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ABSTRACT
In this paper, we propose a rule-based method to improve efficiency in bottom-up chart
generation with GG, an open-source reversible large-scale HPSG for German. Following an in-
depth analysis of efficiency problems in the baseline system, we show that costly combinatorial
explosion in brute force bottom-up search can be largely avoided using information already
contained implicitly in the input semantics: either (i) information is globally present, but
needs to be made locally available to a particular elementary predication, or (ii) semantic
configurations in the input have a clear translation to syntactic constraints, provided some
knowledge of the grammar. We propose several performance features targeting inflection
and extraction, as well as more language-specific features, relating to verb movement and
discontinuous complex predicates. In a series of experiments on three different test suites we
show that 7 out of 8 features are consistently effective in reducing generation times, both in
isolation and in combination. Combining all efficiency measures, we observe a speedup factor
of 4.5 for our less complex test suites, increasing to almost 28 for the more complex one: the
fact that performance benefits drastically increase with input length suggests that our method
scales up well in the sense that it effectively heads off the problem with exponential growth.
The present approach of using a generator-internal transfer grammar has the added advantage
that it locates performance-related issues close to the grammar, thereby keeping the external
semantic interface as general as possible.

TITLE AND ABSTRACT IN GERMAN

Effiziente HPSG-Generierung für das Deutsche
Wir stellen eine regelbasierte Methode vor, zur automatischen Anreicherung der semantischen
Eingabe einer reversiblen HPSG des Deutschen, die es erlaubt, teure uninformierte Suche bei
der Bottom-Up-Chart-Generierung weitgehend zu vermeiden, indem (i) globale Information,
die implizit in der Eingabe vorhanden ist, explizit und lokal verfügbar gemacht wird, und (ii)
syntaktische Constraints aus semantischen Konfigurationen abgeleitet werden. Wir schlagen
Performanzfeatures für verschiedene Phänomene vor, wie Flexion, Extraktion, Verbbewegung
und diskontuierliche komplexe Prädikate. Unsere Experimente zeigen erhebliche Effizienzsteige-
rungen (Faktor 4.5–Faktor 27.8), deren Zunahme mit steigender Eingabekomplexität korreliert,
was die gute Skalierbarkeit unserer Methode belegt. Der generator-interne Transferansatz
zeichnet sich weiterhin dadurch aus, daß Performanzaspekte grammatik-nah behandelt werden,
wodurch die externe Semantikschnittstelle so allgemein wie möglich bleibt.

KEYWORDS: Surface generation, HPSG, German.
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1 Introduction

1.1 HPSG bottom-up generation and non-configurationality

Recent advances in the efficiency of bottom-up chart generation with reversible HPSG grammars
(Carroll and Oepen, 2005), namely local ambiguity factoring under subsumption and index
accessibility filtering, appear to have solved the most pressing efficiency problems associated
with HPSG generation for English, turning reversible linguistically motivated grammars like the
ERG (Copestake and Flickinger, 2000) into interesting resources for offline and online surface
generation. While the efficiency measures implemented in the LKB and ACE generators (see
section 1.2) are also effective for German, these measures appear to be insufficient to resolve
generation performance issues for GG, a large-scale HPSG for German originally developed at
DFKI (Müller and Kasper, 2000; Crysmann, 2003, 2005, 2007). In fact, even on moderately
complex inputs, the generator quickly runs into a combinatorial explosion, having so far
prevented the grammar from being usable for any serious real-time NLG tasks.

Upon closer inspection of the source of the inefficiency, it became quickly apparent that the
observed performance problems are the result of a conspiracy of several factors, most of which
can be subsumed under the notion of non-configurationality:

• Relatively free constituent order

In contrast to English, constituent order in German clauses is relatively free, permitting
permutation of complements, including the subject, as well as interspersal of modifiers
in pretty much any position. As a result, chart size grows rather quickly, with ambiguity
packing being ineffective until rather large, i.e. mostly clausal, structures are built.

• Verb placement

German finite verbs display a placement alternation between clause-initial (V1/V2) and
clause-final realisation, determined by clausal construction type. Under a bottom-up re-
gime, both left-branching and right-branching structures must be explored. Furthermore,
PPs and sentential complements easily extrapose across final verbs, thereby increasing
the search space even more. In the case of particle verbs, initial placement of the verb
leaves the particle in final position, giving rise to discontinuous lexical items, related by
(simulated) head movement (Kiss and Wesche, 1991; Müller and Kasper, 2000; Crysmann,
2003, among others).

• Argument composition

Auxiliaries, modals, raising verbs, and, optionally, control verbs form a verb cluster
with their non-finite complements. Arguments of upstairs (=governing) and downstairs
(=governed) verbs can be interleaved (e.g. ... weil ein Buch2 er1 ihm2 zu kaufen2
versprach1 ‘because he1 promised1 to buy him2 a book2.’), making it necessary to compose
arguments of the downstairs verb (kaufen ‘buy’) onto the valence lists of the upstairs verb
(versprechen ‘promise’), resulting in the creation of complex predicates.

Argument composition interacts with both free constituent order and verb placement.
In particular the latter means that some members of the composed valence list must be
hypothesised before the initial verb has been encountered, leading to partially under-
specified valence lists (e.g. Letzte Woche versprach1 ein Buch2 er1 ihm2 zu kaufen2 ‘Last
week, he1 promised1 to buy him2 a book2.’). Since the underspecified valencies are not
constrained as to the identity of the argument (no semantic Skolem constants), any chart
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item (e.g., letzte Woche ‘last week’) that matches the underspecified syntactic description
can sneak in (i.e., locally satisfy the hypothesised valency), thereby creating massive local
ambiguity.

• Partial VP fronting

Verb fronting in German may leave some (or all) arguments behind for realisation in the
Mittelfeld (e.g. Kaufen2 [soll1 er1,2 ihm2 das Buch2 morgen]. / Das Buch2 kaufen2 [soll1 er1,2
ihm2 morgen]. / Ihm2 das Buch2 kaufen2 [soll1 er1,2 morgen]. ‘He1,2 should1 buy2 him2
the book2 tomorrow.’). Since the core sentence has to be generated before it combines
with the fronted element, construction of the core sentence needs to proceed without
any access to valence information. As a result we experience a massive combinatorial
explosion that can only be controlled very late, i.e. once the entire sentential structure
has been built.

• Rich inflection

While not a problem in itself, the fact that German NPs are inflected for case multiplies
the existing performance issues, most specifically in the case of underspecified valence
information, since irrelevant case inflection can only be detected quite late.

In the present paper we suggest a method that automatically enriches the input semantics in such
a way, as to derive local syntacto-semantic constraints from the global semantic configuration:
as a consequence we shall be able to eliminate globally unsuccessful generator hypotheses early
on in bottom-up chart generation.

[ LTOP: h0
INDEX: e19
RELS: < [ prpstn_m_rel LBL: h0 MARG: h16 ARG0: e19 TPC: x17 PSV: u2 ]
[ "_pron_n_ppro_rel" LBL: h3

ARG0: x17 [ --TOP: + --COH: + --PUNCT: prop-punct --CAS: n-list PNG.PN: 2s ] ]
[ "pronoun_q_rel" LBL: h7 ARG0: x17 RSTR: h9 body: h10 ]
[ "_sollen_v_modal-haben_rel" LBL: h18

ARG0: e19 [ --TOP: - --COH: - --SIND: 2s --PUNCT: prop-punct
--TPC: tpc-non-event-non-mod --SUB: -
TENSE: present MOOD: indicative PERFECTIVE: - ]

ARG1: h14 ]
[ "_schnarchen_v_n-haben_rel" LBL: h12

ARG0: e15 [ --TOP: - --COH: - --PUNCT: prop-punct --TPC: tpc-non-event-non-mod
--SUB: bool TENSE: untensed PERFECTIVE: - ]

ARG1: x17 ] >
HCONS: < h18 qeq h16 h9 qeq h3 h14 qeq h12 > ]

Figure 1: Enriched input MRS for Du sollst schnarchen ‘You should snore’

1.2 The ACE generator

The open source ACE platform (http://sweaglesw.org/linguistics/ace/) implements a natural
language generator based primarily on chart generation (Kay, 1996). The input to the gener-
ation system is a grammar and the semantics of the utterance to be generated (expressed in
Minimal Recursion Semantics, or MRS (Copestake et al., 2005)). The grammar is primarily
a declarative formalism, in that it defines a bidirectional relationship between MRSes and
strings. The generator’s output is the list of all strings which are related to the input MRS by the
grammar. To combat the exponential worst-case complexity of the chart generation algorithm,
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ACE deploys two key efficiency measures described by (Carroll and Oepen, 2005), namely
ambiguity packing under subsumption and index accessibility filtering. In these respects it is
quite similar to the LKB parser-generator system (Copestake, 2002). While ACE, just like the
LKB, supports not only parsing and generation modes, but also MRS-based transfer, its main
advantage resides in its processing efficiency: compared to the LKB, generation speed on the
LOGON Rondane treebank (1169 items, avg. sentence length: 14.13) is 14.7 times better than
that of the LKB, bringing average generation times down from 6.34s (LKB) to 0.43 (ACE).

2 MRS term rewriting for generation efficiency

The central mechanism by which we intend to address the generation efficiency problem is to
automatically enrich the input semantics to the generator in such a way that global information
implicitly present in the MRS representation will be made explicit and locally available on
relevant elementary predications. By doing so, we will make them ultimately accessible to the
grammar during generation. By means of an automated and quasi-deterministic rewrite step on
the input MRS, we hope to strike a good balance between a maximally grammar-independent
external semantic interface, suitable for application developers, and an enriched input to the
generator that will hopefully reduce brute-force search by means of automatically derived
syntacto-semantic constraints.

2.1 The LOGON MRS term rewrite system

Within the context of the LOGON MT project (Oepen et al., 2004, 2007), the LKB processing
and development platform was extended with a term rewrite system for semantic representation
using Minimal Recursion Semantics (Copestake et al., 2005).

In the LOGON system, a transfer grammar is a sequential, resource-sensitive set of rewrite
rules which, when applied one after another in order, transform an MRS produced by a source-
language grammar into an MRS suitable for NLG with the target-language grammar. We adopt
the same formalism for a different purpose. A rewrite rule is a tuple of patterns for matching
pieces of MRSes, consisting of an input pattern, a context pattern, a filter pattern and an output
pattern. A rule < I , C , O, F > causes a part of the current MRS matching the input pattern I to
be replaced with the output O, provided that the context C also matches the input MRS and the
filter F does not match. The patterns can be interdependent, so that e.g. the output can copy
information matched by the input and the context. Each of the four patterns I , C , O, F contains
any number of descriptions of elementary predications1.

In an MRS (cf. figure 1), an elementary predication consists of a predicate name and any
number of named roles, whose values are logical variables. A description of an elementary
predication can use a regular expression to constrain which predications can match it. Several
sorts of type constraints can be imposed on the values of individual roles, including unifiability
with, subsumption by, or equality to a particular type (x,e,u,i,h). As for properties, i.e. features,
of such variables, matching is restricted to mere unifiability. Finally, it is possible to specify that
two or more variables matched in different elementary predication descriptions within the same
rule have the same identity, by assigning a coreference tag. Similarly, for variable properties.

Formally, the rewrite system has the computational power of a Turing machine. As such, it is
not possible to give bounds on the time complexity of applying an arbitrary rule set. However,
in practice the operation is tractable for the types of rule sets considered here.

1Descriptions involving handle constraints are also possible, though less common.
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2.2 Implementation of term rewrite system in ACE

The ACE platform, similarly to the LKB, allows grammarians to interpose a step of term rewriting
between the declarative portion of the grammar and the publicly displayed MRS. The purpose
of this is to allow grammarians additional freedom in designing the MRS schema described
by the grammar proper, while maintaining a semantic interface that is more stable between
grammar revisions and also affording an opportunity to remove remnants of non-semantic
information. Since the term rewrite system is not bidirectional, separate rule sets are used after
parsing and before generation.

The external MRS input to the generator is passed through the pre-generation rewrite system,
resulting in a so-called internal MRS input (cf. figure 1). It is this MRS that is used to identify
the initial set of grammar entities that need to be added to the chart. The immediate result of
chart generation is a set of strings together with the sequence of grammar rules and lexemes
that licensed them, and the MRS corresponding to that analysis. The result MRSes are passed
through the post parsing rewrite rules, resulting in external MRSes. Only those strings whose
corresponding external MRSes are subsumed2 by the external MRS input are output.

A single rule can match an MRS multiple ways. Due to resource sensitivity, the order in which
the matches have the rule applied can in principal affect the outcome. When a rule matches the
input in K different places, there are K! possible match orderings to try, which could each yield
a different result, making the complexity of the operation worse than exponential. In practice,
this issue can be so severe that the time spent in the rewriting process dominates the overall
generation time. However, through careful rule-writing it is possible to ensure commutativity.
ACE features a mode in which only one (arbitrary) match ordering is performed, rather than
executing all K! orderings (only to determine that they all have identical results). We exploit
this feature to reduce the time spent in rewriting to a fraction of the overall generation time.3

2.3 Rule-based enrichment of input semantics

In this subsection, we shall present in some detail the individual efficiency measures our
transfer grammar automatically derives from the generic external semantic representation. The
efficiency measures we implemented can be largely classified into three groups: inflection-
related measures, which mainly reduce the number of inflectional variants in the chart, German-
specific measures related to verb placement and argument composition, and finally, extraction-
related measures.

Most of the enrichment was done by means of having the transfer grammar augment semantic
variables with additional performance features. Values of these features are typically atomic
types (cf. figure 1 for a sample MRS: performance features are prefixed with two dashes and
rendered in blue). In one case, i.e. oind, the transfer grammar adds an additional role argument
(individual variable) to relevant elementary predications. On the grammar side, rules were
additionally constrained according to these efficiency features. Unless specialised to some value
by the MRS rewrite grammar, the enriched grammar rules will apply just as before, enabling us
to measure performance gains by simply activating or deactivating blocks of transfer rules.

2By subsumption of MRSes, it is meant that every predicate in the input MRS must be realised in the output MRS,
and the identity of the logical variables is the same (modulo renaming). It is considered permissible for the output MRS
to be more specific than the input MRS, permitting, inter alia paraphrase generation by input underspecification.

3Average transfer processing times on the three test suites discussed in this paper are as follows: MRS: 13.2ms,
TSNLP: 12.1ms, Babel: 29.4ms. Transfer times are already included in the overall processing time reported in table 1
below.
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In this subsection, we shall discuss each measure in turn, together with brief remarks on the
implementation and an estimate of the expected benefits.

2.3.1 Inflection

Case (cas) One of the most straightforward efficiency measures to come up with when
confronted with a highly inflectional language such as German is to eliminate inflected forms
from the chart that cannot possibly be part of a globally well-formed realisation. While some
inflectional forms are readily filtered by the semantic input or the lexicon, namely predicate-
inherent information such as TAM (tense/aspect/mood) and number/gender for nominal
expressions, this is not the case for morphosyntactic case, which is determined by properties of
the governing predicate.

In a configurational language, the expected inefficiency of inflecting every NP for all possible
cases, even irrelevant cases may be suboptimal, but not really a matter for concern, since the
NP will locally combine with its governing predicate, rendering NPs in irrelevant cases inert
during further search. In a non-configurational language such as German, which features
argument composition, heads combine with complements that are not their own arguments
but rather those of a predicate they compose with, i.e., they need to cater for unknown raised
arguments by means of underspecified valence lists. As a result, the identity of the inherited
arguments is not known, so any XP present in the chart, however inflected, can sneak into these
underspecified lists, to be ruled out, in the majority of cases, only when a significantly larger
structure has been built. Unfortunately, languages with an articulate case system tend to be of
the non-configurational, rather than the configurational type.

In order to predict the case for NPs, we developed a set of 35 rules that derive case requirements
from lexical and structural properties of the input semantics (cf. the --CAS feature in figure
1). While some cases are indeed trivial, e.g., predicting the case of obliques, or arguments of
prepositions, others are not: first, since individuals can be arguments to more than one predicate,
as witnessed in relative clause constructions, such individual variables must be exempted from
case prediction. Second, raising and, in particular, voice alternation can change case assignment
properties. Thus, the transfer grammar must carefully anticipate these properties in a case by
case fashion.

Apart from an overall slight reduction in chart size, we expect this feature to be particularly
useful in all constructions involving locally underspecified valence lists, including the quite
common case of separable particle verbs and raising and control constructions, as well as more
specific, yet quite expensive ones like partial VP fronting.

Punctuation (punct) The implementation of punctuation in GG (Kilian, 2007) follows that
of the English ERG in using inflectional rules. Even when limiting ourselves to basic sentence
punctuation (commas, period, question mark, exclamation mark), almost every chart item
can be inflected in 5 different ways, given that it cannot be known a priori which chart
item will end up, e.g., at the right periphery of the entire sentence, where sentence mode
(declarative/interrogative/imperative) is expressed. What is globally known, however, is
sentence mode: all it takes is to distribute exactly this information onto every elementary
predication (cf. --PUNCT in figure 1). Abstracting away from quotations, every sentence will
be in only one of the three modes, so the number of punctuation variants for each chart item
can be brought down to 3 (instead of 5).

This measure, while simple-minded and straightforwardly implemented (5 rules), is nevertheless
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expected to be highly efficient, given that it indiscriminately targets almost every lexical edge
(heads and dependents alike) and therefore has a significant impact on the overall size of the
search space, given the bottom-up regime of the generator. The only edges that do not benefit
from this (or any other measure discussed in this paper) are those corresponding to semantically
empty lexical items, like, e.g., auxiliaries, relative pronouns etc.

2.3.2 Verb movement and direction of branching (sub)

A peculiarity of German syntax that has quite strong repercussions on processing efficiency is
verb placement: while non-finite verbs are placed in phrase-final position, finite verbs display
an alternation between final and initial position: in relative clause, embedded interrogatives, as
well as subordinate clauses introduced by a complementiser or subordinating conjunction, the
finite verb is realised in final position, otherwise initially, including matrix clauses.

The global construction type (“matrix order” vs. “subordinate order”) can be calculated from
properties of the input semantics, in particular, by taking into consideration sentence mode
(declarative vs. interrogative), the kind of embedding (relativisation, complementation, type
of conjunction), as well as the presence and nature of the topicalised element (embedded V2
vs. embedded wh vs. that-clause). The pre-generation transfer grammar uses this information
to determine for each verb whether it is in a “subordinate” or “non-subordinate” context (cf.
--SUB in figure 1). In addition to predicting direction of branching for simple verbs, the main
benefit of this feature is that we can decide when to hypothesise head movement of the verb.

2.3.3 Discontinuous complex predicates

Coherent vs. non-coherent constructions (coh) Probably one of the strongest factors re-
sponsible for generation inefficiency is due to discontinuous complex predicates leading to
local underspecification of valence lists that permit sneaking in from any XP edge in the chart,
triggering massive combinatorial explosion. Fortunately, whether some predicate permits argu-
ment composition or not is a lexical matter, with composition being restricted to auxiliaries,
modals, raising and control verbs. Thus, the transfer grammar marks the arguments of non-
finite complements of modals etc., as to their potential of undergoing argument composition
(coh +). Likewise, arguments of finite verbs that are expressed periphrastically (perfective,
future, passives) are marked for composition. With arguments of all other predicates being
marked with a negative value, underspecified valence lists can be protected to some degree
against illicit intrusion of arguments (cf. --COH in figure 1). This feature is expected to be
particularly helpful in those cases where we are confronted with entirely underspecified valence
lists, as with separable particle verbs and partial VP fronting.

Predicting upstairs objects (raising/control) As discussed in the introduction, discontinu-
ous verb clusters may necessitate hypothesising valencies of the initial verbs to be realised
in the Mittelfeld, in particular objects of initial raising and control verbs that intersperse with
the arguments of the final verb or verb cluster. Since the subcategorisation requirement of
the upstairs verb are not known during bottom-up construction of the Mittelfeld, additional
arguments are hypothesised even in cases where the initial verb takes no complement at all.
Furthermore, such hypothesised argument slots provide potential for illicit intrusion.

On the basis of the predicate argument structure, however, it is quite straightforward to decide
not only whether an argument should be hypothesised or not, but also to determine its identity.
To this end, the transfer grammar redundantly encodes the upstairs verb’s object as an additional
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argument role (oind) which is used by the grammar to restrict any additional argument slot.

Predicting properties of raised subjects (sind) The last feature relating to complex predic-
ates targets modals and subject raising verbs, which agree with a subject that is not their own
argument. In order to limit the number of inflected variants of potentially expensive items
in the chart (they all trigger argument composition), the transfer derives the person-number
information of the syntactic subject from the argument structure of their non-finite argument
(cf. --SIND in figure 1). Since the scope of this feature is limited, we did not have any a priori
expectation as to whether the potential gains in certain construction will be sufficient to offset
the overhead incurred by the extended rule set.

2.3.4 Non-local dependencies

Long distance dependencies, like topicalisation, wh-fronting and relativisation are a notorious
source of inefficiency in syntactic processing. In German, extraction is very common: even in
ordinary declaratives, some constituent is extracted from the matrix or an embedded clause
and placed into the sentence-initial Vorfeld, a kind of topic position. In the external MRS, the
distinguished individual variable of the topicalised element is represented as an information-
structural property of the proposition or question relation (TPC feature). Topicalised elements
can be arguments, modifiers (scopal or intersective), as well as heads, in the case of (partial)
VP fronting. Moreover, as a side-effect of wide-spread scrambling, there is no canonical position
even for arguments, let alone adjuncts, so gap prediction is vital.

Local vs. non-local realisation (top) Predicting local vs. non-local realisation of arguments
is expected to be both straightforward and effective: given that the individual variable of
the topicalised element is already registered in the external MRS, it is almost sufficient to
redundantly encode this fact as a property of the variable, thereby making it visible on the
governing predicate as well, i.e., the context from which extraction proceeds, and mark all
remaining arguments as local (cf. --TOP in figure 1). This basic scenario gets, of course, slightly
more complicated given the fact that individual variables can be arguments of more than one
predicate, which may or may not be a reason for concern: in the case of across-the-board
extraction from coordinate structures, it can be harmless, whereas in the case of relativisation,
we are confronted with the possibility of an individual which is realised locally with respect
to the upstairs predicate, yet non-locally within the relative clause. In the transfer grammar,
this is resolved by means of a three-valued system of types (+,−,na), where Boolean values
correspond to topicalised (+) and non-topicalised (−) realisation, whereas na represents the
neutral case (relativisation). Both local head-complement rules (na_or_−) and complement
extraction rules (na_or_+) are made sensitive to this distinction.

As a consequence of this feature, we expect some considerable reduction in chart size: with the
exception of relativised arguments, all arguments will be marked as either local or non-local,
thereby eliminating a great deal of non-determinism.

Predict extraction type and gap site (tpc) While prediction of argument extraction as
sketched above can reduce some of the complexity incurred by long-distance dependencies, it is
rather moot when it comes to items that are not represented on the argument structure of the
local head at all, e.g. modifiers.

Taking into consideration the semantic relation that the topicalised elementary predication
enters in with some other elementary predication, it is possible to detect, from the external
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MRS, both modifier status (scopal vs. intersective) and location of the gap site, i.e. the modified
item. In a similar way, it is possible to identify cases of (partial) VP fronting.

Complementing the top feature, which marks extraction as a property of arguments, the transfer
grammar introduces a feature tpc to identify the locus of the gap as a property of the head.
Values of this feature serve to distinguish further between different types of extraction, e.g.
intersective vs. scopal modification, verb fronting and plain argument extraction (cf. --TPC in
figure 1). Extraction rules are made to be sensitive to properties of the head, accordingly. The
ordered transfer rules first try to detect instances of modifier fronting and partial VP fronting
and mark the event variable of the elementary predication corresponding to the head for the
appropriate extraction type. All remaining verbal and predicative elementary predications are
marked as a potential site for argument extraction, thereby ruling out modifier or verb fronting
from these sites.

A priori, it is difficult to assess the efficiency of this feature. However, given the rather
unconstrained nature of modification, and therefore modifier extraction, it is safe to expect
some decent benefit.

3 Evaluation

In order to assess the impact of the proposed measures on generation efficiency, we carried out
several experiments on three different regression test suites for German: the Babel test suite
(Müller, 2004), the TSNLP test suite (Lehmann et al., 1996), and the German version of the
CSLI MRS test suite. The test suites were parsed, and successfully analysed test items were
subsequently disambiguated using the Redwoods treebank annotation tool (Oepen et al., 2002).
This left us with a total of 2,259 semantic input representations for the generator (Babel: 609,
TSNLP: 1547, MRS: 103).

None of the test suites used in the experiments here was specifically designed for the purposes
of NLG. Rather, all three are general purpose, phenomenon-oriented regression test suites.
However, there are some differences in the design of the individual test suites that we expect
to affect the impact of our performance improvements: while the MRS and TSNLP test suites
consist of rather short utterances (MRS: 4.44 words/item, TSNLP: 4.76 words/item), Babel is
slightly more complex (6.76 words/item). Another important difference relates to the kind of
phenomena included in the test suite: to give an example, TSNLP includes a fair amount of
non-sentential items for testing NP-internal agreement, a phenomenon which should be entirely
unaffected by most of the efficiency measures suggested here, which are all targeted at clausal
syntax.

All test runs were performed on a Linux (kernel 2.6.32) compute server with 12 Intel Xeon
X5650 2.67GHz CPUs and 16GB RAM, running 4 processes in parallel (on an otherwise idle
machine). The ACE generator was run in standard configuration, i.e. with a memory limit of
1.2 GB for forest creation plus another 300 MB for unpacking. The number of realisations per
item was limited to 1000. Tests have been profiled using [incr tsdb] (Oepen, 2002).

In addition to comparing the performance of the full pre-generation transfer grammar to that
of the baseline, we conducted a number of additional test runs to evaluate the effectiveness of
each performance feature on its own (+feature), as well as each feature’s contribution to the
combined performance (−feature).
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3.1 Results

The main results are summarised in tables 1 and 2, giving crucial performance indicators (overall
processing time and passive edges) for all three test suites. Comparing baseline performance
(Base) to the combined effect of all features (All), we observe a speedup of around a factor of
4.5 for MRS and TSNLP test suites. On the more complex Babel test suite efficiency gains even
go up to a factor of almost 28.4 As indicated in table 1, average speedup on all three test suites
is at 18.5.

MRS TSNLP Babel MRS+TSNLP+Babel
Time (s) Red. Time (s) Red. Time (s) Red. Time (s) Red.

Base 0.257 1.00 0.273 1.00 7.213 1.00 2.143 1.00
+cas 0.222 1.16 0.216 1.26 4.547 1.59 1.384 1.55
+punct 0.150 1.71 0.159 1.71 4.598 1.57 1.355 1.58
+sub 0.210 1.22 0.215 1.27 6.042 1.19 1.786 1.20
+coh 0.226 1.14 0.275 0.99 5.681 1.27 1.730 1.24
+oind 0.242 1.06 0.262 1.04 5.506 1.31 1.675 1.28
+sind 0.262 0.98 0.274 1.00 7.035 1.03 2.096 1.02
+top 0.130 1.97 0.136 2.00 5.309 1.36 1.530 1.40
+tpc 0.131 1.96 0.178 1.53 3.602 2.00 1.099 1.95

All 0.054 4.71 0.063 4.31 0.260 27.79 0.116 18.52
-cas 0.056 4.59 0.065 4.20 0.371 19.46 0.147 14.58
-punct 0.063 4.11 0.081 3.38 0.415 17.39 0.170 12.61
-sub 0.058 4.44 0.067 4.09 0.304 23.71 0.130 16.44
-coh 0.054 4.78 0.061 4.49 0.353 20.45 0.139 15.41
-oind 0.056 4.59 0.062 4.37 0.526 13.72 0.187 11.46
-sind 0.050 5.12 0.062 4.40 0.258 27.95 0.114 18.74
-top 0.076 3.37 0.081 3.37 0.381 18.92 0.162 13.25
-tpc 0.064 4.01 0.079 3.46 0.897 8.04 0.299 7.17
-index 0.049 5.24 0.069 3.97 0.433 16.67 0.166 12.91
-pack 0.079 3.23 0.087 3.14 0.563 12.82 0.215 9.98

Table 1: Processing time and speedup factor

Similarly positive efficiency factors can be observed regarding space consumption (edges),
although space savings typically fall short of time savings, given the fact that we are using a
generator with ambiguity packing.5

Table 2 also details generation coverage achieved by each test run: on MRS and TSNLP test
suites, coverage is 100% throughout. On Babel, we achieve full coverage, once a sufficient
number of efficiency measures is enabled (second half of table 2). Test runs for baseline
performance, as well as those with only a single performance feature activated at a time (top
half of table 2), occasionally run into memory exhaustion, accounting for reduced coverage.
However, since coverage on all test runs is either greater or equal to that of the baseline, a
potential floor effect benefits the baseline more than any other runs, thus leaving the significance
of our results unaffected.

4Apparently, combination of features pays off much better in terms of time savings than mere multiplication of
individual factors would suggest, an effect that has been previously noted in the context of chart generation (Carroll
and Oepen, 2005).

5Passive edges reported in table 2 are packed edges: thus, any edge filtered by our performance features can lead to
time savings at several points during generation, namely edge creation, packing, and unpacking.
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MRS TSNLP Babel
Cov Edges Red. Cov Edges Red. Cov Edges Red.

Base 100.0 703 1.00 100.0 693 1.00 96.7 4864 1.00
+cas 100.0 663 1.06 100.0 630 1.10 97.9 3817 1.27
+punct 100.0 440 1.60 100.0 458 1.51 97.5 3364 1.45
+sub 100.0 555 1.27 100.0 567 1.22 96.9 4137 1.18
+coh 100.0 645 1.09 100.0 692 1.00 98.0 4460 1.09
+oind 100.0 675 1.04 100.0 676 1.02 98.2 3959 1.23
+sind 100.0 706 1.00 100.0 692 1.00 96.9 4859 1.00
+top 100.0 392 1.79 100.0 441 1.57 98.0 3539 1.37
+tpc 100.0 410 1.71 100.0 452 1.53 98.0 2931 1.66

All 100.0 116 6.07 100.0 172 4.03 100.0 554 8.78
-cas 100.0 133 5.28 100.0 194 3.57 100.0 693 7.02
-punct 100.0 179 3.92 100.0 242 2.87 100.0 860 5.65
-sub 100.0 141 4.99 100.0 195 3.55 100.0 673 7.23
-coh 100.0 124 5.67 100.0 175 3.96 100.0 657 7.41
-oind 100.0 121 5.82 100.0 174 3.99 100.0 841 5.78
-sind 100.0 117 6.00 100.0 172 4.03 100.0 558 8.72
-top 100.0 205 3.43 100.0 251 2.76 100.0 825 5.90
-tpc 100.0 150 4.68 100.0 228 3.04 100.0 1173 4.15
-index 100.0 126 5.58 100.0 198 3.50 100.0 682 7.13
-pack 100.0 215 3.27 100.0 292 2.37 99.7 1292 3.77

Table 2: Generation coverage and space consumption (passive edges)

Investigating the impact of the individual features in more detail, we find that almost all of them
are effective on at least two of the three test suites. The only exception is +sind, the feature
which calculates subject agreement information for raising and modal verbs: not only do we
not find any clear benefits in isolation; its inclusion also proves detrimental in combination
with other features. Given that this measure is highly specific, its failure to give rise to positive
effects is hardly surprising. All other features are effective not only in isolation (top half of the
table), but we can observe from the runs in the lower half of each table (leave-one-out) that
each feature still has an impact when used in combination.

Starting with the inflection-oriented features, i.e., cas and punct, we find that both have
consistent impact on all test suites. However, the effect of controlling punctuation is clearly
stronger than that of predicting case: in fact, punctuation is the second to third most effective
feature of all features tested. We believe that this is due to the following factors: first, predicting
morphosyntactic case can only ever have an effect on nominal expressions (nouns, determiners,
attributive adjectives), whereas punctuation will affect every lexical item in the chart that
corresponds to some elementary predication in the input, targeting nominal and non-nominal
expressions alike. Furthermore, while case prediction only reduces the number of potential
complements, predicting punctuation also has an effect on heads and modifiers. Second,
sentential punctuation is a global feature, i.e., all elementary predicates will be specialised in
the same way. Case assignment, however, is a local property, and must therefore cater for the
situation where an individual variable is shared by two or more governing predicates, as, e.g.,
in the case of relativisation. As a net effect, individual variables must be exempt from case
prediction in these cases. This explanation is further supported by the fact that the reduction
factor on passive edges is very close to the theoretically maximal value for punctuation of 1.67
(5/3).
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The features related to verb placement and argument composition (sub,oind,coh) all lead to
performance improvements, albeit to differing degrees, depending on the feature and the test
suites: while prediction of verb placement, i.e., direction of branching and presence/absence
of verb movement (sub), leads to consistently good effects on all three test suites, as does the
prediction of the absence/identity of the initial verb’s object (oind), the coh feature, which
exclusively caters for argument composition, shows more variable behaviour: though beneficial
otherwise, space savings on TSNLP are negligible, with processing times even going up slightly.
This may not be too surprising: while prediction of verb placement and direction of branching
affect every clause, the coh feature will only show an effect in constructions involving particular
predicates or tenses, which is a situation that can vary depending on the concrete input.

Finally, the two extraction features top and tpc show again consistent and highly effective
performance improvements across all test suites, both in isolation and in combination. This
confirms quite neatly our initial expectation that these two efficiency measures are largely inde-
pendent, the former (top) targeting complement extraction, by virtue of their being represented
on the head’s argument structure, the latter (tpc) targeting the remaining cases, most notably
gap prediction for adjunct extraction. Finally, the fact that long distance dependencies are not
only costly, but also frequent and not specific to any particular construction, explains why good
gap prediction gives rise to consistently high performance benefits across all test suites.

Before we close the presentation of the main results, we would like to briefly compare the
efficiency of the measures proposed here to those suggested by Carroll and Oepen (2005),
namely index accessibility filtering and ambiguity packing. Disabling each of these previously
established performance features in turn (cf. the last two rows in tables 1 and 2), we can show
that the detrimental effect shown on our test data is comparable to that incurred by disabling
one of the features investigated here.
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Figure 2: Processing time (in s) per string length (babel)

3.2 Discussion

We have observed during the presentation of the main results that the majority of MRS-derived
efficiency features show comparable speedup effects across the three different test suites, when
used in isolation. Notable exceptions were the somewhat more construction and, therefore,
input-specific features coh and oind which are highly dependent on the presence of complex
predicates. However, we observed quite strong differences (a factor around 5.5) as to the
cumulative effects between babel on the one hand and the less complex TSNLP and MRS test
suites on the other. In order to better understand the significance of the experiments reported
on here we shall investigate the differences and discuss what practical implications will ensue.
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Figure 3: Passive edges per string length (babel)

The most obvious difference between Babel and the other two test suites is of course input
length: by artificially reducing average input length on Babel to slightly above (4.85) that
of TSNLP (by filtering out longer inputs), the cumulative speedup factor reduces to a factor
around 9.5, compared to 27.5, which is still not fully comparable, yet much closer to the
factor of 4.5 observed for MRS and TSNLP suites.6 The impact of input length on relative
generation speedup is also corroborated by the scatter plots of time and space (passive edge)
consumption shown in figures 2 and 3: without any of the efficiency measures proposed in this
paper, processing time begins to explode already at an average sentence length of 8 (see figure
2), averaging at around 8.4s. With the efficiency measures, processing time never even comes
close to that level, leading to massive performance gains on longer inputs. The comparison
of passive edges in figure 3 confirms even more clearly how the current efficiency measures
particularly counter the combinatorial explosion observable with the baseline. To summarise,
while all test suites witness good reduction of average processing times, it is clear that the real
benefit of the generation efficiency measures suggested here becomes apparent with longer
(and therefore more complex) inputs. For practical purposes, in particular for online processing,
taming of the worst case complexity for longer inputs is more important than speedup factors
on the relatively short utterances characteristic of MRS and TSNLP test suites.

Before we close, we should like to address the issue of how our method could be ported to
grammars for languages other than German: while some of the concrete features we used are
somewhat specific to German (or Dutch), others should be easily portable. The punctuation
feature, as well as the the two extraction-related features top and tpc should be useful to
improve generation efficiency in a wide range of languages: in a small experiment carried out
with the ERG (Copestake and Flickinger, 2000) on the Rondane treebank (see section 1.2), we
observed a 10.5% reduction in generation time for punctuation alone. We expect that other
features, such as the cas feature will be useful for other less configurational languages, such as
Slavic languages, given the fact that elaborate case systems and relatively free word order often
go hand in hand.

3.3 Related work

An alternative strand of approaches towards efficient processing of unification grammars builds
on the idea of compiling these grammars into formalisms with better worst-case complexity

6Reducing average string length to slightly below that of the MRS test suite (4.37), results in a cumulative speedup
factor of only 5.4.
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than native unification-based processing, such as CFG or TAG: e.g., Kiefer and Krieger (2000)
proposed a CFG superset approximation of HPSG for parsing English and Japanese. However,
this method has so far never been successfully applied to German, let alone for generation.
Furthermore, despite potentially better raw performance, CFGs are plagued by at least as severe
locality issues as bottom-up HPSG generation. TAGs, by contrast, with their extended domain of
locality, constitute a much more interesting target formalism for compiling an HPSG generation
grammar. In the literature, two such approaches have been reported: Kasper et al. (1995)
describe a method of compiling Klaus Netter’s HPSG of German to TAG, but the compilation
did not cover the full grammar but only a fragment, and, unfortunately, no performance
measures are reported for either parsing or generation. Becker and Lopez (2000) specifically
capitalise on the fact that TAG’s extended domain of locality gives rise to an a priori expectation
towards greater generation efficiency, and, building on Kasper et al. (1995), they describe a
compilation of the Verbmobil English and Japanese HPSG grammars into LTAG. Again, however,
no performance tests are reported that could substantiate the claim of increased generation
performance with the compiled grammar. Furthermore, to the best of our knowledge, no such
compilation has ever been carried out for German.

In the context of native unification-based processing, Gardent and Kow (2007) suggest a
method to enrich the semantic input to an FTAG of French with tree features that permit almost
deterministic selection of generation paraphrases. Moreover, Gardent and Kow (2005) argue
that such selection also leads to performance improvements, as they show on the basis of
sample sentences. With respect to the German LFG (Rohrer and Forst, 2006; Cahill et al.,
2007), Zarrieß and Kuhn (2010) propose a transfer approach to provide f-structure input for the
XLE surface realiser from shallow semantic representations. The main motivation for this was
that f-structures contain a high level of syntactic and even morphosyntactic detail that make
them less suitable for paraphrasing and, more generally, for deployment in natural language
generation systems. Zarrieß and Kuhn (2010) also discuss the impact of grammatical function
prediction from semantic roles for generator efficiency: depending on the complexity of the
transfer rules, they observe considerable differences in average generation time, ranging from
246.14s for the “naive rules” to 36.2s for their “informed rules”, which operate on configurations
rather than individual roles. Nakanishi et al. (2005) propose a beam search approach to tackle
generation efficiency for an English HPSG. We believe their approach to be complementary to
ours, since MRS enrichment can prune the search space with certainty and without locality
restrictions, such that a future system using both methods will be able to provide good results at
smaller beam sizes, taking advantage of a division of labour between transfer-based treatment
of non-local and probabilistic pruning of local dependencies.

Conclusion

We have proposed a method to improve generation efficiency with GG, a reversible HPSG of
German. Using a term rewrite system integrated into the generator, we automatically enrich
the purely semantic input representation with additional syntacto-semantic constraints, derived
from the semantic configuration. Evaluating our method on three different regression test suites
for German, we have shown that this approach is highly successful in taming combinatorial
explosion in bottom-up chart generation, leading to significant speedup factors: while on less
complex inputs, we achieved a speedup by a factor of around 4.5, performance gains increase
considerably on more complex inputs, yielding a speedup factor of almost 28, which shows that
our method scales up well to increasing input lengths.
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