Difference between revisions of "TOEFL Synonym Questions (State of the art)"

From ACL Wiki
Jump to: navigation, search
(19 intermediate revisions by 5 users not shown)
Line 4: Line 4:
 
* introduced in Landauer and Dumais (1997) as a way of evaluating algorithms for measuring degree of similarity between words
 
* introduced in Landauer and Dumais (1997) as a way of evaluating algorithms for measuring degree of similarity between words
 
* subsequently used by many other researchers
 
* subsequently used by many other researchers
 +
* see also: [[Similarity (State of the art)]]
  
  
Line 96: Line 97:
 
| 64.50%
 
| 64.50%
 
| 53.01–74.88%
 
| 53.01–74.88%
 +
|-
 +
| RI
 +
| Karlgren and Sahlgren (2001)
 +
| Karlgren and Sahlgren (2001)
 +
| Corpus-based
 +
| 72.50%
 +
| 61.38-81.90%
 
|-
 
|-
 
| DS
 
| DS
Line 147: Line 155:
 
|-
 
|-
 
| PPMIC
 
| PPMIC
| Bullinaria and Levy (2006)
+
| Bullinaria and Levy (2007)
| Bullinaria and Levy (2006)
+
| Bullinaria and Levy (2007)
 
| Corpus-based
 
| Corpus-based
 
| 85.00%
 
| 85.00%
Line 166: Line 174:
 
| 92.50%
 
| 92.50%
 
| 84.39-97.20%
 
| 84.39-97.20%
 +
|-
 +
| ADW
 +
| Pilehvar et al. (2013)
 +
| Pilehvar et al. (2013)
 +
| WordNet graph-based (unsupervised)
 +
| 96.25%
 +
| 89.43-99.22%
 
|-
 
|-
 
| PR
 
| PR
Line 174: Line 189:
 
| 91.26–99.70%
 
| 91.26–99.70%
 
|-
 
|-
 +
| PCCP
 +
| Bullinaria and Levy (2012)
 +
| Bullinaria and Levy (2012)
 +
| Corpus-based
 +
| 100.00%
 +
| 96.32-100.00%
 
|}
 
|}
 
  
 
== Explanation of table ==
 
== Explanation of table ==
Line 184: Line 204:
 
* '''Type''' = general type of algorithm: corpus-based, lexicon-based, hybrid
 
* '''Type''' = general type of algorithm: corpus-based, lexicon-based, hybrid
 
* '''Correct''' = percent of 80 questions that given algorithm answered correctly
 
* '''Correct''' = percent of 80 questions that given algorithm answered correctly
* '''95% confidence''' = confidence interval calculated using [http://www.quantitativeskills.com/sisa/statistics/onemean.htm Binomial Exact Test]
+
* '''95% confidence''' = confidence interval calculated using the [[Statistical calculators|Binomial Exact Test]]
 
* table rows sorted in order of increasing percent correct
 
* table rows sorted in order of increasing percent correct
 
* several WordNet-based similarity measures are implemented in [http://www.d.umn.edu/~tpederse/ Ted Pedersen]'s [http://www.d.umn.edu/~tpederse/similarity.html WordNet::Similarity] package
 
* several WordNet-based similarity measures are implemented in [http://www.d.umn.edu/~tpederse/ Ted Pedersen]'s [http://www.d.umn.edu/~tpederse/similarity.html WordNet::Similarity] package
 
* LSA = Latent Semantic Analysis
 
* LSA = Latent Semantic Analysis
 +
* PCCP = Principal Component vectors with Caron P
 
* PMI-IR = Pointwise Mutual Information - Information Retrieval
 
* PMI-IR = Pointwise Mutual Information - Information Retrieval
 
* PR = Product Rule
 
* PR = Product Rule
Line 194: Line 215:
 
* CWO = Context Window Overlapping
 
* CWO = Context Window Overlapping
 
* DS = Dependency Space
 
* DS = Dependency Space
 +
* RI = Random Indexing
  
== Caveats ==
+
== Notes ==
  
 
* the performance of a corpus-based algorithm depends on the corpus, so the difference in performance between two corpus-based systems may be due to the different corpora, rather than the different algorithms
 
* the performance of a corpus-based algorithm depends on the corpus, so the difference in performance between two corpus-based systems may be due to the different corpora, rather than the different algorithms
* the TOEFL questions include nouns, verbs, and adjectives, but some of the WordNet-based algorithms were only designed to work with nouns
+
* the TOEFL questions include nouns, verbs, and adjectives, but some of the WordNet-based algorithms were only designed to work with nouns; this explains some of the lower scores
* some of the algorithms may have been tuned on the TOEFL questions
+
* some of the algorithms may have been tuned on the TOEFL questions; read the references for details
 
+
* Landauer and Dumais (1997) report scores that were corrected for guessing by subtracting a penalty of 1/3 for each incorrect answer; they report a score of 52.5% when this penalty is applied; when the penalty is removed, their performance is 64.4% correct
  
 
== References ==
 
== References ==
  
Bullinaria, J.A., and Levy, J.P. (2006). [http://www.cs.bham.ac.uk/~jxb/PUBS/BRM.pdf Extracting semantic representations from word co-occurrence statistics: A computational study]. To appear in ''Behavior Research Methods'', 38.
+
Bullinaria, J.A., and Levy, J.P. (2007). [http://www.cs.bham.ac.uk/~jxb/PUBS/BRM.pdf Extracting semantic representations from word co-occurrence statistics: A computational study]. ''Behavior Research Methods'', 39(3), 510-526.
 +
 
 +
Bullinaria, J.A., and Levy, J.P. (2012). [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.9582&rep=rep1&type=pdf Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD]. ''Behavior Research Methods'',  44(3):890-907.
  
 
Hirst, G., and St-Onge, D. (1998). [http://mirror.eacoss.org/documentation/ITLibrary/IRIS/Data/1997/Hirst/Lexical/1997-Hirst-Lexical.pdf Lexical chains as representation of context for the detection and correction of malapropisms]. In C. Fellbaum (ed.), ''WordNet: An Electronic Lexical Database''. Cambridge: MIT Press, 305-332.
 
Hirst, G., and St-Onge, D. (1998). [http://mirror.eacoss.org/documentation/ITLibrary/IRIS/Data/1997/Hirst/Lexical/1997-Hirst-Lexical.pdf Lexical chains as representation of context for the detection and correction of malapropisms]. In C. Fellbaum (ed.), ''WordNet: An Electronic Lexical Database''. Cambridge: MIT Press, 305-332.
Line 211: Line 235:
  
 
Jiang, J.J., and Conrath, D.W. (1997). [http://wortschatz.uni-leipzig.de/~sbordag/aalw05/Referate/03_Assoziationen_BudanitskyResnik/Jiang_Conrath_97.pdf Semantic similarity based on corpus statistics and lexical taxonomy]. ''Proceedings of the International Conference on Research in Computational Linguistics'', Taiwan.
 
Jiang, J.J., and Conrath, D.W. (1997). [http://wortschatz.uni-leipzig.de/~sbordag/aalw05/Referate/03_Assoziationen_BudanitskyResnik/Jiang_Conrath_97.pdf Semantic similarity based on corpus statistics and lexical taxonomy]. ''Proceedings of the International Conference on Research in Computational Linguistics'', Taiwan.
 +
 +
Karlgren, J. and Sahlgren, M. (2001). [http://www.sics.se/~jussi/Artiklar/2001_RWIbook/KarlgrenSahlgren2001.pdf From Words to Understanding]. In Uesaka, Y., Kanerva, P., & Asoh, H. (Eds.), ''Foundations of Real-World Intelligence'', Stanford: CSLI Publications, pp. 294–308.
  
 
Landauer, T.K., and Dumais, S.T. (1997). [http://lsa.colorado.edu/papers/plato/plato.annote.html A solution to Plato's problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge]. ''Psychological Review'', 104(2):211–240.
 
Landauer, T.K., and Dumais, S.T. (1997). [http://lsa.colorado.edu/papers/plato/plato.annote.html A solution to Plato's problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge]. ''Psychological Review'', 104(2):211–240.
  
Leacock, C., and Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. In C. Fellbaum (ed.), ''WordNet: An Electronic Lexical Database''. Cambridge: MIT Press, pp. 265-283.
+
Leacock, C., and Chodorow, M. (1998). [http://books.google.ca/books?id=Rehu8OOzMIMC&lpg=PA265&ots=IpnaLkZUec&lr&pg=PA265#v=onepage&q&f=false Combining local context and WordNet similarity for word sense identification]. In C. Fellbaum (ed.), ''WordNet: An Electronic Lexical Database''. Cambridge: MIT Press, pp. 265-283.
  
 
Lin, D. (1998). [http://www.cs.ualberta.ca/~lindek/papers/sim.pdf An information-theoretic definition of similarity]. ''Proceedings of the 15th International Conference on Machine Learning (ICML-98)'', Madison, WI, pp. 296-304.
 
Lin, D. (1998). [http://www.cs.ualberta.ca/~lindek/papers/sim.pdf An information-theoretic definition of similarity]. ''Proceedings of the 15th International Conference on Machine Learning (ICML-98)'', Madison, WI, pp. 296-304.
Line 221: Line 247:
  
 
Pado, S., and Lapata, M. (2007). [http://www.coli.uni-saarland.de/~pado/pub/papers/cl07_pado.pdf Dependency-based construction of semantic space models]. ''Computational Linguistics'', 33(2), 161-199.
 
Pado, S., and Lapata, M. (2007). [http://www.coli.uni-saarland.de/~pado/pub/papers/cl07_pado.pdf Dependency-based construction of semantic space models]. ''Computational Linguistics'', 33(2), 161-199.
 +
 +
Pilehvar, M.T., Jurgens D., and Navigli R. (2013). [http://wwwusers.di.uniroma1.it/~navigli/pubs/ACL_2013_Pilehvar_Jurgens_Navigli.pdf Align, disambiguate and walk: A unified approach for measuring semantic similarity]. ''Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL 2013),'' Sofia, Bulgaria.
  
 
Rapp, R. (2003). [http://www.amtaweb.org/summit/MTSummit/FinalPapers/19-Rapp-final.pdf Word sense discovery based on sense descriptor dissimilarity]. ''Proceedings of the Ninth Machine Translation Summit'', pp. 315-322.
 
Rapp, R. (2003). [http://www.amtaweb.org/summit/MTSummit/FinalPapers/19-Rapp-final.pdf Word sense discovery based on sense descriptor dissimilarity]. ''Proceedings of the Ninth Machine Translation Summit'', pp. 315-322.
Line 235: Line 263:
  
 
Turney, P.D. (2008). [http://arxiv.org/abs/0809.0124 A uniform approach to analogies, synonyms, antonyms, and associations]. ''Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)'', Manchester, UK, pp. 905-912.
 
Turney, P.D. (2008). [http://arxiv.org/abs/0809.0124 A uniform approach to analogies, synonyms, antonyms, and associations]. ''Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)'', Manchester, UK, pp. 905-912.
 
== See also ==
 
 
* [[Attributional and Relational Similarity (State of the art)]]
 
* [[ESL Synonym Questions (State of the art)|ESL Synonym Questions]]
 
* [[SAT Analogy Questions]]
 
* [[State of the art]]
 
  
  
 
[[Category:State of the art]]
 
[[Category:State of the art]]

Revision as of 10:03, 16 October 2013

  • TOEFL = Test of English as a Foreign Language
  • 80 multiple-choice synonym questions; 4 choices per question
  • the TOEFL questions are available on request by contacting LSA Support at CU Boulder, the people who manage the LSA web site at Colorado
  • introduced in Landauer and Dumais (1997) as a way of evaluating algorithms for measuring degree of similarity between words
  • subsequently used by many other researchers
  • see also: Similarity (State of the art)


Sample question

Stem: levied
Choices: (a) imposed
(b) believed
(c) requested
(d) correlated
Solution: (a) imposed


Table of results

Algorithm Reference for algorithm Reference for experiment Type Correct 95% confidence
RES Resnik (1995) Jarmasz and Szpakowicz (2003) Hybrid 20.31% 12.89–31.83%
LC Leacock and Chodrow (1998) Jarmasz and Szpakowicz (2003) Lexicon-based 21.88% 13.91–33.21%
LIN Lin (1998) Jarmasz and Szpakowicz (2003) Hybrid 24.06% 15.99–35.94%
Random Random guessing 1 / 4 = 25.00% Random 25.00% 15.99–35.94%
JC Jiang and Conrath (1997) Jarmasz and Szpakowicz (2003) Hybrid 25.00% 15.99–35.94%
LSA Landauer and Dumais (1997) Landauer and Dumais (1997) Corpus-based 64.38% 52.90–74.80%
Human Average non-English US college applicant Landauer and Dumais (1997) Human 64.50% 53.01–74.88%
RI Karlgren and Sahlgren (2001) Karlgren and Sahlgren (2001) Corpus-based 72.50% 61.38-81.90%
DS Pado and Lapata (2007) Pado and Lapata (2007) Corpus-based 73.00% 62.72-82.96%
PMI-IR Turney (2001) Turney (2001) Corpus-based 73.75% 62.72–82.96%
PairClass Turney (2008) Turney (2008) Corpus-based 76.25% 65.42-85.06%
HSO Hirst and St.-Onge (1998) Jarmasz and Szpakowicz (2003) Lexicon-based 77.91% 68.17–87.11%
JS Jarmasz and Szpakowicz (2003) Jarmasz and Szpakowicz (2003) Lexicon-based 78.75% 68.17–87.11%
PMI-IR Terra and Clarke (2003) Terra and Clarke (2003) Corpus-based 81.25% 70.97–89.11%
CWO Ruiz-Casado et al. (2005) Ruiz-Casado et al. (2005) Web-based 82.55% 72.38–90.09%
PPMIC Bullinaria and Levy (2007) Bullinaria and Levy (2007) Corpus-based 85.00% 75.26-92.00%
GLSA Matveeva et al. (2005) Matveeva et al. (2005) Corpus-based 86.25% 76.73-92.93%
LSA Rapp (2003) Rapp (2003) Corpus-based 92.50% 84.39-97.20%
ADW Pilehvar et al. (2013) Pilehvar et al. (2013) WordNet graph-based (unsupervised) 96.25% 89.43-99.22%
PR Turney et al. (2003) Turney et al. (2003) Hybrid 97.50% 91.26–99.70%
PCCP Bullinaria and Levy (2012) Bullinaria and Levy (2012) Corpus-based 100.00% 96.32-100.00%

Explanation of table

  • Algorithm = name of algorithm
  • Reference for algorithm = where to find out more about given algorithm
  • Reference for experiment = where to find out more about evaluation of given algorithm with TOEFL questions
  • Type = general type of algorithm: corpus-based, lexicon-based, hybrid
  • Correct = percent of 80 questions that given algorithm answered correctly
  • 95% confidence = confidence interval calculated using the Binomial Exact Test
  • table rows sorted in order of increasing percent correct
  • several WordNet-based similarity measures are implemented in Ted Pedersen's WordNet::Similarity package
  • LSA = Latent Semantic Analysis
  • PCCP = Principal Component vectors with Caron P
  • PMI-IR = Pointwise Mutual Information - Information Retrieval
  • PR = Product Rule
  • PPMIC = Positive Pointwise Mutual Information with Cosine
  • GLSA = Generalized Latent Semantic Analysis
  • CWO = Context Window Overlapping
  • DS = Dependency Space
  • RI = Random Indexing

Notes

  • the performance of a corpus-based algorithm depends on the corpus, so the difference in performance between two corpus-based systems may be due to the different corpora, rather than the different algorithms
  • the TOEFL questions include nouns, verbs, and adjectives, but some of the WordNet-based algorithms were only designed to work with nouns; this explains some of the lower scores
  • some of the algorithms may have been tuned on the TOEFL questions; read the references for details
  • Landauer and Dumais (1997) report scores that were corrected for guessing by subtracting a penalty of 1/3 for each incorrect answer; they report a score of 52.5% when this penalty is applied; when the penalty is removed, their performance is 64.4% correct

References

Bullinaria, J.A., and Levy, J.P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior Research Methods, 39(3), 510-526.

Bullinaria, J.A., and Levy, J.P. (2012). Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD. Behavior Research Methods, 44(3):890-907.

Hirst, G., and St-Onge, D. (1998). Lexical chains as representation of context for the detection and correction of malapropisms. In C. Fellbaum (ed.), WordNet: An Electronic Lexical Database. Cambridge: MIT Press, 305-332.

Jarmasz, M., and Szpakowicz, S. (2003). Roget’s thesaurus and semantic similarity, Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP-03), Borovets, Bulgaria, September, pp. 212-219.

Jiang, J.J., and Conrath, D.W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. Proceedings of the International Conference on Research in Computational Linguistics, Taiwan.

Karlgren, J. and Sahlgren, M. (2001). From Words to Understanding. In Uesaka, Y., Kanerva, P., & Asoh, H. (Eds.), Foundations of Real-World Intelligence, Stanford: CSLI Publications, pp. 294–308.

Landauer, T.K., and Dumais, S.T. (1997). A solution to Plato's problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104(2):211–240.

Leacock, C., and Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. In C. Fellbaum (ed.), WordNet: An Electronic Lexical Database. Cambridge: MIT Press, pp. 265-283.

Lin, D. (1998). An information-theoretic definition of similarity. Proceedings of the 15th International Conference on Machine Learning (ICML-98), Madison, WI, pp. 296-304.

Matveeva, I., Levow, G., Farahat, A., and Royer, C. (2005). Generalized latent semantic analysis for term representation. Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP-05), Borovets, Bulgaria.

Pado, S., and Lapata, M. (2007). Dependency-based construction of semantic space models. Computational Linguistics, 33(2), 161-199.

Pilehvar, M.T., Jurgens D., and Navigli R. (2013). Align, disambiguate and walk: A unified approach for measuring semantic similarity. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL 2013), Sofia, Bulgaria.

Rapp, R. (2003). Word sense discovery based on sense descriptor dissimilarity. Proceedings of the Ninth Machine Translation Summit, pp. 315-322.

Resnik, P. (1995). Using information content to evaluate semantic similarity. Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, pp. 448-453.

Ruiz-Casado, M., Alfonseca, E. and Castells, P. (2005) Using context-window overlapping in Synonym Discovery and Ontology Extension. Proceedings of the International Conference Recent Advances in Natural Language Processing (RANLP-2005), Borovets, Bulgaria.

Terra, E., and Clarke, C.L.A. (2003). Frequency estimates for statistical word similarity measures. Proceedings of the Human Language Technology and North American Chapter of Association of Computational Linguistics Conference 2003 (HLT/NAACL 2003), pp. 244–251.

Turney, P.D. (2001). Mining the Web for synonyms: PMI-IR versus LSA on TOEFL. Proceedings of the Twelfth European Conference on Machine Learning (ECML-2001), Freiburg, Germany, pp. 491-502.

Turney, P.D., Littman, M.L., Bigham, J., and Shnayder, V. (2003). Combining independent modules to solve multiple-choice synonym and analogy problems. Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP-03), Borovets, Bulgaria, pp. 482-489.

Turney, P.D. (2008). A uniform approach to analogies, synonyms, antonyms, and associations. Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), Manchester, UK, pp. 905-912.