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Abstract

This paper presents a methodology to
identify polysemous German prepositions
by exploring their vector spatial proper-
ties. We apply two cluster evaluation
metrics (the Silhouette Value (Kaufman
and Rousseeuw, 1990) and a fuzzy ver-
sion of the V-Measure (Rosenberg and
Hirschberg, 2007)) as well as various cor-
relations, to exploit hard vs. soft cluster
analyses based on Self-Organising Maps.
Our main hypothesis is that polysemous
prepositions are outliers, and thus repre-
sent either (i) singletons or (ii) marginals
of the clusters within a cluster analysis.
Our analyses demonstrate that (a) in a sub-
set of the clusterings, singletons have a
tendency to contain polysemous preposi-
tions; and (b) misclassification and cluster
membership rate exhibit a moderate corre-
lation with ambiguity rate.

1 Introduction

Vector space models have become a steadily in-
creasing, integral part of data-intensive lexical se-
mantics over the past 20 years (cf. Turney and
Pantel (2010) and Erk (2012) for two recent sur-
veys). They have been exploited in psycholinguis-
tic (Lund and Burgess, 1996) and computational
linguistic research (Schütze, 1998), to explore dis-
tributional properties of target objects and the no-
tion of “similarity” within a geometric setting.

While individual vector space approaches have
been concerned with sense discrimination, it is
still largely unknown how to identify polyse-
mous objects within a vector space model, and
which geometric properties characterise the poly-
semous objects. For example, Schütze (1998) per-
formed sense discrimination of ambiguous word
tokens, based on their second-order co-occurrence

distributions; Erk (2009) presented two variants
of defining regions of word meaning in vector
spaces; Erk and Padó (2010) defined a model
where polysemous words activated several word
vectors; Boleda et al. (2012b) compared two mod-
els of representing regular polysemy, one with
multiple class assignments for multiple senses,
and one incorporating classes with polysemy
properties. Our work is different from all these ap-
proaches, since we aim to investigate prototypical
spatial properties of polysemous objects.

More specifically, this paper is part of a larger
framework that systematically explores the vec-
tor spatial properties of German prepositions, a
notoriously polysemous closed word class. Re-
lying on Self-Organising Maps (SOMs, cf. Ko-
honen (2001)) and preposition-dependent nouns
as vector-space features, we present a method-
ology to identify the degree of polysemy of the
prepositions. For this task, the methodology ap-
plies two cluster evaluation metrics, the Silhou-
ette Value (Kaufman and Rousseeuw, 1990) and
the V-Measure (Rosenberg and Hirschberg, 2007),
to hard vs. soft cluster analyses based on the Self-
Organising Maps. Since we start out with a hard
clustering, a sub-task is concerned with transfer-
ring the SOM hard clusters to soft clusters. Simi-
larly, the original V-Measure applies to hard clus-
ters only, so a second sub-task is concerned with
defining a Fuzzy V-Measure that applies to soft
clusters. Our main hypothesis is that polysemous
prepositions are outliers, and thus represent ei-
ther (i) singletons or (ii) marginals of the clusters
within a cluster analysis.

The paper is organised as follows. After in-
troducing our preposition data in Section 2, Sec-
tion 3 describes the preposition vector-space fea-
tures, and the hard and soft clusterings. Section 4
is devoted to the evaluations, and Section 5 relies
on the cluster analyses and the evaluations, to de-
tect and discriminate polysemous prepositions.
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2 Preposition Data

Although prepositions contribute a considerable
portion to the meaning of texts, comparably little
effort in computational semantics has gone beyond
a specific choice of prepositions (such as spatial
prepositions), towards a systematic classification
of preposition senses. In recent years, computa-
tional research on prepositions has been enforced,
mainly driven by the ACL Special Interest Group
on Semantics (ACL-SIGSEM). The SIG has or-
ganised a series of workshops on prepositions, and
a special issue in the Computational Linguistics
journal (Baldwin et al., 2009).

Related work across languages includes
The Preposition Project for English preposi-
tions (Litkowski and Hargraves, 2005), PrepNet
for French prepositions (Saint-Dizier, 2006),
and a German project on the role of preposition
senses in determiner omission in prepositional
phrases (Kiss et al., 2010). The latter is most
closely related to the present work, as it is also
aimed at German. Their focus however is on
manual classifications and corpus annotation, in
contrast to our automatic classification approach.

As in many other languages, German preposi-
tions are notoriously ambiguous, e.g. note the
quite distinct senses of the German preposition
nach in nach drei Stunden/Berlin/Meinung ’after
three hours/to Berlin/according to’, referring to
a temporal, directional, and accordance meaning.
Our gold standard in terms of preposition senses is
the German grammar book by Helbig and Buscha
(1998). Starting with their class hierarchy, we se-
lected the classes of prepositions that contained
more than one preposition. We deleted those
prepositions from the classes that appeared less
often than 10,000 times in our web corpus con-
taining 880 million words (cf. Section 3.1). This
selection process resulted in 12 semantic classes
covering between 2 and 27 prepositions each (cf.
Table 1). The included prepositions exhibit am-
biguity rates of 1 (monosemous) up to 6 (cf. Ta-
ble 2). Out of the 47 prepositions, 24 are polyse-
mous (51%).

3 Cluster Analyses

The pipeline in our framework is as follows.
1. The prepositions are associated with a distri-

butional feature set.
2. The vector space of prepositions is hard-

clustered using Self-Organising Maps.

Class Size
lokal ’local’ 27
modal ’modal’ 24
temporal ’temporal’ 21
kausal ’causal’ 5
distributiv ’distributive’ 6
final ’final’ 4
urheber ’creator’ 3
konditional ’conditional’ 3
ersatz ’replacement’ 2
restriktiv ’restrictive’ 2
partitiv ’partitive’ 2
kopulativ ’copulative’ 2

Table 1: Preposition classes.

#Senses #Prepositions
6 1
5 3
4 3
3 11
2 6
1 23

Table 2: Degrees of preposition ambiguity.

3. The hard clustering is transferred to a soft
clustering.

4. The cluster analyses are evaluated.

The following subsections describe these steps in
more detail. While the larger framework plans
to perform this pipeline for various cluster algo-
rithms and many feature sets, the current setup of
experiments focuses rather on the methodology to-
wards polysemy detection, and is thus restricted to
one algorithm (SOMs) and one feature set (nouns).

3.1 Preposition Corpus Features

The distributional features for the German prepo-
sitions were induced from the sdeWaC corpus
(Faaß and Eckart, 2013), a cleaned version of the
German web corpus deWaC created by the WaCky
group. The corpus cleaning had focused mainly
on removing duplicates from the deWaC, and on
disregarding sentences that were syntactically ill-
formed (relying on a parsability index provided by
a standard dependency parser (Schiehlen, 2003)).
The sdeWaC contains approx. 880 million words.

In this paper, we focus on one specific feature
set that is expected to provide salient properties
towards preposition meaning, i.e., the nouns that
are subcategorised by the prepositions. This de-
pendency information was extracted from a parsed
version of the sdeWaC using Bohnet’s MATE de-
pendency parser (Bohnet, 2010). So each prepo-
sition was associated with a feature vector over its
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subcategorised nouns. The overall set of noun fea-
tures was restricted to the 10,000 nouns from the
corpus which co-occurred with the largest number
of prepositions.

3.2 Hard Clustering
For hard-clustering the German prepositions, we
relied on the Self-Organising Maps (SOMs) arti-
ficial neural networks provided by the kohonen
library of the R Project for Statistical Computing1.
We expected SOMs to be especially useful for this
task, as they create typology-preserving maps, and
should thus provide a suitable model to look into
the spatial properties of polysemous vectors. Fur-
thermore, SOMs have successfully been applied to
semantic classification before (Ontrup and Ritter,
2001; Kanzaki et al., 2002; Guida, 2007).

We created SOM maps with k clusters, for 2 ≤
k ≤ 47, where 47 represents the total number
of prepositions. For each k, we initiated two-
dimensional spacings for all possible hexagonal
grids. For example, we trained four SOM maps
with 30 clusters, using a 30×1 grid, a 15×2 grid, a
10×3 grid, and a 6×5 grid. The distance measure
used in the maps was Euclidean Distance, which
is the only option for SOMs in R.

3.3 Soft Clustering
The soft clustering of the German prepositions
was based on the various hard cluster analyses.
We performed the hard → soft clustering trans-
fer in two alternative ways, providing two different
types of soft cluster analyses.

(1) Centroid-based softening: For each cluster
c within a hard cluster analysis C, we calculated
the mean distance prep2cluster(c) over all prepo-
sitions p to the cluster centroid zc, ignoring any
hard assignments in the hard clustering, cf. Equa-
tion 1. The individual distances between a prepo-
sition p and a cluster centroid zc are denoted as
d(p, zc).

prep2cluster(c) =

∑p d(p, zc)

|p|
(1)

For the corresponding soft cluster analysis
St(C) of a hard cluster analysis C, a preposition p
was assigned to a cluster c if the distance d(p, zc)
was below a threshold t × prep2cluster(c), with
t = 0.05, 0.1, 0.15, . . . , 0.95. For example, if
a distance of a preposition p to a cluster c was

1http://www.r-project.org/

5, and the mean distance prep2cluster(c) was
10, then p would not be assigned to c for t =
0.05, 0.1 . . . , 0.5 but for t = 0.6, . . . , 0.95. In this
way, we created 19 different soft cluster analyses
St(C) for each hard clustering C, one for each t.
With low values of t, few prepositions (i.e., only
those that were very close to the respective cluster
centroids) were assigned to the clusters, and the
resulting cluster analyses were likely to contain
not all of our prepositions, and a low ambiguity
rate; with high values of t, more prepositions were
assigned to each of the clusters, and the resulting
cluster analyses were likely to contain many of the
47 prepositions, and a high ambiguity rate.

(2) Preposition-based softening: For each
preposition p within a hard cluster analysis C,
we calculated the mean distance cluster2prep(p)
over all cluster centroids zc to the preposition p,
ignoring any hard assignments in the hard clus-
tering, cf. Equation 2. Again, the individual dis-
tances between a preposition p and a cluster cen-
troid zc are denoted as d(p, zc).

cluster2prep(p) =

∑c d(p, zc)

|c|
(2)

Similarly to the centroid-based softening, for
the corresponding soft cluster analysis St(C) of
a hard cluster analysis C, a preposition p was
assigned to a cluster c if the distance d(p, zc)
was below a threshold t × cluster2prep(p), with
t = 0.05, 0.1, 0.15, . . . , 0.95. By relying on the
threshold, we again created 19 different soft clus-
ter analyses St(C) for each hard clustering C, one
for each t. In this case, however, we compared the
mean distances of an individual preposition to all
cluster centroids, and only performed soft cluster
assignments if the preposition was close to a clus-
ter centroid in comparison to its distance to other
cluster centroids. With low values of t, the prepo-
sitions were assigned to none or few clusters, and
the resulting cluster analyses were likely to con-
tain not all of our prepositions, and a low ambi-
guity rate; with high values of t, the prepositions
were assigned to many clusters, and the resulting
cluster analyses were likely to contain many of the
47 prepositions, and a high ambiguity rate.

4 Evaluation

The evaluation metrics play an important role in
our work. On the one hand, we created a large
number of hard clustering SOMs (i.e., 96 cluster
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analyses since we took all possible grids for each
2 ≤ k ≤ 47 into account), and for each hard clus-
ter analysis we created 38 soft cluster analyses (19
centroid-based versions, and 19 preposition-based
versions). We thus needed evaluation measures to
decide about the quality of a cluster analysis. On
the other hand, our methodology relies on evalu-
ation metrics to identify polysemous prepositions,
so the measures are crucial to perform this work.

There is a large body of research regarding the
question of how to compare and evaluate two clus-
ter analyses. For example, with respect to the
specific task of semantic classification, Schulte
im Walde (2003), compared a range of evaluation
measures. Related work in this area partly adopted
the suggested measures, and in addition relied on
Purity or Accuracy (Korhonen et al., 2003; Steven-
son and Joanis, 2003). In more general terms,
there is an ongoing discussion about cluster com-
parison, mainly in the field of Machine Learn-
ing, but also elsewhere. Recent examples include
Meila (2007), Rosenberg and Hirschberg (2007),
and Vinh and Bailey (2010). These approaches all
concentrate on evaluations relying on the entropy
between two cluster analyses, in order to compare
them. Entropy is an information-theoretic mea-
sure of uncertainty; in our context, entropy mea-
sures how uncertain a clustering is, given the in-
formation provided by a gold standard, and vice
versa.

We decided to make use of two evaluation mea-
sures, in order to (i) evaluate and compare our hard
and soft cluster analyses, and (ii) detect polysemy.
The two measures were expected to provide com-
plementary perspectives on the properties of our
cluster analyses, and on the properties of ambigu-
ous prepositions. The following paragraphs de-
scribe these measures, and how they were applied.

(1) With the Silhouette Value (Kaufman and
Rousseeuw, 1990), each cluster is represented by a
silhouette displaying which objects lie well within
a cluster and which objects are marginal to a clus-
ter. The evaluation appeared specifically suited
to our task, as according to our hypotheses, am-
biguous prepositions were expected to represent
marginals in a cluster analysis, i.e., to be compa-
rably far away from all cluster centroids.

To obtain the silhouette value sil for an object oi

within a cluster cA, we compared the average dis-
tance a between oi and all other objects in cA with
the average distance b between oi and all objects

in the neighbouring cluster cB , cf. Equations 3
to 5. For each object oi, −1 ≤ sil(oi) ≤ 1. If
sil(oi) is large, the average object distance within
the cluster is smaller than the average distance to
the objects in the neighbour cluster, so oi is well
classified. If sil(oi) is small, the average object
distance within the cluster is larger than the aver-
age distance to the objects in the neighbour cluster,
so oi has been misclassified. The silhouette value
was only calculated if cluster CA has at least two
members, i.e. if it is not a singleton.

a(oi) =
1

|cA| − 1

∑
oj∈cA,oj 6=oi

d(oi, oj) (3)

b(oi) = mincB 6=cA

1

|cB|
∑

oj∈CB

d(oi, oj) (4)

sil(oi) =
b(oi)− a(oi)

max{a(oi), b(oi)}
(5)

In addition to providing information about the
quality of classification of a single object, the sil-
houette value can be extended to evaluate the in-
dividual clusters and the entire clustering. The av-
erage silhouette width sil(c) of a cluster c is de-
fined as the average silhouette value for all objects
within cluster c, cf. Equation 6, and the average
silhouette width for the clustering C with k clus-
ters sil(Ck) is defined as the average silhouette
value for the individual clusters, cf. Equation 7.

sil(c) =
1

|c|
∑
oi∈c

sil(oi) (6)

sil(Ck) =
1

k

k∑
i=1

sil(c) (7)

(2) The V-Measure (Rosenberg and Hirschberg,
2007) is an entropy-based cluster evaluation mea-
sure. We chose this measure over other entropy-
based measures (e.g., Variance of Information (VI)
(Meila, 2007), and variants suggested by Vinh and
Bailey (2010)) because the V-Measure v(C) bal-
ances two desirable properties for a clustering C
of a given dataset: homogeneity (hom) and com-
pleteness (com), cf. Equations 8 to 10.2

2Note that Equations 8 and 9 differ from those in Rosen-
berg and Hirschberg (2007) in the denominators of the else
condition because there were typos in the definitions (per-
sonal communication with Andrew Rosenberg).
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Homogeneity is similar to purity, and measures
how well the clusters within a cluster analysis
map to the classes within a gold standard. If
each cluster contains only objects from one gold-
standard class, then the entropy is at its minimum,
H(C|G) = 0. This represents a maximally homo-
geneous clustering. Completeness measures how
well the classes within a gold-standard map to the
clusters within a cluster analysis. If each gold-
standard class contains only objects from one clus-
ter, then the entropy is at its minimum, H(G|C).
This represents a maximally complete clustering,
because each gold-standard class is completely
contained in a cluster.

hom(C) = 1 ifH(C, G) = 0; else 1− H(C|G)

H(C, G)
(8)

com(C) = 1 ifH(G, C) = 0; else 1− H(G|C)

H(G, C)
(9)

v(C) =
2× hom(C)× com(C)

hom(C) + com(C)
(10)

There is however a limitation to the V-Measure
because it can only be applied to hard classifica-
tions which represent an N : 1 relationship be-
tween data points and gold-standard classes. This
means a given object only belongs to a single
class. In our data, this is clearly not the case due
to the inherent ambiguity of the prepositions. We
thus extended the V-Measure to a fuzzy version
Fuzzy V-Measure (fuzzy v) that applies to N : M
classifications, where a data point can belong to
any number of classes.3

As for the original calculation of the entropy
values, we must define the joint and conditional
probabilities across clusters and gold-standard
classes. In Rosenberg and Hirschberg (2007), the
joint probability of a cluster c and a gold-standard
class g was estimated as

p̂(c, g) =
acg

N
, (11)

where acg is the number of prepositions shared by
c and g and N is the total number of prepositions.
Due to the polysemy of prepositions, we must as-
sume that a preposition occurs in multiple classes.
Calculating the probability as above would how-
ever give too much weight to highly ambiguous
prepositions. Our approach is to give each prepo-
sition a total mass of 1 and then equally divide its

3Thanks to Andrew Rosenberg for valuable discussions.

g1 g2 g3 g4

p1 0.5 0.5 0 0
p2 0.33 0 0.33 0.33
p3 0 0.5 0.5 0
p4 0 0.5 0 0.5

Table 3: Prepositions in gold standard.

g1 g2 g3 g4
∑

c1 0.83 0.5 0.33 0.33 = 2
c2 0 1 0.5 0.5 = 2

Table 4: Evidence for clusters.

mass across the classes of which it is a member.
Thus, Equation 11 becomes:

p̂(c, g) =
µ(c ∩ g)
M

, (12)

where µ(c ∩ g) is the total mass of the preposi-
tions shared by c and g, and M is the total mass of
the clustering. Note that M will only be equal to
N if each preposition belongs to exactly as many
clusters as classes.

Example: The prepositions p1, p3 and p4 each
belong to two classes, while preposition p2 be-
longs to three classes (cf. Table 3). Assuming
cluster c1 contains p1, and p2, and c2 contains p3

and p4, the contingency table for the clusters c1
and c2 is given as in Table 4. Thus, while both c1
and c2 each share two prepositions with the gold-
standard classes g1 and g2 respectively, the higher
ambiguity of p2 in the first case means there is less
evidence for c1 given g1 than c2 given g2, namely:
p̂(c1|g1) = .83/2 < 1/2 = p̂(c2|g2).

In addition to being applicable to ambiguous
data on the side of the classes themselves, our
adaptation of the V-Measure also allows for the
application to soft clusterings. In this case, the
data points may be present in multiple clusters and
simply add their respective mass to the cells in the
contingency table.

5 Detecting Polysemy

This section applies the evaluation measures to
our cluster analyses, in order to detect polysemous
prepositions, and to identify their spatial proper-
ties. Our hypothesis is that polysemous preposi-
tions are outliers, and thus represent either (i) sin-
gletons or (ii) marginals of the clusters within a
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cluster analysis. We present a series of assump-
tions regarding this main hypothesis, and check
them according to our hard and soft clusterings.

Singletons represent polysemy. Our first anal-
ysis applies to the hard cluster analyses. The as-
sumption here is that clusters that represent sin-
gletons contain polysemous prepositions, because
singletons contain objects that do not belong to
any of the other clusters. Figure 1 plots the num-
ber of polysemous singletons (i.e., those single-
tons whose only cluster member is a polysemous
preposition) against the total number of singletons,
for each SOM map. The baseline is provided by
51% of the total number of singletons, as 24 out of
our 47 preposition types (51%) are polysemous, so
the baseline corresponds to a random assignment
of preposition types to singletons.

For SOM maps with up to k = 13 clusters,
there is maximally one singleton in the cluster
analyses (except for k = 4 and a grid of 2 × 2,
which contains two singletons), so it is difficult to
judge about the correctness of our prediction. For
14 ≤ k ≤ 26, in most cases the number of polyse-
mous singletons clearly outperforms the baseline.
For k = 22 with a grid of 22 × 1 and k = 26
with a grid of 13 × 2, the difference to the base-
line is even significant (χ2, p<0.1). For k > 27,
the number of polysemous singletons outperforms
the baseline in fewer cases than for smaller k. In
sum, our prediction that singletons represent pol-
ysemy holds for a restricted subset of our SOM
maps, most strongly for 22 ≤ k ≤ 26.

Figure 1: Number of (ambiguous) singletons.

Polysemous prepositions are misclassified.
Our second analysis also applies to the hard
cluster analyses. Figure 2 exploits the Silhouette
Value to predict polysemous prepositions. Since
prepositions with several senses are exptected
to represent marginals in a cluster analysis, they

should be comparably far away from all cluster
centroids, and thus their silhouette value sil
should be low, i.e., misclassify them. Figure 2
plots the correlation values of Kendall’s tau-b4

between the silhouette value sil(p) and the ambi-
guity rate amb(p) as defined by the gold standard,
across all hard cluster analyses. According to our
hypothesis, tau should be negative: the higher the
ambiguity rate, the lower the silhouette value.

The plot demonstrates that our assumption is
only partly correct: There are cluster analyses
where we find a weak negative correlation, but
most clusterings do not exhibit a noticeable corre-
lation, and some clusterings even have a moderate
positive correlation. For k = 24 with a grid of
24× 1 and k = 27 with a grid of 27× 1, we how-
ever find cluster analyses with a moderate negative
correlation, tau = −0.30 and tau = −0.32.

Figure 2: Correlation between sil(p) and amb(p).

General evaluation of soft clusterings. Before
we move on to exploring a further hypothesis re-
garding polysemous prepositions, we present a
general evaluation of our two types of softening
approaches. Figures 3 and 4 plot the homogene-
ity, completeness and fuzzy v scores after applying
centroid-based and preposition-based softening to
k hard clusters, respectively. The soft cluster anal-
yses depend on the threshold t that controls the
assignment of prepositions to clusters. We chose
t = 0.7 as a medium threshold for the two figures.
Since the various k cause strong differences in the
coverage of the preposition types in the soft clus-
ter analyses, we also plot the coverage, and the
harmonic mean of fuzzy v and coverage.

The best fuzzy v scores for the centroid-based
soft clusters were obtained with k = 16 and a
8 × 2 grid (0.380), k = 12 with a 6 × 2 grid
(0.379) and k = 10 with a 10 × 1 grid (0.377).

4Kendall’s tau-b is a measure of association based on con-
cordant and discordant pairs, adjusted for the number of ties.
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Figure 3: Centroid-based softening: evaluation.

Figure 4: Preposition-based softening: evaluation.

If we take the coverage into account, the best re-
sults were obtained with k = 20 with a 20 × 1
grid (0.534), k = 22 with a 11 × 2 grid (0.530)
and k = 25 with a 5 × 5 grid (0.521). For the
preposition-based soft clusters the respective fuzzy
v scores were k = 12 with a 6 × 2 grid (0.396),
k = 16 with a 8× 2 grid (0.376) and k = 29 with
a 29×1 grid (0.372); taking coverage into account,
the respective scores were k = 20 with a 20 × 1
grid (0.547), k = 29 with a 29 × 1 grid (0.536)
and k = 25 with a 5 × 5 grid (0.530). In sum,
the best fuzzy v scores for both types of soft clus-
ter analyses were in most cases obtained for k be-
ing similar to the number of gold standard classes.
Taking coverage into account, the best results were
obtained for cluster analyses with 20 ≤ k ≤ 29.

A threshold of t = 0.7 seemed appropriate for
our descriptions, since lower and also higher val-
ues of t resulted in less clear preferences for k, and
the threshold appeared like a useful compromise
between low coverage in assigning prepositions to
clusters, and highly ambiguous clusters.

Correlation of cluster membership rate with
ambiguity rate. This final analysis investigates
the relationship between the cluster membership
rate of a preposition and its ambiguity rate. Our as-
sumption is that the more clusters a specific prepo-
sition is assigned to, the more ambiguous it is. As

basis for this analysis we used both the centroid-
based and the preposition-based soft clusters, with
varying t. Figures 5 and 6 present the corre-
lation results, again relying on Kendall’s tau-b.
For presentation reasons, we restrict the plots to
10 ≤ k ≤ 30 with grid shapes k × 1 only, and
t = 0.6, 0.7, 0.8, 0.9.

Both plots demonstrate that the highest thresh-
old t = 0.9 corresponding to highly ambiguous
cluster analyses exhibits the best correlations with
the ambiguity rates of the prepositions. For the
centroid-based softening, this is true for 12 ≤ k ≤
20, for the preposition-based softening, this is true
for all but two values of k. For lower thresholds,
it seems that t = 0.8 > t = 0.7 > t = 0.6,
but the differences are not at all clear but rather
vary depending on k. Overall, we reached moder-
ate correlation values, the best correlation being
tau = 0.45. Interestingly, the best correlation
values in the two types of softening approaches
were obtained for similar values of k, and with
k being very similar to the number of gold stan-
dard classes (12): the prediction of the centroid-
based softening was best with k = 13 and k = 12
(tau = 0.453 and tau = 0.449, respectively), and
the prediction of the preposition-based softening
was best with k = 12 and k = 14 (tau = 0.439
and tau = 0.368).

Figure 5: Centroid-based softening: ambiguity.

Figure 6: Preposition-based softening: ambiguity.
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6 Discussion

In the previous section, we performed a series
of analyses to investigate the spatial properties of
polysemous prepositions in vector space models.
Our main hypothesis is that polysemous preposi-
tions are outliers, and thus represent either (i) sin-
gletons or (ii) marginals of the clusters within a
cluster analysis. Concerning option (i), we showed
that for specific values of k, there were signifi-
cantly more polysemous prepositions in the sin-
gletons of the hard clusterings than there would be
by chance. The relationship did not hold across
k, however. Concerning option (ii), we performed
two analyses. First, we checked whether the sil-
houette value of a preposition in a hard clustering
correlated with its ambiguity rate, based on the as-
sumption that the silhouette value identifies cluster
marginals. Again, we found a strong correlation
for specific values of k, but not across k. Second,
relying on the soft clusterings we checked whether
the cluster membership rate of a preposition corre-
lated with its ambiguity rate: Especially in highly
ambiguous cluster analyses there were strong cor-
relations in both types of soft clusterings, for k
similar to the number of gold standard classes.

In sum, our analyses confirmed our hypothesis,
but (a) with regard to specific k only, and (b) the
k varied across the analyses. This might partly
be due to our clustering approaches (SOMs for
hard clustering, and our two versions of softening
approaches), so we are currently experimenting
with alternatives. Furthermore, the fuzzy v mea-
sure that we developed in order to evaluate soft
clusterings still seems to provide sub-optimal evi-
dence of clustering quality: The magnitude of the
score depends on the threshold, so it is difficult to
decide which threshold performed best.

On the other hand, several of our analyses
pointed towards similar numbers for an optimal
k, and these optimal k values were reasonable,
as they were close to the number of gold stan-
dard classes. Last but not least, we looked into
a range of clusterings that performed well accord-
ing to our fuzzy v, and it turned out that within a
certain magnitude of k, the clusterings were very
similar to each other, with similar strengths and
weaknesses. We thus conclude this paper with a
qualitative analysis of the centroid-based soft clus-
tering with k = 16 and a 8× 2 grid, the best clus-
tering according to the general evaluation.

The clustering actually contained only 15 clus-

ters (so one cluster was an empty cluster). Three
of the clusters were singletons, one with a 3-way
ambiguous preposition (nach: local, modal, tem-
poral), one with a 2-way ambiguous preposition
(unter: local, modal), and one with a monosemous
preposition (samt: modal). From the remaining 12
clusters, 8 could unambiguously be assigned a ma-
jor sense according to the gold standard classes,
and 4 clusters contained prepositions from various
gold standard classes.

Overall, we found 27 local preposition senses,
24 modal senses, 21 temporal senses, 5 causal and
3 replacement senses. The minor senses (accord-
ing to the sizes of the gold standard classes), i.e.,
final, creator, distributive, partitive, conditional,
copulative and restrictive, were not found in the
clustering. So there was a clear bias towards the
assignment of majority senses. This bias might
well be due to the very different sizes of the gold
standard classes, so in future work we will experi-
ment with sub-classifications of the large classes.

7 Conclusion

In this paper, we presented a methodology to
identify polysemous German prepositions by ex-
ploring their vector spatial properties in hard and
soft clusterings. The analyses demonstrated that
– when looking at clusterings with a similar or
slightly larger number of clusters than the gold
standard – (a) singletons have a tendency to con-
tain polysemous prepositions; and (b) misclassifi-
cation and cluster membership rate exhibit a mod-
erate correlation with ambiguity rate.

Acknowledgements
The research presented in this paper was funded
by the DFG Collaborative Research Centre SFB
732 (Sylvia Springorum, Jason Utt), and the DFG
Heisenberg Fellowship SCHU-2580/1-1 (Sabine
Schulte im Walde).

References
Timothy Baldwin, Valia Kordoni, and Aline Villavi-

cencio, editors. 2009. Computational Linguistics,
Volume 35, Number 2, June 2009 - Special Issue on
Prepositions, volume 35. MIT Press.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, pages 89–97, Beijing, China.

Gemma Boleda, Sebastian Padó, and Jason Utt. 2012a.
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