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Abstract
While experimenting with tuning on long
sentences, we made an unexpected discov-
ery: that PRO falls victim to monsters –
overly long negative examples with very
low BLEU+1 scores, which are unsuitable
for learning and can cause testing BLEU
to drop by several points absolute. We
propose several effective ways to address
the problem, using length- and BLEU+1-
based cut-offs, outlier filters, stochastic
sampling, and random acceptance. The
best of these fixes not only slay and pro-
tect against monsters, but also yield higher
stability for PRO as well as improved test-
time BLEU scores. Thus, we recommend
them to anybody using PRO, monster-
believer or not.

1 Once Upon a Time...

For years, the standard way to do statistical ma-
chine translation parameter tuning has been to
use minimum error-rate training, or MERT (Och,
2003). However, as researchers started using mod-
els with thousands of parameters, new scalable op-
timization algorithms such as MIRA (Watanabe et
al., 2007; Chiang et al., 2008) and PRO (Hopkins
and May, 2011) have emerged. As these algo-
rithms are relatively new, they are still not quite
well understood, and studying their properties is
an active area of research.

For example, Nakov et al. (2012) have pointed
out that PRO tends to generate translations that
are consistently shorter than desired. They
have blamed this on inadequate smoothing in
PRO’s optimization objective, namely sentence-
level BLEU+1, and they have addressed the prob-
lem using more sensible smoothing. We wondered
whether the issue could be partially relieved sim-
ply by tuning on longer sentences, for which the
effect of smoothing would naturally be smaller.

To our surprise, tuning on the longer 50% of the
tuning sentences had a disastrous effect on PRO,
causing an absolute drop of three BLEU points
on testing; at the same time, MERT and MIRA
did not have such a problem. While investigating
the reasons, we discovered hundreds of monsters
creeping under PRO’s surface...

Our tale continues as follows. We first explain
what monsters are in Section 2, then we present a
theory about how they can be slayed in Section 3,
we put this theory to test in practice in Section 4,
and we discuss some related efforts in Section 5.
Finally, we present the moral of our tale, and we
hint at some planned future battles in Section 6.

2 Monsters, Inc.

PRO uses pairwise ranking optimization, where
the learning task is to classify pairs of hypotheses
into correctly or incorrectly ordered (Hopkins and
May, 2011). It searches for a vector of weights
w such that higher evaluation metric scores cor-
respond to higher model scores and vice versa.
More formally, PRO looks for weights w such that
g(i, j) > g(i, j′) ⇔ hw(i, j) > hw(i, j′), where
g is a local scoring function (typically, sentence-
level BLEU+1) and hw are the model scores for
a given input sentence i and two candidate hy-
potheses j and j′ that were obtained using w. If
g(i, j) > g(i, j′), we will refer to j and j′ as the
positive and the negative example in the pair.

Learning good parameter values requires nega-
tive examples that are comparable to the positive
ones. Instead, tuning on long sentences quickly
introduces monsters, i.e., corrupted negative ex-
amples that are unsuitable for learning: they are
(i) much longer than the respective positive ex-
amples and the references, and (ii) have very low
BLEU+1 scores compared to the positive exam-
ples and in absolute terms. The low BLEU+1
means that PRO effectively has to learn from pos-
itive examples only.
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Avg. Lengths Avg. BLEU+1

iter. pos neg ref. pos neg

1 45.2 44.6 46.5 52.5 37.6
2 46.4 70.5 53.2 52.8 14.5
3 46.4 261.0 53.4 52.4 2.19
4 46.4 250.0 53.0 52.0 2.30
5 46.3 248.0 53.0 52.1 2.34
. . . . . . . . . . . . . . . . . .
25 47.9 229.0 52.5 52.2 2.81

Table 1: PRO iterations, tuning on long sentences.

Table 1 shows an optimization run of PRO when
tuning on long sentences. We can see monsters
after iterations in which positive examples are on
average longer than negative ones (e.g., iter. 1).
As a result, PRO learns to generate longer sen-
tences, but it overshoots too much (iter. 2), which
gives rise to monsters. Ideally, the learning algo-
rithm should be able to recover from overshoot-
ing. However, once monsters are encountered,
they quickly start dominating, with no chance for
PRO to recover since it accumulates n-best lists,
and thus also monsters, over iterations. As a result,
PRO keeps jumping up and down and converges to
random values, as Figure 1 shows.

By default, PRO’s parameters are averaged
over iterations, and thus the final result is quite
mediocre, but selecting the highest tuning score
does not solve the problem either: for example,
on Figure 1, PRO never achieves a BLEU better
than that for the default initialization parameters.
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Figure 1: PRO tuning results on long sentences
across iterations. The dark-gray line shows the
tuning BLEU (left axis), the light-gray one is the
hypothesis/reference length ratio (right axis).

Figure 2 shows the translations after iterations
1, 3 and 4; the last two are monsters. The monster
at iteration 3 is potentially useful, but that at itera-
tion 4 is clearly unsuitable as a negative example.

Optimizer Objective BLEU
PRO sent-BLEU+1 44.57
MERT corpus-BLEU 47.53
MIRA pseudo-doc-BLEU 47.80
PRO (6= objective) pseudo-doc-BLEU 21.35
MIRA (6= objective) sent-BLEU+1 47.59
PRO, PC-smooth, ground fixed sent-BLEU+1 45.71

Table 2: PRO vs. MERT vs. MIRA.

We also checked whether other popular opti-
mizers yield very low BLEU scores at test time
when tuned on long sentences. Lines 2-3 in Ta-
ble 2 show that this is not the case for MERT and
MIRA. Since they optimize objectives that are dif-
ferent from PRO’s,1 we further experimented with
plugging MIRA’s objective into PRO and PRO’s
objective into MIRA. The resulting MIRA scores
were not much different from before, while PRO’s
score dropped even further; we also found mon-
sters. Next, we applied the length fix for PRO
proposed in (Nakov et al., 2012); this helped a
bit, but still left PRO two BLEU points behind
MERT2 and MIRA, and the monsters did not go
away. We can conclude that the monster problem
is PRO-specific, cannot be blamed on the objective
function, and is different from the length bias.

Note also that monsters are not specific to a
dataset or language pair. We found them when
tuning on the top-50% of WMT10 and testing on
WMT11 for Spanish-English; this yielded a drop
in BLEU from 29.63 (MERT) to 27.12 (PRO).From run 110 /home/guzmanhe/NIST12/ems/preslav-mada-atb/tuning/tmp.110

**REF**: but we have to close ranks with each other and realize that in 
unity there is strength while in division there is weakness . 
-----------------------------------------------------
**IT1**: but we are that we add our ranks to some of us and that we know 
that in the strength and weakness in

**IT3**:, we are the but of the that that the , and , of ranks the the on 
the the our the our the some of we can include , and , of to the of we know 
the the our in of the of some people , force of the that that the in of the 
that that the the weakness Union the the , and

**IT4**: namely Dr Heba Handossah and Dr Mona been pushed aside because a 
larger story EU Ambassador to Egypt Ian Burg highlighted 've dragged us 
backwards and dragged our speaking , never balme your defaulting a December 
7th 1941 in Pearl Harbor ) we can include ranks will be joined by all 've 
dragged us backwards and dragged our $ 3.8 billion in tourism income 
proceeds Chamber are divided among themselves : some 've dragged us 
backwards and dragged our were exaggerated . Al @-@ Hakim namely Dr Heba 
Handossah and Dr Mona December 7th 1941 in Pearl Harbor ) cases might be 
known to us December 7th 1941 in Pearl Harbor ) platform depends on 
combating all liberal policies Track and Field Federation shortened strength 
as well face several challenges , namely Dr Heba Handossah and Dr Mona 
platform depends on combating all liberal policies the report forecast that 
the weak structure

**IT7**: , the sakes of our on and the , the we can include however , the Al 
ranks the the on the , to the = last of we , the long of the part of some of 
to the affect that the of some is the with ] us our to the affect that the 
with ] us our of the in baker , the cook , the on and the , the we know , 
has are in the heaven of to the affect that the of weakness of @-@ Ittihad 
@-@ Al the force , to 

Figure 2: Example reference translation and hy-
pothesis translations after iterations 1, 3 and 4.
The last two hypotheses are monsters.

1See (Cherry and Foster, 2012) for details on objectives.
2Also, using PRO to initialize MERT, as implemented in

Moses, yields 46.52 BLEU and monsters, but using MERT to
initialize PRO yields 47.55 and no monsters.
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3 Slaying Monsters: Theory

Below we explain what monsters are and where
they come from. Then, we propose various mon-
ster slaying techniques to be applied during PRO’s
selection and acceptance steps.

3.1 What is PRO?
PRO is a batch optimizer that iterates between
(i) translation: using the current parameter values,
generate k-best translations, and (ii) optimization:
using the translations from all previous iterations,
find new parameter values. The optimization step
has four substeps:

1. Sampling: For each sentence, sample uni-
formly at random Γ = 5000 pairs from the
set of all candidate translations for that sen-
tence from all previous iterations.

2. Selection: From these sampled pairs, select
those for which the absolute difference be-
tween their BLEU+1 scores is higher than
α = 0.05 (note: this is 5 BLEU+1 points).

3. Acceptance: For each sentence, accept the
Ξ = 50 selected pairs with the highest abso-
lute difference in their BLEU+1 scores.

4. Learning: Assemble the accepted pairs for
all sentences into a single set and use it to
train a ranker to prefer the higher-scoring
sentence in each pair.

We believe that monsters are nurtured by PRO’s
selection and acceptance policies. PRO’s selec-
tion step filters pairs involving hypotheses that dif-
fer by less than five BLEU+1 points, but it does
not cut-off ones that differ too much based on
BLEU+1 or length. PRO’s acceptance step selects
Ξ = 50 pairs with the highest BLEU+1 differ-
entials, which creates breeding ground for mon-
sters since these pairs are very likely to include
one monster and one good hypothesis.

Below we discuss monster slaying geared to-
wards the selection and acceptance steps of PRO.

3.2 Slaying at Selection
In the selection step, PRO filters pairs for which
the difference in BLEU+1 is less than five points,
but it has no cut-off on the maximum BLEU+1 dif-
ferentials nor cut-offs based on absolute length or
difference in length. Here, we propose several se-
lection filters, both deterministic and probabilistic.

Cut-offs. A cut-off is a deterministic rule that
filters out pairs that do not comply with some cri-
teria. We experiment with a maximal cut-off on
(a) the difference in BLEU+1 scores and (b) the
difference in lengths. These are relative cut-offs
because they refer to the pair, but absolute cut-offs
that apply to each of the elements in the pair are
also possible (not explored here). Cut-offs (a) and
(b) slay monsters by not allowing the negative ex-
amples to get much worse in BLEU+1 or in length
than the positive example in the pair.

Filtering outliers. Outliers are rare or extreme
observations in a sample. We assume normal dis-
tribution of the BLEU+1 scores (or of the lengths)
of the translation hypotheses for the same source
sentence, and we define as outliers hypotheses
whose BLEU+1 (or length) is more than λ stan-
dard deviations away from the sample average.
We apply the outlier filter to both the positive and
the negative example in a pair, but it is more im-
portant for the latter. We experiment with values
of λ like 2 and 3. This filtering slays monsters be-
cause they are likely outliers. However, it will not
work if the population gets riddled with monsters,
in which case they would become the norm.

Stochastic sampling. Instead of filtering ex-
treme examples, we can randomly sample pairs
according to their probability of being typical. Let
us assume that the values of the local scoring func-
tions, i.e., the BLEU+1 scores, are distributed nor-
mally: g(i, j) ∼ N(µ, σ2). Given a sample of hy-
pothesis translations {j} of the same source sen-
tence i, we can estimate σ empirically. Then,
the difference ∆ = g(i, j) − g(i, j′) would be
distributed normally with mean zero and variance
2σ2. Now, given a pair of examples, we can calcu-
late their ∆, and we can choose to select the pair
with some probability, according to N(0, 2σ2).

3.3 Slaying at Acceptance

Another problem is caused by the acceptance
mechanism of PRO: among all selected pairs, it
accepts the top-Ξ with the highest BLEU+1 dif-
ferentials. It is easy to see that these differentials
are highest for nonmonster–monster pairs if such
pairs exist. One way to avoid focusing primarily
on such pairs is to accept a random set of Ξ pairs,
among the ones that survived the selection step.
One possible caveat is that we can lose some of
the discriminative power of PRO by focusing on
examples that are not different enough.

14



TESTING TUNING (run 1, it. 25, avg.) TEST(tune:full)

Avg. for 3 reruns Lengths BLEU+1 Avg. for 3 reruns
PRO fix BLEU StdDev Pos Neg Ref Pos Neg BLEU StdDev
PRO (baseline) 44.70 0.266 47.9 229.0 52.5 52.2 2.8 47.80 0.052

Max diff. cut-off BLEU+1 max=10 † 47.94 0.165 47.9 49.6 49.4 49.4 39.9 47.77 0.035
BLEU+1 max=20 † 47.73 0.136 47.7 55.5 51.1 49.8 32.7 47.85 0.049
LEN max=5 † 48.09 0.021 46.8 47.0 47.9 52.9 37.8 47.73 0.051
LEN max=10 † 47.99 0.025 47.3 48.5 48.7 52.5 35.6 47.80 0.056

Outliers BLEU+1 λ=2.0 † 48.05 0.119 46.8 47.2 47.7 52.2 39.5 47.47 0.090
BLEU+1 λ=3.0 47.12 1.348 47.6 168.0 53.0 51.7 3.9 47.53 0.038
LEN λ=2.0 46.68 2.005 49.3 82.7 53.1 52.3 5.3 47.49 0.085
LEN λ=3.0 47.02 0.727 48.2 163.0 51.4 51.4 4.2 47.65 0.096

Stoch. sampl. ∆ BLEU+1 46.33 1.000 46.8 216.0 53.3 53.1 2.4 47.74 0.035
∆ LEN 46.36 1.281 47.4 201.0 52.9 53.4 2.9 47.78 0.081

Table 3: Some fixes to PRO (select pairs with highest BLEU+1 differential, also require at least 5
BLEU+1 points difference). A dagger (†) indicates selection fixes that successfully get rid of monsters.

4 Attacking Monsters: Practice

Below, we first present our general experimental
setup. Then, we present the results for the var-
ious selection alternatives, both with the original
acceptance strategy and with random acceptance.

4.1 Experimental Setup
We used a phrase-based SMT model (Koehn et al.,
2003) as implemented in the Moses toolkit (Koehn
et al., 2007). We trained on all Arabic-English
data for NIST 2012 except for UN, we tuned on
(the longest-50% of) the MT06 sentences, and we
tested on MT09. We used the MADA ATB seg-
mentation for Arabic (Roth et al., 2008) and true-
casing for English, phrases of maximal length 7,
Kneser-Ney smoothing, and lexicalized reorder-
ing (Koehn et al., 2005), and a 5-gram language
model, trained on GigaWord v.5 using KenLM
(Heafield, 2011). We dropped unknown words
both at tuning and testing, and we used minimum
Bayes risk decoding at testing (Kumar and Byrne,
2004). We evaluated the output with NIST’s scor-
ing tool v.13a, cased.

We used the Moses implementations of MERT,
PRO and batch MIRA, with the –return-best-dev
parameter for the latter. We ran these optimizers
for up to 25 iterations and we used 1000-best lists.

For stability (Foster and Kuhn, 2009), we per-
formed three reruns of each experiment (tuning +
evaluation), and we report averaged scores.

4.2 Selection Alternatives
Table 3 presents the results for different selection
alternatives. The first two columns show the test-
ing results: average BLEU and standard deviation
over three reruns.

The following five columns show statistics
about the last iteration (it. 25) of PRO’s tuning
for the worst rerun: average lengths of the positive
and the negative examples and average effective
reference length, followed by average BLEU+1
scores for the positive and the negative examples
in the pairs. The last two columns present the re-
sults when tuning on the full tuning set. These are
included to verify the behavior of PRO in a non-
monster prone environment.

We can see in Table 3 that all selection mech-
anisms considerably improve BLEU compared to
the baseline PRO, by 2-3 BLEU points. However,
not every selection alternative gets rid of monsters,
which can be seen by the large lengths and low
BLEU+1 for the negative examples (in bold).

The max cut-offs for BLEU+1 and for lengths
both slay the monsters, but the latter yields much
lower standard deviation (thirteen times lower than
for the baseline PRO!), thus considerably increas-
ing PRO’s stability. On the full dataset, BLEU
scores are about the same as for the original PRO
(with small improvement for BLEU+1 max=20),
but the standard deviations are slightly better.

Rejecting outliers using BLEU+1 and λ = 3 is
not strong enough to filter out monsters, but mak-
ing this criterion more strict by setting λ = 2,
yields competitive BLEU and kills the monsters.

Rejecting outliers based on length does not
work as effectively though. We can think of two
possible reasons: (i) lengths are not normally dis-
tributed, they are more Poisson-like, and (ii) the
acceptance criterion is based on the top-Ξ differ-
entials based on BLEU+1, not based on length.

On the full dataset, rejecting outliers, BLEU+1
and length, yields lower BLEU and less stability.
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TESTING TUNING (run 1, it. 25, avg.) TEST(tune:full)

Avg. for 3 reruns Lengths BLEU+1 Avg. for 3 reruns
PRO fix BLEU StdDev Pos Neg Ref Pos Neg BLEU StdDev
PRO (baseline) 44.70 0.266 47.9 229.0 52.5 52.2 2.8 47.80 0.052

Rand. accept PRO, rand †† 47.87 0.147 47.7 48.5 48.70 47.7 42.9 47.59 0.114
Outliers BLEU+1 λ=2.0, rand∗ 47.85 0.078 48.2 48.4 48.9 47.5 43.6 47.62 0.091

BLEU+1 λ=3.0, rand 47.97 0.168 47.6 47.6 48.4 47.8 43.6 47.44 0.070
LEN λ=2.0, rand∗ 47.69 0.114 47.8 47.8 48.6 47.9 43.6 47.48 0.046
LEN λ=3.0, rand 47.89 0.235 47.8 48.0 48.7 47.7 43.1 47.64 0.090

Stoch. sampl. ∆ BLEU+1, rand∗ 47.99 0.087 47.9 48.0 48.7 47.8 43.5 47.67 0.096
∆ LEN, rand∗ 47.94 0.060 47.8 47.9 48.6 47.8 43.6 47.65 0.097

Table 4: More fixes to PRO (with random acceptance, no minimum BLEU+1). The (††) indicates that
random acceptance kills monsters. The asterisk (∗) indicates improved stability over random acceptance.

Reasons (i) and (ii) arguably also apply to
stochastic sampling of differentials (for BLEU+1
or for length), which fails to kill the monsters,
maybe because it gives them some probability of
being selected by design. To alleviate this, we test
the above settings with random acceptance.

4.3 Random Acceptance

Table 4 shows the results for accepting training
pairs for PRO uniformly at random. To eliminate
possible biases, we also removed the min=0.05
BLEU+1 selection criterion. Surprisingly, this
setup effectively eliminated the monster problem.
Further coupling this with the distributional cri-
teria can also yield increased stability, and even
small further increase in test BLEU. For instance,
rejecting BLEU outliers with λ = 2 yields com-
parable average test BLEU, but with only half the
standard deviation.

On the other hand, using the stochastic sam-
pling of differentials based on either BLEU+1 or
lengths improves the test BLEU score while in-
creasing the stability across runs. The random
acceptance has a caveat though: it generally de-
creases the discriminative power of PRO, yielding
worse results when tuning on the full, nonmonster
prone tuning dataset. Stochastic selection does
help to alleviate this problem. Yet, the results are
not as good as when using a max cut-off for the
length. Therefore, we recommend using the latter
as a default setting.

5 Related Work

We are not aware of previous work that discusses
the issue of monsters, but there has been work on
a different, length problem with PRO (Nakov et
al., 2012). We have seen that its solution, fix the
smoothing in BLEU+1, did not work for us.

The stability of MERT has been improved using
regularization (Cer et al., 2008), random restarts
(Moore and Quirk, 2008), multiple replications
(Clark et al., 2011), and parameter aggregation
(Cettolo et al., 2011).

With the emergence of new optimization tech-
niques, there have been studies that compare sta-
bility between MIRA–MERT (Chiang et al., 2008;
Chiang et al., 2009; Cherry and Foster, 2012),
PRO–MERT (Hopkins and May, 2011), MIRA–
PRO–MERT (Cherry and Foster, 2012; Gimpel
and Smith, 2012; Nakov et al., 2012).

Pathological verbosity can be an issue when
tuning MERT on recall-oriented metrics such
as METEOR (Lavie and Denkowski, 2009;
Denkowski and Lavie, 2011). Large variance be-
tween the results obtained with MIRA has also
been reported (Simianer et al., 2012). However,
none of this work has focused on monsters.

6 Tale’s Moral and Future Battles

We have studied a problem with PRO, namely that
it can fall victim to monsters, overly long negative
examples with very low BLEU+1 scores, which
are unsuitable for learning. We have proposed sev-
eral effective ways to address this problem, based
on length- and BLEU+1-based cut-offs, outlier fil-
ters and stochastic sampling. The best of these
fixes have not only slayed the monsters, but have
also brought much higher stability to PRO as well
as improved test-time BLEU scores. These bene-
fits are less visible on the full dataset, but we still
recommend them to everybody who uses PRO as
protection against monsters. Monsters are inher-
ent in PRO; they just do not always take over.

In future work, we plan a deeper look at the
mechanism of monster creation in PRO and its
possible connection to PRO’s length bias.
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