Collection of Entailment rules Bar-Ilan University; Tel-Aviv University Small set of entailment rules based on regular expressions, intended to address lexical variability involving temporal phrases 0 0 1 Users
Syntactic rule base
(to be released)
Collection of Entailment Rules Bar-Ilan University; Tel-Aviv University A manually-composed collection of entailment rules which define parse tree transformations. The rules cover generic syntactic phenomena such as appositions, conjunctions, passive, relative clause, etc. (Bar-Haim et al., AAAI-07) 0 1 1 Users
Polarity rule base
(to be released)
Collection of Entailment Rules Bar-Ilan University; Tel-Aviv University A manually-composed collection of entailment rules which detect predicates whose polarity is negative (e.g. didn't dance) or unknown (e.g. plans to dance). The rules capture diverse phenomena that affect polarity, e.g. verbal negation, modal verbs, conditionals, and certain verbs that induce negative or "unknown" polarity context. The latter were taken mainly from VerbNet. Extends a resource described in (Bar-Haim et al., AAAI-07) 0 1 0 Users
Lexical-Syntactic rule base Collection of Entailment Rules Bar-Ilan University; Tel-Aviv University Extract lexical-syntactic entailment rules for predicates (verbal and nominal), including argument mapping. The resource is based on WordNet, Nomlex-Plus and Unary DIRT (Szpektor and Dagan, Coling 08) 0 1 0 Users
OPENU Collection Collection of Entailment Rules and Patterns Open University Collections of rules, patterns etc. for RTE purpose, extracted from Reuter corpus parsed using Minipar. 1 0 0 Users
Abbr Collection of rules for abbreviation Bar-Ilan University; Tel-Aviv University 2000 Abbreviation rules, extracted from BADC and Acronym Guide 0 0 1 Users
UAIC Negation_list Negation rules „Al. I. Cuza“ University, Iasi, Romania List of negative terms and words (verbs, adjectives, nouns) affecting modality or factuality of a infinitive verb preceded by the particle "to" (e.g. "believe","necessary", "attempt") 0 0 1 Users
DLSIUAES Negation_list List of negative terms University of Alicante Basic list of negative terms. 0 0 1 Users
UAIC Quantifier_list List of quantifiers „Al. I. Cuza“ University, Iasi, Romania List of quantifiers affecting entailment judgment. The quantifiers are taken from a list which contains expressions like “more than”, “less than”, or words such as “over”, “under”, etc. 0 0 1 Users
FBKirst StopWord list List of frequent words FBK-Irst;
University of Trento - Italy
A list of the 572 most frequent English words. 0 0 1 Users


Footnotes

  1. RTE-3 data have been provided by participants by means of a questionnaire.
  2. RTE-4 data have been provided by participants and have been integrated with information extracted from the related proceedings.
  3. RTE-5 data have been provided by participants and have been integrated with information extracted from the related proceedings.