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Abstract

Temporal variations of text are usually ig-
nored in NLP applications. However, text use
changes with time, which can affect many
applications. In this paper we model peri-
odic distributions of words over time. Focus-
ing on hashtag frequency in Twitter, we first
automatically identify the periodic patterns.
We use this for regression in order to fore-
cast the volume of a hashtag based on past
data. We use Gaussian Processes, a state-of-
the-art bayesian non-parametric model, with
a novel periodic kernel. We demonstrate this
in a text classification setting, assigning the
tweet hashtag based on the rest of its text. This
method shows significant improvements over
competitive baselines.

1 Introduction

Temporal changes in text corpora are central to our
understanding of many linguistic and social phe-
nomena. Social Media platforms and the digital-
ization of libraries provides a vast body of times-
tamped data. This allows studying of the complex
temporal patterns exhibited by text usage includ-
ing highly non-stationary distributions and period-
icities. However, temporal effects have been mostly
ignored by previous work on text analysis or at best
dealt with by making strong assumptions such as
smoothly varying parameters with time (Yogatama
et al., 2011) or modelled using a simple uni-modal
distri bution (Wang and McCallum, 2006). This pa-
per develops a temporal model for classifying mi-
croblog posts which explicitly incorporates mul-
timodal periodic behaviours using Gaussian Pro-
cesses (GPs).

We expect text usage to follow multiple period-
icities at different scales. For example, people on
Social Media might talk about different topics dur-
ing and after work on weekdays, talk every Friday
about the weekend ahead, or comment about their
favorite weekly TV show during its air time. Given
this, text frequencies will display periodic patterns.
This applies to other text related quantities like co-
occurrence values or topic distributions over time,
as well as applications outside NLP like user be-
haviour (Preoţiuc-Pietro and Cohn, 2013).

Modelling temporal patterns and periodicities can
be useful to tasks like text classification. For exam-
ple a tweet containing ‘music’ is normally attributed
to a general hashtag about music like #np (now play-
ing). However, knowing time, if it occurs during the
(weekly periodic) air time of ‘American Idol’ it is
more likely for it to belong to #americanidol or if
its mentioned in the days building up to the Video
Music Awards to be assigned to #VMA.

In NLP, temporal models have treated time in
overly simplistic ways and without regard to period-
icities. We propose a model that first broadly iden-
tifies several types of temporal patterns: a) periodic,
b) constant in time, c) falling out of use after enjoy-
ing a brief spell of popularity (e.g. internet memes,
news). This is performed automatically only using
training data and makes no assumptions on the exis-
tence or the length of the periods we aim to model.
We demonstrate the approach by modelling frequen-
cies of hashtag occurrences in Twitter. Hashtags are
user-generated labels included in tweets by their au-
thors in order to assign them to a conversation and
can be considered as a proxy for topics.

To this end, we make use of Gaussian Pro-
cesses (GP) (Rasmussen and Williams, 2005), a

977



Bayesian non-parametric model for regression. Us-
ing the Bayesian evidence we automatically perform
model selection to classify temporal patterns. We
aim to use the most suitable model for extrapolation,
i.e. predicting future values from past observations.
The GP is fully defined by the covariance structure
assumed between the observed points, and its hy-
perparameters, which can be automatically learned
from data. We also introduce a new kernel suitable
to model the periodic behaviour we observe in text:
periods of low frequency followed by bursts at reg-
ular time intervals. We demonstrate that the GP ap-
proach is more general and gives better results than
frequentist models (e.g. autoregressive models) be-
cause it incorporates uncertainty explicitly and ele-
gantly, in addition to automatic model selection and
parameter fitting.

To demonstrate the practical importance of our
approach, we use our GP prediction as a prior in a
Naı̈ve Bayes model for text classification showing
improvements over baselines which do not account
for temporal periodicities. Our approach extends to
more general uses, e.g. to discriminative text regres-
sion and classification. More broadly, we aim to es-
tablish GPs as a state-of-the-art model for regression
and classification in NLP. To our knowledge, this is
the first paper to use GP regression for forecasting
and model selection within a NLP task.

All the hashtag time series data and the imple-
mentation of the PS kernel in the popular open-
source Gaussian Processes packages GPML1 and
GPy2 are available on the author’s website3.

2 Related Work

Time varying text patterns have been of particular
interest in topic modelling. Griffiths and Steyvers
(2004) analyse evolution of topics over time, but
without modelling time explicitly. Extensions that
model time make different assumptions, usually re-
garding smoothing proprieties in (Wang and McCal-
lum, 2006; Blei and Lafferty, 2006; Wang et al.,
2008; Hennig et al., 2012). Yogatama et al. (2011)
proposed a regulariser for generalised linear models
that encourages local temporal smoothness.

1http://www.gaussianprocess.org/gpml/
code

2https://github.com/SheffieldML/GPy
3http://www.preotiuc.ro

Modelling periodicities is one of the standard ap-
plications of Gaussian Processes (Rasmussen and
Williams, 2005). Recent work by Wilson and Adams
(2013) and Durrande et al. (2013) show how differ-
ent periods can be identified from data. In general,
methods that assume certain periodicities at daily or
weekly levels were proposed e.g. in (McInerney et
al., 2013). GPs were used with text by Polajnar et
al. (2011) and for Quality Estimation regression in
(Cohn and Specia, 2013; Shah et al., 2013).

Temporal patterns for short, distinctive lexical
items such as hashtags and memes were quanti-
tatively studied (Leskovec et al., 2009) and clus-
tered (Yang and Leskovec, 2011) in Social Media.
(Yang et al., 2012) studies the dual role of hashtags,
of bookmarks of content and symbols of commu-
nity membership, in the context of hashtag adoption.
(Romero et al., 2011) analyses the patterns of tem-
poral diffusion in Social Media finding that hashtags
have also a persistence factor.

For predicting future popularity of hashtags, Tsur
and Rappoport (2012) use linear regression with a
wide range of features. (Ma et al., 2012; Ma et
al., 2013) frame the problem as classification into
a number of fixed intervals and applies all the stan-
dard classifiers. None of these studies model period-
icities, although the former stresses their importance
for accurate predictions. For predicting the hashtag
given the tweet text, Mazzia and Juett (2011) uses
the Naı̈ve Bayes classifier with the uniform and em-
pirical prior or TF-IDF weighting.

3 Gaussian Processes

In this paper we consider Gaussian Process (GP)
models of regression (Rasmussen and Williams,
2005). GP is a probabilistic machine learning
framework incorporating kernels and Bayesian non-
parametrics which is widely considered as state-of-
the-art for regression. The GP defines a prior over
functions which applied at each input point gives a
response value. Given data, we can analytically infer
the posterior distribution of these functions assum-
ing Gaussian noise. The kernel of the GP defines the
covariance in response values as a function of its in-
puts.

We can identify two different set-ups for a regres-
sion problem. If the range of values to be predicted
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lies within the bounds of the training set we call the
prediction task as interpolation. If the range of the
prediction is outside the bounds, then our problem
that of extrapolation. In this respect, extrapolation is
considered a more difficult task and the covariance
kernel which incorporates our prior knowledge plays
a major role in the prediction.

There is the case when multiple covariance ker-
nels can describe our data. For choosing the right
kernel and its hyperparameters only using the train-
ing data we employ Bayesian model selection which
makes a trade-off between the fit of the training
data and model complexity. We now briefly give an
overview of GP regression, kernel choice and model
selection. We refer the interested reader to (Ras-
mussen and Williams, 2005) for a detailed introduc-
tion to GPs.

3.1 Gaussian Process Regression
Consider a time series regression task where we only
have one feature, the value xt at time t. Our training
data consists of n pairs D = {(t, xt)}. The model
will need to predict values xt for values of t greater
than those in the dataset.

GP regression assumes a latent function f that
is drawn from a GP prior f(t) ∼ GP(m, k(t, t′))
where m is the mean and k a kernel. The predic-
tion value is obtained by the function evaluated at
the corresponding data point, xt = f(t) + ε, where
ε ∼ N (0, σ2) is white-noise. The GP is defined by
the mean m, here 0, and the covariance kernel func-
tion, k(t, t′).

The posterior at a test point t∗ is given by:

p(x∗|t∗,D) =

∫
f
p(x∗|t∗, f) · p(f |D) (1)

where x∗ and t∗ are the test value and time. The pos-
terior p(f |D) shows our belief over possible func-
tions after observing the training set D. The predic-
tive posterior can be solved analytically with solu-
tion:

x∗ ∼ N (kT
∗ (K + σ2

nI)−1t,

k(t∗, t∗)− kT
∗ (K + σ2

nI)−1k∗)
(2)

where k∗ = [k(t∗, t1)...k(t∗, tn)]T are the kernel
evaluations between the test point and all the train-
ing points,K = {k(ti, tj)}i=1..n

j=1..n is the Gram matrix

3/1 4/1 5/1 6/1 

 
Gold
SE
PS(24)

Figure 1: Interpolation for #goodmorning over 3 days
with SE and PS(p=24,s=3) kernels. Prediction variance
shown in grey for PS(24). Crosses represent training
points.

over the training points and t is the vector of train-
ing points. The posterior of x∗ includes the mean
response as well as its variance, thus expressing the
uncertainty of the prediction. In this paper, we will
consider the forecast as the expected value. Due to
the matrix inversion in 2, inference takesO(n3) time
where n is the number of training points.

3.2 Kernels

The covariance kernel together with its parameters
fully define the GP (we assume 0 mean). The kernel
induces similarities in the response between pairs of
data points. Intuitively, if we want a smooth func-
tion, closer points should have high covariance com-
pared to points that are further apart. If we want a
periodic behaviour points at period length intervals
should have the highest covariance. Usually, this is
defined by an isotropic kernel, which means its in-
variant to all rigid motions.

For interpolation, a standard kernel (e.g. squared
exponential) that encourages smooth functions is
normally used. Figure 1 shows regression over 3
days for #goodmorning when only a random third
of the values of the function are observed. We see
that both the SE kernel and a periodic kernel (PS,
see below) give good results.

However, for extrapolation, the choice of the ker-
nel is paramount. The kernel encodes our prior belief
about the type of function wish to learn. To illustrate
this, in Figure 3, we show the time series for #good-
morning over 2 weeks and plot the regression for the
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future week learned by using different kernels.
In this study we will use multiple kernels, each

most suitable for a specific category of temporal pat-
terns in our data. This includes a new kernel inspired
by observed word occurrence patterns. The kernels
we use are:

Constant (C): The constant kernel is kC(t, t′) =
c. Its mean prediction will always be the value c and
its assumption is that the signal is modeled only by
Gaussian noise centred around this value. This de-
scribes the data best when we have a noisy signal
around a stationary mean value.

Squared exponential (SE): The SE kernel or the
Radial Basis Function (RBF) is the standard kernel
used in most interpolation settings.

kSE(t, t′) = s2 · exp−(t− t′)2

2l2
(3)

This gives a smooth transition between neighbour-
ing points and best describes time series with a
smooth shape e.g. a uni-modal burst with a steady
decrease. However, its uncertainty grows with for
predictions well into the future. Its two parameters
s and l are the characteristic lengthscales along the
two axes. Intuitively, they control the distance of in-
puts on a particular axis from which the function
values become uncorrelated. Using the SE kernel
corresponds to Bayesian linear regression with an
infinite number of basis functions (Rasmussen and
Williams, 2005).

Linear (Lin): The linear kernel describes a linear
relationship between outputs.

kLin(t, t′) = s2 + ‖t · t′‖ (4)

This can be obtained from linear regression by hav-
ing N (0, 1) priors on the corresponding regression
weights and a prior of N (0, s2) on the bias.

Periodic (PER): The periodic kernel represents a
SE kernel in polar coordinates.

kPER(t, t′) = s2 · exp−2 ·

(
sin2(2π(t− t′)2/p)

l2

)
(5)

It has a sinusoidal shape and is good at modelling
periodically patterns that oscillate between low and
high frequency. s and l are characteristic length-
scales as in the SE kernel and p is the period.
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Figure 2: Behaviour of the PS kernel (p=50) with varying
s. Values normalized in [0,1] interval.

Periodic spikes (PS): For textual time series, like
word frequencies, we identify the following periodic
behaviour: abrupt rise in usage, usually with a peak,
followed by periods of low occurrence, which can
be short (e.g. during the night) or long lived (e.g. the
entire week except for a few hours). For modelling
we introduce the following kernel:

kPS(t, t′) = cos

(
sin

(
2π · (t− t′)2

p

))

· exp

(
s cos(2π · (t− t′)2)

p
− s

)
(6)

The kernel is parameterised by its period p and a
shape parameter s. The period indicates the time in-
terval between the peaks of the function, while the
shape parameter controls the width of the spike. The
behaviour of the kernel is illustrated in Figure 2. We
constrain s ≥ 1.

In Figure 3 we see that the forecast is highly de-
pendent on the kernel choice. We expect that for
periodic data the PER and PS kernels will forecast
best, maybe with the PS kernel doing a better job
because it captures multiple modes of the daily in-
crease in volume. We use for both kernels a period
of 168 hours. This is because although a daily pat-
tern exists, the weekly is stronger, with the day of
the week influencing the volume of the hashtag. The
NRMSE (Normalized Root Mean Square Error) in
Table 1 on the held out data confirms this finding,
with PS showing the lowest error.
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Figure 3: Extrapolation for #goodmorning over 3 weeks with GPs using different kernels.

Const Lin SE PER PS
NLML -41 -34 -176 -180 -192
NRMSE 0.213 0.214 0.262 0.119 0.107

Table 1: Negative Log Marginal Likelihood (NLML)
shows the best fitted model for the time series in Figure 3.
NRMSE computed on the third unobserved week. Lower
values are better in both cases.

3.3 Model selection and optimisation
We now briefly discuss the concepts of model se-
lection in the GP framework, by which we refer to
choosing the model (kernel) from a set Hi and op-
timising the model hyperparameters θ. In our GP
Bayesian inference scheme, we can compute the
probability of the data given the model which in-
volves the integral over the parameter space. This
is called the marginal likelihood or evidence and is
useful for model selection using only the training
set:

p(x|D, θ,Hi) =

∫
f
p(x|D, f,Hi)p(f |θ,Hi) (7)

Our first goal is to fit the kernel by minimizing
the negative log marginal likelihood (NLML) with
respect to the kernel parameters θ. This approxima-
tion is also known as type II maximum likelihood
(ML-II). Conditioned on kernel parameters, the evi-
dence of a GP can be computed analytically.

Our second goal is to use the evidence for
model selection because it balances the data fit and
the model complexity by automatically incorporat-
ing Occam’s Razor (Rasmussen and Ghahramani,
2000). Because the evidence must normalise, com-
plex models which can account for many datasets
achieve low evidence. One can think of the evidence
as the probability that a random draw of the param-
eter values from the model class would generate the

dataset D. This way, complex models are penalised
because they can describe many datasets, while the
simple models can describe only a few datasets, thus
the chance of a good data fit being very low. This is
for example the case of the periodic bursts in Fig-
ure 3. Although the periodic kernel can fit the data,
it will incur a high model complexity penalty. The
PS kernel in this respect is a simpler model and can
fit the data and is thus chosen as the right model.

When the dataset is observed, the evidence can se-
lect between the models. More generally, the model
choice actually gives us an implicit classification of
the temporal patterns into classes: a steady signal
with noise (C kernel), a signal with local temporal
patterns (SE kernel), an oscilating periodic pattern
(PER kernel) or a pattern with abrupt periodic peaks
(PS kernel).

We use the NLML for optimising the hyperpa-
rameters only using training data. For optimising the
hyperparameters of the kernel defined in Equation 6,
it is important to first identify the right period. We
consider as possible periods all integer values less
than half the size of the training set, and then tune
the shape parameter using gradient descent to min-
imise NLML. We then take the argmin value of
those considered. We show the NLML for a sample
regression in Figure 4.

The likelihood shows that there are multiple
canyons in the likelihood, which can lead a convex
optimisation method to local optima. These appear
when p is equal or an integer multiple of the main
period of the data, in this case 24. The lowest val-
ues are obtained when p = 168, allowing the model
to accommodate the day of week effect. Our proce-
dure is not guaranteed to reach a global optima, but
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Figure 4: NLML for #goodmorning on the training set as
a function of the 2 kernel parameters.

is a relatively standard technique for fitting periodic
kernels (Duvenaud et al., 2013).

The flexibility of the GP framework allows us to
combine kernels (e.g. SE ·PS or PS+Lin) in order
to identify a combination of trends (Duvenaud et al.,
2013; Gönen and Alpaydin, 2011). Experiments on a
subset of data showed no major benefits of combin-
ing kernels, but the computational time and model
complexity increased drastically due to the extra hy-
perparameters. Because we will model a proportion
of words within a limited time frame, there are few
linear trends in the data. It might seem limiting that
we only learn a single period, although we could
combine periodic kernels with different periods to-
gether. But, as we have seen in the #goodmorning
example (with overlapping weekly and daily pat-
terns), if there is a combination of periods the model
will select a single period which is the least common
multiple.

4 Data

For our experiments we used data collected from
Twitter using the public Gardenhose stream (10%
representative sample of the entire Twitter stream).
The data collection interval was 1 January – 28
February 2011. For simplicity in the classification
task, we filtered the stream to include only tweets
that have exactly one hashtag. These represent ap-
proximately 7.8% of our stream.

As text processing steps, we have tokenised all the
tweets and filtered them to be written in English us-
ing the Trendminer pipeline (Preoţiuc-Pietro et al.,
2012). We also remove duplicate tweets (retweets

and tweets that had the same first 6 content tokens)
because they likely represent duplicate content, au-
tomated messages or spam which would bias the
dataset, as also stated by Tsur and Rappoport (2012).
In our experiments we use the first month of data
as training and the second month as testing. Note
the challenging nature of this testing configuration
where predictions must be made for up to 28 days
into the future. We keep a total 1176 of hashtags
which appear at least 500 times in both splits of
the data. The vocabulary consists of all the tokens
that occur more than 100 times in the dataset and
start with an alphabetic letter. After processing, our
dataset consists of 6,416,591 tweets with each hav-
ing on average 9.55 tokens.

5 Forecasting hashtag frequency

We treat our task of forecasting the volume of a
Twitter hashtag as a regression problem. Because the
total number of tweets varies depending on the day
and hour of day, we chose to model the proportion of
tweets with the given tag in that hour. Given a time
series of these values as the training set for a hash-
tag, we aim to predict the values in the testing set,
extrapolating to the subsequent month.

Hashtags represent free-form text labels that au-
thors add to a tweet in order to enable other users to
search them to participate in a conversation. Some
users use hashtags as regular words that are integral
to the tweet text, some hashtags are general and re-
fer to the same thing or emotion (#news, #usa, #fail),
others are Twitter games or memes (#2010diss-
apointments, #musicmonday). Other hashtags re-
fer to events which might be short lived (#world-
cup2022), long lived (#25jan) or periodic (#raw,
#americanidol). We chose to model hashtags be-
cause they group similar tweets (like topics), reflect
real world events (some of which are periodic) and
present direct means of evaluation. Note that this
approach could be applied to many other temporal
problems in NLP or other domains. We treat each
regression problem independently, learning for each
hashtag its specific model and set of parameters.

5.1 Methods

We choose multiple baselines for our prediction task
in order to compare the effectiveness of our ap-
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Figure 5: Sample regressions and their fit using different methods.

proach. These are:

Mean value (M): We use as prediction the mean
of the values in the training set. Note that this is the
same as using a GP model with a constant kernel (+
noise) with a mean equal to the training set mean.

Lag model with GP determined period (Lag+):
The prediction is the mean value in the training set of
the values at lag ∆ where ∆ is the period rounded to
the closest integer as determined by our GP model.
This is somewhat similar to an autoregressive (AR)
model with all the coefficients except ∆ set to 0.
We highlight that given the period ∆ this is a very
strong model as it gives a mean estimate at each

point. Comparing to this model we can see if the GP
model can recover the underlying function that de-
scribed the periodic variation and filter out the noise
in the observations. Correctly identifying the period
is very challenging as we discuss below.

GP regression: Gaussian Process regression us-
ing only the SE kernel (GP-SE), the periodic ker-
nel (GP-PER), the PS kernel (GP-PS). The method
that chooses between kernels using model selection
as described in Section 3.3 is denoted as GP+. We
will also compare to GP regression the linear kernel
(GP-Lin), but we will not use this as a candidate for
model selection due the poor results shown below.
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Hashtag Lag(p) Const SE PER PS
NRMSE NLML NRMSE NLML NRMSE NLML NRMSE NLML NRMSE

#fyi 0.1578 -322 0.1404 -320 0.1898 -321 0.1405 -293 0.1456
#confessionhour 0.0404 -85 0.0107 -186 0.0012 -90 0.0327 -88 0.0440

#fail 0.1431 -376 0.1473 -395 0.4695 -444 0.1387 -424 0.1390
#breakfast 0.1363 -293 0.1508 -333 0.1773 -293 0.1514 -367 0.1276

#raw 0.0464 -1208 0.0863 -1208 0.0863 -1323 0.0668 -1412 0.0454
Table 2: NRMSE shows the best performance for forecasting and NLML shows the best model for all the regressions
in Figure 5. Lower is better.

5.2 Results

We start by qualitatively analysing a few sample re-
gressions that are representative of each category of
time series under study. These are shown in Figure 5.
For clarity, we only plotted a few kernels on each fig-
ure. The full evaluation statistics in NRMSE and the
Bayesian evidence are show in Table 2.

For the hashtag #fyi there is no clear pattern. For
this reason the model that uses the constant kernel
performs best, being the simplest one that can de-
scribe the data, although the others give similar re-
sults in terms of NRMSE on the held-out testing
set. While functions learned using this kernel never
clearly outperform others on NRMSE on held-out
data, this is very useful for interpretation of the time
series, separating noisy time series from those that
have an underlying periodic behaviour.

The #confessionhour example illustrates a be-
haviour best suited for modelling using the SE ker-
nel. We notice a sudden burst in volume which
decays over the next 2 days. This is actually
the behaviour typical of ‘internet memes’ (this
hashtag tags tweets of people posting things they
would never tell anyone) as presented in Yang and
Leskovec (2011). These cannot be modelled with a
constant kernel or a periodic one as shown by the re-
sults on held-out data and the time series plot. The
periodic kernels will fail in trying to match the large
burst with others in the training data and will at-
tribute to noise the lack of a similar peak, thus dis-
covering wrong periods and making bad predictions.
In this example, forecasts will be very close to 0 un-
der the SE kernel, which is what we would desire
from the model.

The periodic kernel best models hashtags that ex-
hibit an oscillating pattern. For example, this best
fits words that are used frequently during the day
and less so during the night, like #fail. Here, the pe-

riod is chosen to be one week (168) rather than one
day (24) because of the weekly effect superimposed
on the daily one. Our model recovers that there is
a daily pattern with people tweeting about their or
others’ failures during the day. On weekends how-
ever, and especially on Friday evenings, people have
better things to do.

The PS kernel introduced in this paper models
best hashtags that have a large and short lived burst
in usage. We show this by two examples. First, we
choose #breakfast which has a daily and weekly pat-
tern. As we would expect, a big rise in usage oc-
curs during the early hours of the day, with very
few occurrences at other times. Our model discov-
ers a weekly pattern as well. This is used mainly
for modelling the difference between weekends and
weekdays. On weekends, the breakfast tag is more
evenly spread during the hours of the morning, be-
cause people do not have to wake up for work and
can have breakfast at a more flexible time than dur-
ing the week. In the second example, we present a
hashtag that is associated to a weekly event: #raw
is used to discuss a wrestling show that airs ev-
ery week for 2 hours on Monday evenings in the
U.S.. With the exception of these 2 hours and the
hour building up to it, the hashtag is rarely used.
This behaviour is modelled very well using our ker-
nel, with a very high value for the shape parame-
ter (s = 200) compared to the previous example
(s = 11) which captures the abrupt trend in usage. In
all cases, our GP model chosen by the evidence per-
forms better than the Lag+ model, which is a very
strong method if presented with the correct period.
This further demonstrates the power of the Gaussian
Process framework to deal with noise in the training
data and to find the underlying function of the time
variation of words.

In Table 3 we present sample tags identified as
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Const SE PER PS
#funny #2011 #brb #ff
#lego #backintheday #coffee #followfriday

#likeaboss #confessionhour #facebook #goodnight
#money #februarywish #facepalm #jobs

#nbd #haiti #funny #news
#nf #makeachange #love #nowplaying

#notetoself #questionsidontlike #rock #tgif
#priorities #savelibraries #running #twitterafterdark

#social #snow #xbox #twitteroff
#true #snowday #youtube #ww

49 268 493 366
Table 3: Sample hashtags for each category. The last line
shows the total number of hashtags of each type.

Lag+ GP-Lin GP-SE GP-PER GP-PS GP+
7.29% -3.99% -34.5% 0.22% 7.37% 9.22%

Table 4: Average relative gain over mean (M) prediction
for forecasting on the entire month using the different
models

being part of the 4 hashtag categories, and the total
number of hashtags in each.

As a means of quantitative evaluation we com-
pute the relative NRMSE compared to the Mean (M)
method for forecasting. We choose this, because we
consider that NRMSE is not comparable between re-
gression tasks due to the presence of large peaks in
many time series, which distort the NRMSE values.
The results are presented in Table 4 and show that
our Gaussian Process model using model selection
is best. Remarkably, it consistently outperforms the
Lag+ model, which shows the effectiveness of the
GP models to incorporate uncertainty. The GP-PS
model does very well on its own. Although chosen in
the model selection phase in only a third of the tasks,
it performs consistently well across tasks because of
its ability to model well all the periodic hashtags,
be they smooth or abrupt. The GP-Lin model does
worse than the average, mostly due to uni-modal
time series which don’t have high occurrences in the
testing part of the data.

5.3 Discussion

Let us now turn to why the GP model is better
for discovering periodicities than classic time series
modelling methods. Measuring autocorrelation be-
tween points in the time series is used to discover
the hidden periodicities in the data and in building
AR models. However, the downsides of this method
are: a) the incapacity of accurately finding the cor-
rect periods, because all integer multiples of the cor-
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Figure 6: Sample autocorrelation for #confessionhour
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Figure 7: Power spectral density for #raw

rect period will be feasible candidates and b) it leads
to incorrect conclusions when there is autocorre-
lated noise. The second case is illustrated in Fig-
ure 6 where #confessionhour shows autocorrelation
but, as seen in Figure 5, lacks a periodic component.

Another approach to discovering periods in data
is by computing the power spectral density. This
has been used in the GP framework by Wilson and
Adams (2013). For some time series, this gives a
good indication of the period, as represented by a
peak in the periodogram at that value. This fails to
discover the correct period when dealing with large
bursts like those exhibited by the #raw time series
as shown in Figure 7. The lowest frequency spike
corresponds to the correct period of 168, but also
other candidate periods are shown as possible. The
reason for this is its reliance on the Fourier Trans-
form which decomposes the time series into a sum
of oscillating patterns. These cannot model step-
functions and other non-smoothly varying signals.
A further discussion falls out of the scope and space
constraints of this paper.
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Tweet Time Prior Rank Prediction

Bruins Goal!!! Patrice Bergeron makes it 3-1 Boston 2-3am, 2 Feb 2011
E: 0.00017 7 #fb
P: 0.00086 1 #bruins

i need some of Malik people 3-4am, 2 Feb 2011
E: 0.00021 7 #ff
P: 0.00420 1 #thegame

Alfie u doughnut! U didn’t confront Kay? SMH 7-8pm, 3 Feb 2011
E: 0.00027 8 #nowplaying
P: 0.00360 1 #eastenders

Table 5: Example of tweet classification using the Naı̈ve Bayes model with the two different priors (E - empirical, P -
GP forecast). Rank shows the rank in probability of the correct class (hashtag) under the model. Time is G.M.T.

6 Text based prediction

In this section we demonstrate the usefulness of
our method of modelling in an NLP task: predict-
ing the hashtag of a tweet based on its text. In con-
trast to this classification approach for suggesting a
tweet’s hashtag, information retrieval methods based
on computing similarities between tweets are very
hard to scale to large data (Zangerle et al., 2011).

We choose a simple model for prediction, the
Naı̈ve Bayes Classifier. This method provides us
with a straightforward way to incorporate our prior
knowledge of how frequent a hashtag is in a certain
time frame. This Naı̈ve Bayes model (NB-P) uses
the forecasted values for the respective hour as the
prior on the hashtags.

For comparison we use the Most Frequent (MF)
baseline and the Naı̈ve Bayes with empirical prior
(NB-E) which doesn’t use any temporal forecasting
information. Because there are more than 1000 pos-
sible classes we show the accuracy of the correct
hashtag being amongst the top 1,5 or 50 hashtags
as well as the Mean Reciprocal Rank (MRR). The
results are shown in Table 6.

The results show that incorporating the forecasted
values as a more informative prior for classification
we obtain better predictions. The improvements are
consistent in all the Match values. Also, we high-
light that a 9% improvement in the forecasting task
carries over to about a 2% improvement in classifi-
cation. We show a few examples in which the GP
learned prior makes a difference in classification in
Table 5 together with the values for both priors.

With these experiments, we highlighted that there
are performance gains even with only adding a more
informative prior that uses periodicity information.
This motivates future work to add this information
to discriminative classifiers thus avoiding the need

MF NB-E NB-P
Match@1 7.28% 16.04% 17.39%
Match@5 19.90% 29.51% 31.91%

Match@50 44.92% 59.17% 60.85%
MRR 0.144 0.237 0.252

Table 6: Results for hashtag classification.

for the Naı̈ve Bayes decomposition. The modelling
framework offered by the GPs can accommodate
classification, although scaling issues arise when us-
ing a large number of features or output classes. Ef-
forts to scale GPs to a large number of variables
are well understood (Candela and Rasmussen, 2005)
and we will try to incorporate this in future work.

7 Conclusion

Periodicities play an important role when analysing
the temporal dimension of text. We have presented
a framework based on Gaussian Process regression
for identifying periodic patterns and their parame-
ters using only training data. We divided the periodic
patterns into 2 categories: oscillating and periodic
bursts by performing model selection using bayesian
evidence. The periodicities we have discovered have
proven useful in an NLP classification task.

In future work, we aim to model time continu-
ously and to perform discriminative clustering in or-
der to make better use of the learned periodicites.
We will consider incorporating periodicities in other
applications, such as topic models.
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