
Proceedings of COLING 2012: Technical Papers, pages 1147–1162,
COLING 2012, Mumbai, December 2012.

A Comparison and Improvement of Online Learning
Algorithms for Sequence Labeling

Zheng yan He Houf eng Wang ∗
Key Laboratory of Computational Linguistics (Peking University) Ministry of Education,China

hezhengyan.hit@gmail.com, wanghf@pku.edu.cn

ABSTRACT
Sequence labeling models like conditional random fields have been successfully applied in a
variety of NLP tasks. However, as the size of label set and dataset grows, the learning speed of
batch algorithms like L-BFGS quickly becomes computationally unacceptable. Several online
learning methods have been proposed in large scale setting, yet little effort has been made
to compare the performance of these algorithms. Comparison is often carried out on a few
datasets with fine tuned parameters for specific algorithm. In this paper, we investigate and
compare several online learning algorithms for sequence labeling with datasets varying in
scale, feature design and label set. We find that Dual Coordinate Ascent (DCA) is robust across
datasets even without careful tuning of parameter. Furthermore, a recently proposed variant
of Stochastic Gradient Descent (SGD), Adaptive online gradient Descent based on feature
Frequency information (ADF), has very fast training speed compared with plain SGD, but fails
to converge under certain conditions. Finally, We propose a simple modification of ADF, which
bears comparable convergence speed with ADF, and is consistently better than plain SGD.

TITLE AND ABSTRACT IN CHINESE

　　　　　　　　　　　　　　　序序序列列列标标标注注注在在在线线线学学学习习习算算算法法法的的的比比比较较较和和和改改改进进进

序列标注模型，如条件随机场，已广泛用于自然语言处理的很多任务中。但随着数
据规模和标记集的增大，批量学习算法（如L-BFGS）的训练时间复杂性变得越来越不可接
受；于是，出现了多个大规模环境下的在线学习算法。这些算法有各自的特点，但对这些
算法的比较研究很少有报道。通常情况下都是针对几个数据集，通过对特定算法细致调
整参数来比较最后的测试结果。本文针对几个典型的序列标注在线学习算法，在不同规
模、特征设计和标记集合的数据集上进行了比较研究。结果发现，即使没有特别对参数
调优，对偶坐标上升算法（DCA）在不同数据集上也能有很好的表现；而随机梯度下降
算法（SGD）的一个变种算法——基于特征频度的适应性在线梯度下降法（ADF）与普通
的SGD相比，训练速度更快，但不能保证总收敛。最后，本文还对ADF提出了一种简单的
改进，改进后的算法好于普通的SGD，与ADF收敛速度接近。

KEYWORDS: Sequence labeling, online learning, stochastic gradient descent, named entity
recognition.

KEYWORDS IN CHINESE: 序列标注模型，在线学习，随机梯度下降，命名实体识别

∗Corresponding author

1147

1 Introduction

Sequence labeling models have been widely used in a variety of NLP tasks, such as word
segmentation, part-of-speech tagging, chunking, and named entity recognition. Various se-
quence labeling models have been proposed, like hidden Markov models (HMM) (Rabiner,
1989), structured perceptron (Collins, 2002), conditional random fields (CRFs) (Lafferty et al.,
2001) and SVM-HMM (Tsochantaridis et al., 2006). In recent years, discriminative models
gain significant popularity over generative models on these tasks, and achieve state-of-the-art
performance on most above tasks. Their strength and flexibility come from their ability to
incorporate arbitrary declarative features.

CRFs is one of such discriminative models for sequence labeling built upon maximum entropy
principle. The learning algorithms of CRFs can be divided into batch methods and online
methods. Batch methods update parameters by estimating gradient over the entire training
data, while online methods estimate noisy gradient with a small portion of the training data,
and update parameters frequently. Among all the batch methods, L-BFGS is the most widely
used and outperforms others by a substantial margin (Malouf et al., 2002); Conjugate-gradient
(CG) method with proper preconditioner can converge as fast as L-BFGS (Sha and Pereira,
2003). However, discriminative models for typical sequence labeling tasks are very large and
may involve hundreds of thousands of features, rendering even fastest batch learning methods
very slow and impractical for large scale datasets.

Several online learning algorithms have been proposed to speed the training process of struc-
tured prediction problems, such as Passive-Aggressive (PA) algorithm (Crammer et al., 2006),
Dual Coordinate Ascent (DCA) (Martins et al., 2010) and Stochastic Gradient Descent (SGD).
SGD is known for its performance in the back propagation training of neural network. It also
shows extremely good performance on machine learning tasks such as SVM (Bordes et al.,
2009), CRFs (Vishwanathan et al., 2006), and Markov Logic Networks (Poon and Vanderwende,
2010). It may reach optimal performance even before it sees the whole training data on large
datasets (Bottou and Bousquet, 2008). SGD takes typically 5-10 iterations to converge when
training a multiclass Maximum Entropy (ME) model, while it takes over 50 iterations when
training CRFs, much slower than training its unstructured counterpart, multiclass ME. We show
how simple feature frequency adaptive strategy may help accelerate training of CRFs within 10
iterations.

Despite recent progresses in online learning algorithms, little effort has been made to compare
these algorithms thoroughly. In this paper, we focus on several online learning algorithms
for sequence labeling. More specifically, we investigate PA, DCA, SGD and SGD’s variant ADF
(Sun et al., 2012). We perform comparison on several standard datasets with diverse settings
of feature design and label set. We make it as close as possible to real application scenarios
whenever resources are available. Experiment reveals distinct behavior of these algorithms
under different settings.

Our contributions are threefold. First, we make a fair and extensive comparison of state-of-
the-art online learners for sequence labeling and characterize the strength of each algorithm.
Second, we confirm the effectiveness of ADF on most datasets despite its lack of theoretical
convergence guarantee for now; inspired by ADF, we propose Modified ADF (MADF), which
guarantees convergence and converges as fast as ADF. Finally, we explore the use of Tongyici
Cilin (Extended) as a semantic lexicon in Chinese named entity recognition, which remains
unexplored for this task in previous work.

1148

The remaining of this paper is organized as follows: in Section 2, we describe in detail the
online learning algorithms, and propose MADF; in Section 3 we evaluate performance of these
algorithms, and present novel usage of Tongyici Cilin (Extended) in Experiment 2; we review
related work in Section 4; finally we conclude.

2 Online Learning Algorithms for Sequence Labeling

A sequence labeling task is defined as follows: given an observation sequence x =
{x1, x2, . . . , xn}, output its corresponding label sequence y = {y1, y2, . . . , yn}, one label for
each x i . The output space is |Y |n where Y is the label set that each individual yi takes values
from, and n is the length of y.

In discriminative sequence labeling models, feature functions are used to describe interde-
pendency between observed and hidden variables. Under first order Markov assumption, the
feature function can be divided into transition features φ(x, yi , yi+1) and emission features
φ(x, yi). These can be combined to φ(x,y).

Dynamic programming technique like viterbi decoding is often employed during inference:

ŷ= arg max
y
θ Tφ(x,y) (1)

where θ are model parameters. Next we will describe how to estimate parameters θ with
different online algorithms. Table 1 shows a list of denotations for convenience.

x input sequence

y output label sequence

θ parameter vector

φ(x,y) feature function that maps sequence to feature vector

ηt learning rate for the t-th sample

λ regularization weight of λ
2
‖θ‖2

2

M number of training samples (sequences)

l(ŷ,y) cost function given the predicted and gold sequences

Table 1: Denotations

2.1 Passive-aggressive algorithm (PA)

Passive-Aggressive (PA) algorithm (Crammer et al., 2006) is a family of margin based online
learning algorithms. This algorithm updates the parameter to satisfy the constraint imposed
by the current example (aggressively), and does nothing if the current example is correctly
classified (passively). Equation 2 defines the objective function for PA algorithm (referred by
the author as PA-I):

θ (t+1) = arg min
θ

1

2
‖θ − θ (t)‖2 + Cξ s.t. l(ŷ , y)< ξ and ξ≥ 0 (2)

where ξ is a non-negative slack variable that copes with wrongly labeled data; C controls the
aggressiveness of parameter updating, and is a trade-off between convergence speed and model

1149

quality. The update rule of parameter is as follows:

θ (t+1) = θ (t) −η(φ(x(t), ŷ(t))−φ(x(t),y(t))) (3)

where η=min
�

C ,
θ T (φ(x(t), ŷ(t))−φ(x(t),y(t))) + l(y(t), ŷ(t))

‖φ(x(t), ŷ(t))−φ(x(t),y(t))‖2

	
(4)

and ŷ(t) = argmax
y
θ T (φ(x(t),y)−φ(x(t),y(t))) + l(y(t),y) (5)

where l(y(t), ŷ(t)) is the penalty we incur if our prediction is ŷ(t) and the true label is y(t). ŷ(t)

can be solved with cost augmented decoding, which can be efficiently accomplished if l(y(t), ŷ(t))
decomposes the same way as the feature vector function (Smith, 2011). This is referred to as a
max-loss update in (Crammer et al., 2006).

When applied to sequence labeling PA is a special case of the general algorithm where output y
is a label sequence. Hamming loss (Eq. 6) is often used. However, other loss can also fit when
one faces with task specific needs (Song et al., 2012) (Mohit et al., 2012).

l(ŷ,y) = Hamming(ŷ,y) =
n∑

i=1

δyi 6= ŷi
(ŷi , yi) (6)

2.2 Dual coordinate ascent (DCA)

(Martins et al., 2010) present a general framework for online learning of structured classifiers.
It bears some resemblance to the PA algorithm in that it shares the passive-aggressive property
of PA. This algorithm applies to a wide class of loss functions; CRFs, SVM, structured perceptron
can all be deemed as its special cases. Furthermore, learning rate is automatically determined
for each instance, hence pesky learning rate tuning is no longer needed. The learning objective
is the sum of loss on datasets plus a regularization term:

min
θ∈Rd

λR(θ) +
1

m

m∑
t=1

L(θ ;x(t),y(t)) (7)

The update rule 8 is very similar to the PA algorithm in large margin setting (Eq. 3), if we divide
Equation 7 by λ, replace 1

λm
with C , and set ∇L = φ(x(t), ŷ(t))−φ(x(t),y(t)) . The update rule

for DCA is:

θ (t+1) = θ (t) −ηt∇L(θ ;x(t),y(t)) (8)

where η(t) =min
� 1

λm
,

L(θ (t);x(t),y(t))

‖∇L(θ (t);x(t),y(t))‖2

	
(9)

As for sequence labeling problem, CRFs is derived by setting the loss function to the negative
log-loss with no cost function, i.e. LCRF = − log P(yt |xt). The loss function of CRFs is just a
special case of the general loss function L.

2.3 CRFs with SGD learning and its variants

Linear chain conditional random fields (CRFs) (Lafferty et al., 2001) is widely used model for
sequence labeling. It predicts the output sequence y by its conditional probability P(y|x):

P(y|x) = 1

Z(x)
expθ Tφ(x,y) (10)

1150

where Z(x) =
∑

y expθ Tφ(x,y) is normalization term which ensures that the probability
sums to 1. The training objective is to maximize the likelihood on the training data (often
accompanies a prior over parameters to get max-a-posterior estimation), which is equivalent to
minimizing a negative log loss over all data points plus a regularizer:

L =
m∑

i=1

− log P(y|x) +λm‖θ‖2 (11)

Here we multiply the regularizer by m to keep it consistent with Equation 7. This way λ has the
same meaning as in Equation 7. Minimizing this objective gives the gradient for one instance
in online setting:

∂

∂ θ
L(θ ;x(t),y(t)) = EP(y|x;θ (t))φ(x

(t),y(t))−φ(x(t),y(t)) +λθ (12)

where the expectation of feature vector given current example x(t) is taken over all possible
sequences of y, and can be efficiently computed using forward-backward algorithm.

Generally regularizer is added to avoid overfitting. Various regularizers have been proposed. L2
regularizer, R(θ) = λ

2
‖θ‖2

2, which is used by various CRF based tools, often leads to superior
performance and can be numerically optimized. L1 regularizer, R(θ) = σ‖θ‖1, known as Lasso,
encourages sparse parameter. Elastic net, a linear interpolation of L1 and L2 regularizer, is used
by (Lavergne et al., 2010) to regularize CRFs, and performs as good as L2 regularizer, while
still retaining compact model.

2.3.1 SGD and its variants

Stochastic gradient descent (SGD) is known for its fast convergence on machine learning tasks
(Bottou and Bousquet, 2008) (Vishwanathan et al., 2006) (Shalev-Shwartz et al., 2007).
Every time the algorithm randomly draws one sample (or small batch of samples in mini-batch
setting), and performs update according to the gradient of this sample. In general, SGD has the
following simple update rule:

θ (t+1) = θ (t) −η(t)B∇L (13)

where η(t) is a scalar learning rate, B is a matrix; B = I for a plain SGD and B≈ H−1 for second
order SGD. Despite its ease of implementation, it’s generally hard to tune and schedule the
learning rate properly.

(Murata, 1998) shows that with a 1/t-annealing learning rate it can be asymptotically as
effective as batch learning in terms of generalization error. (Bottou and Bousquet, 2008)
further shows that utilizing second order information by setting ηB = 1

t
H−1, optimal asymptotic

convergence rate is achieved. With η= 1/t and fixed B, convergence is guaranteed based on
the theory of stochastic approximation (Murata, 1998).

Various ways of approximating the inverse of Hessian have been proposed (Hsu et al., 2009)
(Vishwanathan et al., 2006). But these methods are much slower than plain SGD in terms of
execution time of one pass over the entire dataset, so the speed up is very limited. Full approx-
imation of H−1 is quite expensive , so low rank approximation and diagonal approximation
(Bordes et al., 2009) is very appealing. The next two algorithms is closely related to diagonal
rescaling.

1151

2.3.2 ADF

In ADF, instead of a single global learning rate in plain SGD, each dimension of parameters
has its own learning rate. The learning rate decays periodically according to its associated
feature frequency, with high frequency decaying faster. This adaptive strategy is based on the
intuition that frequent observed features are more adequately trained so smaller learning rates
are needed. The author shows its high convergence speed compared with plain SGD in Chinese
word segmentation task.

The method works well in most of our experiments, except for a few datasets. As we observed
in our experiments in several other sequence labeling tasks, despite its speed of convergence
and of reduction in training set error rate, it might fail to generalize well to testset and its
parameters fluctuate a lot with different random shuffling of data. Moreover, it is not clear
how to tune the upper bound and lower bound of the decay factor. In fact, ADF can be seen
as diagonal approximation of the inverse of Hessian with exponential decrease learning rate
based on frequency adaptive information. Unfortunately, this decrease in learning rate does not
have theoretically convergence guarantee for now, although it works well in practice. (Murata,
1998) shows that SGD with 1/t-annealing learning rate guarantees convergence.

2.4 Modified ADF (MADF)

Second order SGD (2SGD) uses an approximation of inverse of Hessian by setting ηB= 1
t
H−1

in order to achieve the optimal learning rate. Inspired by ADF and current theory foundation of
2SGD, we propose to use feature frequency information to approximate H−1, while still keeping
a η= 1/t annealing factor, so convergence is guaranteed (Eq. 14).

Our method works as follows: at the beginning of the algorithm, we compute the diagonal
scaling matrices B using Equation 15, which is of the same size as the parameter vector. For
each dimension of θ , we use a separate learning rate 1

t
Bii .

θ (t+1) = θ (t) − 1

t
B∇L(θ) (14)

Bii =
1

β + (α− β)× #φ(x ,y)
#tokens

where a =
1

α
b =

1

β
(15)

where a and b serve as lower and upper bounds of diagonal scaling element Bii . We keep
B constant during the training process. #φ(x , y)/#tokens is the relative feature frequency
associated with i-th dimension.

There are two main differences of our method compared with ADF. The first is how the frequency
is counted. In ADF, frequency is counted as

∑
y φ(x , y) per sentence and is the same for each

predicate x with different y . Our method counts φ(x , y) per token in the training set and use
separate learning rate for predicate x with different y. Another difference is that we keep an
annealing learning rate η(t) = 1/t with fixed diagonal scaling matrix B, while ADF can be seen
as exponential decaying B with constant η.

It is difficult to set the upper and lower bounds of scaling factor Bii . One solution is to grid
search a and b with held-out dataset. In this paper, we find it works surprisingly well by setting
a = 0.001 and b = 1 on almost all datasets.

1152

It is easy to interpret our method in the view of input rescaling. In the back propagation
learning of neutral network, mapping a too large input to a relatively small output would result
in a small learning rate in order to ensure stable convergence, leading to slow convergence
speed 1. (LeCun et al., 1998) suggest simply to normalize the input to combat this problem.
Furthermore, input scaling is closely related to diagonal approximation of the inverse of Hessian
(Bordes et al., 2009). However, scaling input feature value in sparse dataset is not realistic. Our
idea is that in batch setting, the update of parameters associated with frequent features tend to
be larger than those associated with rare features, so we scale the learning rate by the inverse
of its associated relative feature frequency.

We show in Section 3 how this simple adaptive learning rate can significantly speedup the
learning process while still is equipped with convergence guarantee. It runs as fast as plain SGD
in terms of per iteration execution time, without the penalty of approximating the inverse of
Hessian. The speedup is attributed to a proper estimation of initial learning rate, especially on
datasets with more skewed feature frequency distribution.

3 Evaluation and Analysis

3.1 Implementation

There are several implementation issues on how to obtain good performance with different
algorithms.

Weight averaging: averaged perceptron, PA and DCA can get much better performance by
weight averaging. We only have to maintain two weight vectors θ (t) and θ̂ (t); each time we
perform update θ (t+1) = θ (t) −∇L and θ̂ (t+1) = θ̂ (t) − t∇L. Finally the average weight is
obtained by θ̄ =

∑T
t=0 θ

(t) = θ (T) − θ̂ (T)/T .

Randomize data: if we have to pass the dataset multiple times, it’s better to randomize the
dataset. This can get better performance on all online algorithms in our experiments, not only
SGD variants.

Regularization with L2: In NLP tasks, the feature vector is typically sparse. The gradient
∇L (see Eq. 12) consists of two parts, one corresponds with the loss and the other with the
regularizer. The first part is often sparse and can be efficiently carried out. The update of the
regularizer part is dense and quite expensive if done for every sample.

There are two methods that can combat this problem. (Shalev-Shwartz et al., 2007) propose
to represent the weight vector θ by the product of one scaling factor and one vector. We
can see the reason by a simple rearrangement of the formula θ (t+1) = θ (t)−η(∇l +λθ (t)) =
(1−ηλ)θ (t)−η∇l. The first term can be done efficiently with a scalar product. (Bordes et al.,
2009) propose in SVMSGD2 another method in which the regularizer term is treated as a special
example and updated periodically. The method works on both first order and second order SGD.
We will use this method in our experiment if not particularly mentioned.

Initial learning rate for SGD: The initial learning rate of SGD plays a critical role in the whole
process of learning. It is chosen by heuristic method. We can sample a subset of the training
data, run SGD algorithm for one pass over the subset and pick the learning rate with smallest
training objective value as the initial guess of learning rate. This method is generally helpful for
all SGD variants. We use this setting for all variants of SGD.

1http://www.willamette.edu/˜gorr/classes/cs449/precond.html

1153

3.2 Datasets settings

We compare the performance on several sequence labeling tasks, namely Chinese word seg-
mentation, Chinese named entity recognition, CoNLL 2000 chunking, CoNLL 2003 NER, and
Chinese part-of-speech tagging. The datasets vary across tasks in label set size and feature
design. We inject as much knowledge as possible to mimic real application scenarios. For
under-resourced tasks, we simply use token based n-gram features. Table 2 gives a brief view
of features used. Table 4 shows the statistics after feature generation.

Tasks Type Features

Chinese
word seg-
mentation

basic character unigram w−2, w−1, w0, w1, w2, character bigram
w−2w−1, w−1w0, w0w1, w1w2, whether w j and w j+1 are identical
and whether w j and w j+2 are identical in windows of 2 characters on the
left and 2 characters on the right; unigram/bigram dictionary features as
described in (Sun et al., 2012)

extended accessor variety and mutual information (Sun and Xu, 2011)
Chinese
named
entity
recogni-
tion

basic character unigram and bigram in the context window of size 2; bi-
gram of previous character and next character; whether character is
word,letter,digit or punctuation in windows of size 1

extended basic features plus Tongyici Cilin (extended) derived word boundary and
semantic type, entity list derived from Baidu Baike, in windows of size 2;
whether the current character is a single character word or multiple char-
acter word through forward maximum matching and backward maximum
matching;

Chunking basic word unigram in windows of size 2, word bigram in windows of size 1;
part-of-speech unigram,bigram,trigram in windows of size 2;

English
named
entity
recogni-
tion

basic word unigram in windows of size 2, word bigram in windows of size 1;
part-of-speech unigram,bigram,trigram in windows of size 2; character
shape unigram and bigram in windows of size 2

extended basic features plus word cluster code prefix with length 4,10,16,20, both
unigram and bigram in windows of size 2; gazetteer list feature of the
current token;

Chinese
POS
tagging

basic word unigram and bigram in windows of size 2; current word prefix and
suffix of size up to 3, which is the baseline of (Sun and Uszkoreit, 2012).

Table 2: Features used for different tasks. For basic features, I refer to most simple token based
feature and word type (letter,digit,punctuation) within a window of certain size. Extended
features vary with available resources.

1. Chinese Word Segmentation (CWS) SigHan 2005 dataset is used for CWS 2.

2. Chinese Named Entity Recognition (NER) Named entity recognition requires large
amount of world knowledge. List lookup features from gazetteer, lexicon and dictionaries
can greatly enhance an NER system (Nadeau and Sekine, 2007). So for extended features,
we explore the use of Baidu Baike and Tongyici Cilin (Extended) 3 as two knowledge

2http://www.sighan.org/bakeoff2005/
3http://ir.hit.edu.cn/phpwebsite/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=162

1154

sources. Table 3 gives a brief view of Tongyici Cilin. The first column gives the category

Category Word Cluster

Af10B05# 省长(governor of province) 市长(mayor) 县长(county head) 区长 乡长 村长 . . .
Ae13A10# 教教教授授授(professor) 副教授(associate professor) 讲师(instructor) 助教(teaching assistant) . . .
Hg05A01= 讲课 授课 讲授 讲解 教教教授授授(teach) 教书 . . .
Dm01A46# 安全部(ministry of security) 财政部(ministry of finance) 参谋部 电力部 . . .

Table 3: A Snippet from Tongyici Cinlin (Extended)

one word belongs to. The category codes with prefix of different lengths give different
levels of abstraction of its semantic meaning. Some of the clusters are good indicators of
named entities. For instance, the first row is a good indicator of previous word being a
location, and the first and second row is a good indicator of next word being a person.
This categorized lexicon is quite similar to word cluster features in (Ratinov and Roth,
2009), but is more precise. However, to our certain knowledge, this resource remains
unexplored in previous Chinese NER tasks.

Words in Chinese do not have space like in English. In Chinese NER task, texts are given
without word boundaries, so segmentation is an essential preprocessing step. But this
will bring segmentation error to the system, especially most named entities are out-of-
vocabulary words. On the other hand, if we perform inference at character level directly,
we quickly loss the meaning of words . We propose two simple strategies to alleviate
these problems: first, while still performing inference at character level, we do forward
maximum matching and backward maximum matching to provide basic word boundary
features; second, word meaning is injected with the category of the matching word in
Tongyici Cilin. The class of a word also serves as a mechanism of word cluster, which
holds similar words together. Hence Tongyici Cilin serves as both word clusters and a
lexicon when performing maximum matching.

Finally, we use entity list extracted from Baidu Baike as additional entity list features. The
datasets we use are SigHan 08 Chinese NER dataset and one month of People Daily.

As our main concern is to build a resource rich feature design for Chinese named entity
recognition, we do not make further comparison with other algorithms. Other approaches
typically use complex model combinations, which are not directly comparable to our
single model based method.

3. CoNLL English NER and Chunking (Ratinov and Roth, 2009) perform an extensive
study on NER and extract valuable resources, which can be readily incorporated into
any existing NER system. We use the word class hierarchy and gazetteer lists from their
package4. We do not use other features for simplicity. Word class features are derived
from brown clustering algorithm and intended for bridging the gap of unseen text . The
brown algorithm hierarchically clusters the words, and paths with different lengths to the
root represent different levels of abstraction. Gazetteers are dictionaries of named entities
and injected to the system to provide world knowledge. We use these two features as
described in (Ratinov and Roth, 2009).

For English chunking task, we use the template provided with CRF++ 5, this template is

4http://l2r.cs.uiuc.edu/cogcomp/software.php
5http://crfpp.googlecode.com/svn/trunk/doc/index.html

1155

also used in the benchmark of CRFSGD 6.

4. Chinese part-of-speech(POS) tagging The setting follows the baseline of (Sun and
Uszkoreit, 2012). As we do not have access to the more complex features, we just use
this baseline, which performs reasonably good on a different datasets.

Dataset #tokens #unigram #bigram #labels cutoff max %freq

CWS MSR 4,050,469 1,852,255 1,852,255 3 1 0.0428
CWS CITYU 2,403,024 1,594,695 1,594,695 3 1 0.0456
CWS PKU 1,822,380 1,202,381 1,202,381 3 1 0.0407
CWS PKU(e) 1,826,448 365,254 1 4 5 0.9954
NER MSRA 1,089,050 332,989 1 10 3 0.8763
NER CITYU 1,772,202 505,185 1 10 3 0.9143
NER PD(e) 1,811,931 744,396 1 10 3 0.8782
CoNLL2000 211,727 76,328 1 23 3 0.1424
CoNLL2003(e) 203,621 860,462 1 17 1 0.8526
CoNLL2003ned 202,644 366,086 1 9 1 0.6847
POS PKU 1,116,754 2,252,374 1 103 1 0.0667
POS CITYU 1,092,687 2,257,166 1 44 1 0.0614

Table 4: Statistics on different datasets. The meanings of each field are as follows: number
of tokens, unigram features, bigram features and class labels; we use features with frequency
no less than cutoff; max%freq refers to maximum relative frequency (ref. Eq. 15), a larger
value means a more skewed feature frequency distribution.

3.3 Experiments

As for plain SGD, we replicate CRFSGD implementation for fair comparison. For all variants of
SGD, we use the regularizer proposed by (Bordes et al., 2009). All learning rates are searched
by subsampling, except for PA and DCA, which do not need to specify learning rates. For ADF,
we use the same setting as (Sun et al., 2012). We run SGD for 50 iterations and other online
methods for 30 iterations. This setting is suffice for most algorithms to reach a stable state.

Also note PA and DCA need to specify an aggressive parameter C , which controls how aggres-
sively the parameter perform updates. PA seems to be very sensitive to this parameter, and
the algorithm leads to bad results if C is not properly set. The algorithm converges fast with
a larger C , but may not provide good generalization performance. In our experiment, we set
C = 0.01 for PA, which is a trade-off between convergence speed and an accurate model. DCA
is not very sensitive to this parameter so we set C to 1.

For every task we also plot the final performance of CRF++ and Wapiti 7 at the beginning of
iterations. We do not plot the learning curves because they use different learning methods
(Wapiti does contain online learners but needs to switch to L-BFGS to fine tune the model
parameter, so we only report results of L-BFGS learner). For POS tagging we do not plot the
results of CRF++, because CRF++ will run for weeks. CRF++ uses L-BFGS for parameter
estimation, and we use default stop condition. Wapiti (Lavergne et al., 2010) uses elastic net
regularizer, and does feature selection automatically while training. The resulting model is

6http://leon.bottou.org/projects/sgd
7http://wapiti.limsi.fr/

1156

compact and small, and still retains performance comparable to L2-regularizer. We use the
default setting of regularizer weights and a stop condition that error rate of development set
does not further decrease in window of size 10.

For other variants of SGD, PSA (Hsu et al., 2009) and SMD (Vishwanathan et al., 2006) are
out of our consideration because they are typically more than 10 times slower than plain SGD
in execution time of one pass over the dataset, despite their theoretical appealing one pass over
the data. We tried averaged SGD (ASGD) (Xu, 2011) on two of our datasets, but it did not
perform so well even if we tried several switch time between SGD and ASGD.

For Chinese word segmentation, we evaluate F-score using the script for SigHan 2005 bakeoff.
For all NER and chunking tasks, we report phrase based F-score with the script provided by
CoNLL. For POS tagging, we report token based accuracy. Results are listed in Table 5.

Datasets CWS
MSR

CWS
CITYU

CWS
PKU

CWS
PKU(e)

NER
MSRA

NER
CITYU

NER
PD(e)

ChunkingCoNLL
2003
Eng(e)

CoNLL
2003
Ned

POS
PKU

POS
CITYU

PA 96.60 94.10 94.80 95.60 87.84 80.91 91.60 93.26 85.15 75.57 94.09 89.09
DCA 97.00 94.10 95.20 95.50 89.45 80.39 91.78 93.76 86.66 75.33 94.24 89.21
SGD 96.90 94.10 95.10 95.60 88.91 80.05 92.05 93.71 86.60 74.77 94.04 88.98
ADF 96.90 94.10 95.20 95.60 88.97 79.91 91.82 93.70 86.66 75.18 94.04 89.10
MADF 96.90 94.10 95.10 95.80 88.94 79.85 92.13 93.78 86.77 74.94 94.01 89.08
Wapiti 96.50 94.30 94.60 95.80 88.66 80.07 91.84 93.71 87.25 75.22 93.90 88.70
CRF++ 96.70 94.40 94.70 95.70 88.91 79.80 92.09 93.74 86.50 74.64 na na

Table 5: Results on all datasets. Note that PA and Wapiti have different model/regularizer from
other CRFs models, hence not directly comparable to other CRFs-based models. (e) means
extended feature set.

3.4 Discussion

Differences across datasets: For well resourced tasks, i.e. CWS pku(e), NER People Daily(e),
CoNLL 2003 English NER(e) (4,7,9 in figure 1), SGD and its variants give better performance
than PA and DCA, with faster convergence speed; while PA and DCA give very robust per-
formance on under-resourced tasks despite the presence of only simple token based features,
partly attribute to their weight averaging mechanism. Another observation is that small or
under-resourced datasets often make the learning curve of SGD and its variants fluctuate a lot.

For simple datasets with only token based features, e.g. 6,10,11,12, PA and DCA performs
relatively good or even better than other methods. PA is a margin based method and may
generalize well to unseen data under such circumstances. Moreover, PA and DCA all use weight
averaging for better generalization, which proves useful under simple feature set. In other cases,
DCA performs as good as other training methods and converges as fast as SGD, but are always
more stable. This may ease the selection of stopping criterion, as a non-stable learning curve
may stop accidentally at a bad point. (Lavergne et al., 2010) suggest it is good practice to use a
separate development set to determine a stop criterion, but this set is not always available. Note
also that the aggressiveness parameter C for PA is critical for a reasonably good performance,
as in chunking (8) and English NER (9) tasks, PA gets very poor results.

Effect of η0: As we observe in our experiments, the high convergence speed is largely deter-
mined by a good choice of initial learning rate. For plain SGD, high frequency features cause the
initial estimate of learning rate to decrease, resulting in a low convergence speed. In datasets

1157

0 5 10 15 20 25

iteration

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

F-
sc

o
re

CWS MSR (1)

PA

DCA

SGD

ADF

MADF

Wapiti

CRF++

0 5 10 15 20 25

iteration

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

F-
sc

o
re

CWS CITYU (2)

0 5 10 15 20 25

iteration

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

F-
sc

o
re

CWS PKU (3)

0 5 10 15 20 25

iteration

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

F-
sc

o
re

CWS PKU(e) (4)

PA

DCA

SGD

ADF

MADF

Wapiti

CRF++

0 5 10 15 20 25

iteration

65

70

75

80

85

90

F-
sc

o
re

NER MSRA (5)

0 5 10 15 20 25

iteration

68

70

72

74

76

78

80

82

F-
sc

o
re

NER CITYU (6)

0 5 10 15 20 25

iteration

80

82

84

86

88

90

92

94

F-
sc

o
re

NER People Daily(e) (7)

PA

DCA

SGD

ADF

MADF

Wapiti

CRF++

0 5 10 15 20 25

iteration

92.0

92.5

93.0

93.5

94.0

F-
sc

o
re

CoNLL 2000 Chunking (8)

0 5 10 15 20 25

iteration

82

83

84

85

86

87

88

F-
sc

o
re

CoNLL 2003 Eng(e) (9)

0 5 10 15 20 25

iteration

64

66

68

70

72

74

76

F-
sc

o
re

CoNLL 2003 Ned (10)

PA

DCA

SGD

ADF

MADF

Wapiti

CRF++

0 5 10 15 20 25

iteration

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

A
cc

u
ra

cy

POS tagging PKU (11)

0 5 10 15 20 25

iteration

85.5

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

A
cc

u
ra

cy

POS tagging CITYU (12)

Figure 1: F-score (for CWS, NER, chunking) or accuracy (for POS tagging) on various datasets.

1158

4,5,6,7,9,10, the initial estimations of η0 in MADF are several times larger than that in SGD,
which explains the convergence speed differences. (note the feature frequency in table 4 and
convergence speed difference of SGD and MADF in figure 1.) In datasets with feature frequency
not so skewed, SGD converges as fast as ADF and MADF.

ADF and MADF always converge faster than plain SGD and often achieve top performance
within 10 iterations. ADF is more stable than MADF because of its fast decay of learning rate.
But this effect comes at the price that ADF cannot reach top performance on some datasets. For
instance, in the CWS PKU (4), Chinese NER People Daily (7) and English NER tasks (9), ADF
reaches an F-score 0.1% to 0.3% lower than MADF; SGD can also performs better than ADF
on these datasets after 100 iterations which I do not plot. But this is not without exception, in
CoNLL 2003 Dutch NER task, where I use simple context token based features, ADF performs
better than other methods. This dataset is small compared with others. The result implies ADF
is more stable and suitable in most situations. MADF suffers from fluctuation on small datasets,
but is still more stable, better, and faster than SGD on most datasets.

Running time: All online algorithms are 5-30 times faster than CRF++ to achieve comparable
performance. ADF and MADF typically need a mere 10 iterations, and other online methods
need several dozens iterations to get competitive result. In terms of one pass time over the
dataset, PA clearly outperforms others because it does not have to compute normalization factor
and expensive log/exp operations; DCA is only a little slower than SGD; ADF and MADF run
as fast as SGD, while give more stable learning curve and faster convergence.

Batch vs. online: We plot the results of CRF++ and Wapiti, which can be seen as the near
optimal solution to the optimization problem, we can see online methods provide as good as
or even better performance than batch method. The elastic net regularizer of Wapiti is very
competitive compared with L2 regularizer. Except on CoNLL 2003 English NER data, in which
Wapiti exceeds L2 regularizer by a large margin, they gives similar results on all datasets.

Batch learning method (i.e. CRF++) rarely gives the best generalization performance. This
implies that expensive batch optimization methods are not necessary for large learning tasks.
Online methods will suffice. One exception is CITYU CWS task, in which CRF++ performs
better than all online methods. We find the problem is how a feature fires when it is false. Both
CRF++ and Wapiti treat it as a feature “F” and we omit it when we fire this feature. After
adding this the F-score on testset goes up from 94.1% to 94.4% for SGD and MADF, 95.5% for
ADF, comparable to CRF++. However, on a different dataset CWS PKU, adding this “F” feature
decreases F-score by 0.1%, still higher than CRF++ by 0.3%.

Summary: PA is competitive with properly chosen aggressiveness parameter on under-resourced
tasks. DCA converges as fast as SGD and is more stable, and is often as good as or even better
than SGD variants. ADF and MADF are consistently faster than plain SGD and often reach
reasonably good performance after a mere 10 passes over the datasets. ADF sometimes gets
suboptimal results and losses the opportunity to further refine the parameters because of a too
fast decay of learning rate; while MADF has convergence guarantee but may have a little more
fluctuation in small datasets. Finally, online methods are generally several dozens times faster
and get better performance than batch method.

4 Related Work

In many NLP related tasks, the data distribution is skewed, and generally only a small number of
features are fired in each example, resulting in a sparse distribution. Skewed feature frequency

1159

can affect speed of SGD algorithms, resulting in a conservative small initial guess of learning
rate, which slows down the convergence speed. (Sun et al., 2012) utilize feature frequency
information to speed up training of CRF model. It is simple and fast compared with other
Hessian approximation methods. The sparse distribution can greatly accelerate training speed
of models through clever regularization as described in (Vishwanathan et al., 2006) (Bordes
et al., 2009), or through sparse forward-backward decoding (Lavergne et al., 2010).

Stochastic gradient descent (SGD) is well known for its performance on machine learning tasks
(Bottou and Bousquet, 2008). Its recent successes in learning CRFs (Vishwanathan et al., 2006)
and SVM (Shalev-Shwartz et al., 2007) show its advantage over batch learning algorithms in
both convergence speed and generalization performance. It is particularly suitable in a large
scale setting, and may achieve top performance even before seeing the whole dataset.

Various methods based on SGD have been proposed to accelerate training of CRFs. Several
variants of SGD aim at theoretically one pass over the training data to get optimal performance
(Hsu et al., 2009). The core idea of these methods is approximating the inverse of Hessian
in order to accelerate training (and is why they are called second order SGD). However, the
approximation is expensive and much slower than a plain SGD in terms of per iteration running
time. (Xu, 2011) proposes averaged SGD (ASGD) that is as fast as SGD and converges within
several iterations. However, in several datasets we tested, the testset performance is below
standard SGD even after we tried several switch time of SGD and ASGD.

Besides the regularizer mentioned above, group Lasso has recently been proposed to regularize
a structured classifier (Martins et al., 2011). The author encodes prior structural knowledge of
the feature space by grouping different features into M groups and using separate regularizer
weight for each group. The resulting model is compact and avoids the problem of overfitting
with large number of free parameters.

Conclusion

We investigate several online learning algorithms for sequence labeling and empirically show
how each algorithm performs on datasets with distinct feature design and label set. This
will ease the selection of algorithms in similar tasks in future. Our experiments show that
most online algorithms outperform batch method (CRF++) at both speed and generalization
performance. We can gain further speedup by adopting simple strategy as ADF and MADF do.

We propose our own algorithm inspired by ADF, which is a variant of SGD. We confirm the
effectiveness of ADF on several datasets. While ADF works in most situations, sometimes it leads
to suboptimal solutions. Our algorithm performs consistently better than SGD, and converges
as fast as ADF. These simple frequency adaptive methods can greatly accelerate training speed
under skewed feature frequency distribution. As many NLP tasks involve the cycle of training
the model and refining features then retraining the model, fast training methods are particularly
useful, especially on large dataset with a large label set. It is also interesting to see how these
two simple frequency adaptive approaches help in other structured learning problems in future.

Acknowledgments

This work was partially supported by National High Technology Research and Development Program of
China (863 Program) (No. 2012AA011101), National Natural Science Foundation of China (No.91024009,
No.60973053), and the Specialized Research Fund for the Doctoral Program of Higher Education of China
(Grant No. 20090001110047)

1160

References

Bordes, A., Bottou, L., and Gallinari, P. (2009). Sgd-qn: Careful quasi-newton stochastic
gradient descent. The Journal of Machine Learning Research, 10:1737–1754.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. Advances in neural
information processing systems, 20:161–168.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, pages 1–8. Association for Computational Linguistics.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online passive-
aggressive algorithms. The Journal of Machine Learning Research, 7:551–585.

Hsu, C., Huang, H., Chang, Y., and Lee, Y. (2009). Periodic step-size adaptation in second-order
gradient descent for single-pass on-line structured learning. Machine learning, 77(2):195–224.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

Lavergne, T., Cappé, O., and Yvon, F. (2010). Practical very large scale crfs. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pages 504–513,
Uppsala, Sweden. Association for Computational Linguistics.

LeCun, Y., Bottou, L., Orr, G., and Müller, K. (1998). Efficient backprop. Neural networks:
Tricks of the trade, pages 546–546.

Malouf, R. et al. (2002). A comparison of algorithms for maximum entropy parameter
estimation. In Proceedings of the sixth conference on natural language learning (CoNLL-2002),
pages 49–55.

Martins, A., Gimpel, K., Smith, N., Xing, E., Figueiredo, M., and Aguiar, P. (2010). Learning
structured classifiers with dual coordinate ascent. Technical report, DTIC Document.

Martins, A., Smith, N., Figueiredo, M., and Aguiar, P. (2011). Structured sparsity in structured
prediction. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 1500–1511, Edinburgh, Scotland, UK. Association for Computational Lin-
guistics.

Mohit, B., Schneider, N., Bhowmick, R., Oflazer, K., and Smith, N. A. (2012). Recall-oriented
learning of named entities in arabic wikipedia. In Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics, pages 162–173, Avignon,
France. Association for Computational Linguistics.

Murata, N. (1998). A statistical study of on-line learning. Online Learning and Neural Networks.
Cambridge University Press, Cambridge, UK.

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

1161

Poon, H. and Vanderwende, L. (2010). Joint inference for knowledge extraction from biomed-
ical literature. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 813–821, Los Angeles,
California. Association for Computational Linguistics.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286.

Ratinov, L. and Roth, D. (2009). Design challenges and misconceptions in named entity
recognition. In Proceedings of the Thirteenth Conference on Computational Natural Language
Learning (CoNLL-2009), pages 147–155, Boulder, Colorado. Association for Computational
Linguistics.

Sha, F. and Pereira, F. (2003). Shallow parsing with conditional random fields. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 134–141.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal estimated sub-gradient
solver for svm. In Proceedings of the 24th international conference on Machine learning, pages
807–814. ACM.

Smith, N. (2011). Linguistic structure prediction. Synthesis Lectures on Human Language
Technologies, 4(2):1–274.

Song, H.-J., Son, J.-W., Noh, T.-G., Park, S.-B., and Lee, S.-J. (2012). A cost sensitive part-of-
speech tagging: Differentiating serious errors from minor errors. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1025–1034, Jeju Island, Korea. Association for Computational Linguistics.

Sun, W. and Uszkoreit, H. (2012). Capturing paradigmatic and syntagmatic lexical relations:
Towards accurate chinese part-of-speech tagging. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Jeju Island, Korea.

Sun, W. and Xu, J. (2011). Enhancing chinese word segmentation using unlabeled data. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages
970–979, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Sun, X., Wang, H., and Li, W. (2012). Fast online training with frequency-adaptive learning
rates for chinese word segmentation and new word detection. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
253–262, Jeju Island, Korea. Association for Computational Linguistics.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2006). Large margin methods
for structured and interdependent output variables. Journal of Machine Learning Research,
6(2):1453.

Vishwanathan, S., Schraudolph, N., Schmidt, M., and Murphy, K. (2006). Accelerated training
of conditional random fields with stochastic gradient methods. In Proceedings of the 23rd
international conference on Machine learning, pages 969–976. ACM.

Xu, W. (2011). Towards optimal one pass large scale learning with averaged stochastic gradient
descent. Arxiv preprint arXiv:1107.2490.

1162

