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ABSTRACT
This paper presents a novel method of improving Combinatory Categorial Grammar (CCG)
parsing using features generated from Dependency Grammar (DG) parses and combined
using reranking. Different grammar formalisms have different strengths and different parsing
models have consequently divergent views of the data. More specifically, dependency parsers
are sensitive to linguistic generalisations that differ from the generalisations that the CCG

parser is sensitive to, and which the reranker exploits to identify the parse most likely to
be correct. We propose DG-derived reranking features, which are obtained by comparing
dependencies from the CCG parser with DG dependencies, and demonstrate how they improve
the performance of a CCG parser and reranker in a variety of settings. We record a final labeled
F-score of 87.93% on section 23 of CCGbank, 0.5% and 0.35% improvements over the base
parser (87.43%) and reranker (87.58%), respectively.

KEYWORDS: Combinatory Categorial Grammar (CCG), Dependency Grammar (DG), Rerank-
ing, Dependency Grammar-derived features, parsing, syntax.
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1 Introduction

Reranking is the process of rescoring an n-best list with an external model, and it is an effective
method for improving performance in NLP tasks. In parsing, rerankers are able to incorporate
arbitrary global features from the entire parse tree that would be intractable in a base parser.
More informative features can be considered in reranking as the entire parse tree is available,
as opposed to the fragments considered in parsing.

In this paper, we propose a simple method for improving the performance of the C&C Combi-
natory Categorial Grammar (CCG) parser (Clark and Curran, 2007). We parse sentences using
the C&C n-best parser and a 1-best dependency grammar (DG) parser, and generate DG-derived
features by comparing the extracted dependencies from the C&C parser with the DG dependen-
cies. We then incorporate the DG-derived features into the CCG reranker of Ng et al. (2010)
to reorder the n-best CCG parses using the external parse information. We experiment with
both the Maltparser (Nivre et al., 2007b) and the MSTparser (McDonald et al., 2005) as the
DG parser. This is the first cross-formalism parser combination experiment for CCG parsing that
we are aware of, combining the features and strengths of two different formalisms together.

Previous work has shown that dependency parsers such as the Maltparser perform better on
short-range dependencies (McDonald and Nivre, 2007), whereas the C&C parser deals with
long-range dependencies more reliably (Clark et al., 2002; Rimell et al., 2009). Short-range
dependency information has also been shown to improve parser accuracy (Chen et al., 2009).
We show how our new DG-derived features substantially improve parser performance by 0.35%
to 87.93%, and improve the accuracy of the C&C parser on both short and long-range depen-
dencies. These results demonstrate how rerankers can successfully combine diverse features
from different formalisms for better parsing accuracy.

2 Background

2.1 Reranking and Cross-formalism Parser Combination

Collins (2000) describes reranking for the Collins (Model 2) parser and defined the general
approach that has been used for the task since. Reranker training data is produced by parsing
36,000 sentences from sections 02-21 of the Penn Treebank WSJ data (Marcus et al., 1993)
using an n-best version of the base parser. The parser model used for this process is trained
using cross-validation to ensure that overly optimistic parses are not produced. Global fea-
tures calculated over the whole tree such as context-free rules, n-gram ancestors, parent and
grandparent relationships, and lexical heads and the distances between them are extracted
from the parses and fed into a boosting-based reranker. Collins reports a final PARSEVAL F-score
of 89.75%, a 1.55% improvement compared to the baseline parser.

The oracle F-score (given a perfect reranker that always chooses the best n-best parse for a
sentence) is used to measure the quality of n-best parses. Huang and Chiang (2005) describe
efficient n-best parsing algorithms that have become widely used in the field, including in the
Charniak and Johnson (2005) reranker. This system uses a similar setup to the Collins reranker,
but adopts a maximum-entropy model along with additional features, including features for
subject-verb agreement, n-gram local trees, and right-branching factors. In 50-best mode the
parser has an oracle F-score of 96.80%, and the reranker produces a final F-score of 91.40%
compared to an 89.70% baseline.

Farkas et al. (2011) rerank BitPar, an unlexicalised generative PCFG parser for German (Schmid,
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The secret report that Abbott alluded to leaked

NP/N N/N N (NP\NP)/(S[dcl]/NP) NP (S[dcl]\NP)/PP PP/NP S[dcl]\NP
> >T >B

N S/(S[dcl]\N P) (S[dcl]\N P)/N P
> >B

N P S[dcl]/N P
>

N P\N P
<

N P
<

S[dcl]

Figure 1: An example CCG derivation using application, composition, type-raising, and unary
rules. A long-range dependency is created between report and to, mediated by that.

2004) using dependency grammar features and forest-based rerankers. Bohnet (2010), which
is a second order dependency parser, was used to generate parses for feature extraction. Their
experimental results show a 0.8% F-score improvement. However, their work was only con-
cerned with extracting additional features from the dependency parses, and does not generate
features based on a comparison between the extracted dependency parses and the constituency
parses that are being reranked.

Øvrelid et al. (2009) describe a two-stage system where the output of an LFG parser is used
to provide features for the Maltparser in English and German. They observe a 0.15% im-
provement in Maltparser unlabeled attachment scores for English, and 1.81% improvement
in German. This work exploits analyses from different formalisms, but it completely retrains
the Maltparser with additional features based on a conversion of the LFG analyses to a de-
pendency representation. It also targets improved dependency parsing rather than improved
grammar-driven parsing. Sagae et al. (2007) used the output of dependency parser to disam-
biguate Head-driven Phrase Structure Grammar (HPSG) parses. This work used a single penalty
parameter for each mismatch between the DG and HPSG parses that was set via a parameter
sweep on held-out data.

2.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG; Steedman, 2000) is a lexicalised grammar formalism
based on combinatory logic. Lexical categories govern the syntactic behaviour of each word,
and generic combinatory rules combine categories together to form an analysis of a sentence.

Atomic categories such as noun phrases (NP) and sentences (S) represent syntactically com-
plete constituents. Complex categories are binary functors of the form A/B or A\B, and subcat-
egorize for an argument category B to the right or left respectively to form an A. For example,
transitive verbs ((S\NP)/NP) subcategorize for an object NP to the right to form a verb phrase
S\NP, which in turn expects a subject NP to the left to form a sentence S.

The simplest combinatory rules are forward and backward application, where complex cate-
gories acquire their outermost argument and return their result. Additional combinators are
based on composition and unary category type-changing, increasing the generative power of
the formalism and enabling the analysis of phenomena such as wh-movement and right-node
raising. Figure 1 gives an example CCG derivation using these combinators.

We will use the CCG dependency representation of CCGbank (Hockenmaier and Steedman,
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2007) in this work. Each dependency expresses a word-word relationship between a head
and a dependent, generated when the assigned categories are combined. Additionally, CCG

allows for the production of long-range dependencies mediated by intermediate words in the
sentence. This allows a clear representation of function and trace information that would
require co-indexation in phrase-structure parses. These dependencies have the following form:
〈to, PP/NP1, 1, report, (NP\NP)/(S[dcl]/NP)〉, which includes the head word, its category, the
argument slot, argument word, and the mediating category for long-range dependencies.

2.3 CCG parsing

The C&C parser is a fast and accurate wide-coverage CCG parser. It is a two-stage system, where
a supertagger assigns probable categories to words in a sentence and the parser combines them
using the CKY algorithm. The parser has been found to be particularly accurate at recovering
long-range dependencies (Clark et al., 2002; Rimell et al., 2009).

C&C is trained on CCGbank, a conversion of the Penn Treebank WSJ data to CCG derivations and
dependencies (Hockenmaier and Steedman, 2007). We use the normal-form model described
in Clark and Curran (2007), which models the probability of derivations. We also follow the
convention of using section 00 of CCGbank as development data, sections 02-21 as training
data, and section 23 for final testing. The standard evaluation metric is labeled dependency
recovery, as described by Clark and Hockenmaier (2002).

Clark and Curran (2007) develop a conversion from CCG dependencies to Briscoe and Carroll-
style grammatical relations (GRs) (King et al., 2003; Briscoe and Carroll, 2006). GRs provide a
useful abstraction as they allow the conflation of many CCG dependencies that are semantically
similar but structurally different. For example, since subcategorization information is fully
specified in categories, the verb-subject relationship is expressed in many different forms in
CCG depending on the transitivity of the verb. In the GR scheme, they map to a general ncsubj
dependency, echoing the underlying similarity between the CCG dependencies.

Rimell and Clark (2009) adapt the C&C parsing for the biomedical domain, and in the process
they developed a mapping from CCG dependencies to Stanford dependencies based on the GR

conversion. We generate DG-derived features based on this Stanford dependency output of the
C&C parser to maximise the potential overlaps between the representations; this differs from
the existing C&C reranking features, which use the CCG dependency format (Ng et al., 2010).

Figure 2 shows the CCG derivation and corresponding Stanford dependencies for the example
sentence, We are about to see if advertising works, taken from WSJ section 22.

2.4 Dependency parsing

Dependency Grammars (DG) describe the syntactic structure of a sentence in terms of head-
dependent relations between words. The set of dependency relations for a sentence forms a
dependency tree with a special root head word. Unlike CCG, DG directly model relationships
between pairs of words, and do not easily account for mediated long-range dependencies.
CCG categories encoded detailed subcategorization information that is not present in DG labels,
and the restrictions in combinator application constrain the way CCG derivations can be built,
whereas dependency arcs may appear between any pair of words under a DG. Thus, we expect
that CCG and DG analyses will provide markedly different insights, despite both producing
dependency-style output.
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nsubj/xsubj aux root aux xcomp advmod nsubj advcl
We are about to see if advertising works

NP (S[dcl]\NP)/(S[ng]\NP) (S[ng]\NP)/(S[to]\NP) (S[to]\NP)/(S[b]\NP) (S[b]\NP)/S[qem] S[qem]/S[dcl] NP S[dcl]\NP
<

S[dcl]
>

S[qem]
>

S[b]\NP
>

S[to]\NP
>

S[ng]\NP
>

S[dcl]\NP
<

S[dcl]

Figure 2: A CCG derivation and the Stanford dependencies produced by applying the Rimell
and Clark (2009) conversion on the parse.

2.5 DG Representation Schemes

We experimented with four different dependency schemes; for each scheme, we retrained the
Maltparser and the MSTparser over the extracted dependencies from the Penn Treebank WSJ

data. 20-fold cross-validation was used to generate the parses corresponding to the reranker
training data (sections 02-21); sections 02-21 was used to create a model for use at test time.

CoNLL: The CoNLL DG was used in the CoNLL 2007 dependency parsing shared task (Nivre
et al., 2007a). Penn2Malt, a publicly available conversion utility1, was used to generate CoNLL
dependencies for our experiments. In contrast to other grammars used in this paper, this
dependency scheme contains only unlabeled word-word arcs.

Stanford: de Marneffe and Manning (2008) introduced the dependency scheme used in the
Stanford parser2. We used the Stanford parser’s built-in converter to transform Penn Treebank
trees into dependencies. The Stanford scheme has different variants; for this work we use the
basic projective tree schema.

LTH: The LTH dependency scheme was developed with the aim of making better use of the
linguistic information present in the Penn Treebank from version II onwards (Johansson and
Nugues, 2007). We generated these dependencies using the LTH converter3 over the NP-
bracketed version of the Penn Treebank described by Vadas and Curran (2007). The converter
was configured to produce a functional rather than lexical DG.

Fanse: Another conversion of the Penn Treebank with more fine-grained labels was presented
in Tratz and Hovy (2011). The Fanse scheme is linguistically rich, featuring both non-projective
dependencies and shallow semantic interpretation in its analyses. We used the freely available
converter4, which also requires the Vadas and Curran (2007) NP-bracketed Penn Treebank.

Figures 3 and 4 demonstrate some of the differences between the four dependency schemes.
For instance, auxiliaries take the lexical verb as a dependent in all schemes except for Stanford,

1http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
2http://nlp.stanford.edu/software/lex-parser.shtml
3http://nlp.cs.lth.se/software/treebank_converter/
4http://www.isi.edu/publications/licensed-sw/fanseparser/
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Auxiliaries Aux Verb
CoNLL, LTH, Fanse

Aux Verb
Stanford

Relative clauses Rel Verb
CoNLL, LTH

Rel Verb
Stanford, Fanse

Subordinate clauses CompVerb
CoNLL, LTH

CompVerb
Stanford, Fanse

Coordination a Conj b
CoNLL

a Conj b
Stanford

a Conj b
LTH

a Conj b
Fanse

Figure 3: Analyses of auxiliaries, relative/subordinate clauses and coordination in the DG

schemes.

where the lexical verb is the head of a VP. The characteristics of each scheme mean that each
one produces an analysis that is quite different to the others as well as to CCG; by investigating
a variety of schemes we hope to identify characteristics which are useful in our cross-formalism
experiment.

CCG The Ways and Means Committee will

CoNLL The Ways and Means Committee will

Stanford The Ways and Means Committee will

LTH The Ways and Means Committee will

Fanse The Ways and Means Committee will

Figure 4: Example of divergence on the interpretation of the coordination by each scheme.

2.6 Maltparser and MSTparser

DG schemes Maltparser MSTparser
CoNLL 90.46 88.77
Stanford 89.82 87.27
LTH 84.54 86.67
Fanse 89.96 89.61

Table 1: Unlabeled Attachment Scores for each scheme over WSJ section 22.
In this work we use the Maltparser, a transition-based dependency parser (Nivre et al., 2007b),
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and the MSTparser, a graph-based dependency parser (McDonald et al., 2005). The Maltparser
uses an incremental shift-reduce algorithm, with actions guided by a classifier trained over
parse history information. In contrast, the MSTparser builds a weighted graph for sentences,
and finds the parse corresponding to the maximum spanning tree of the graph.

Table 1 shows the Unlabeled Attachment Scores (UASs) over WSJ section 22 for the Maltparser
and the MSTparser with respect to four DG schemes5. The Maltparser has the highest UAS
(90.46%) with the CoNLL DG, while the MSTparser performs best (89.61%) using the Fanse
DG. Both parsers perform the worst with the LTH DG and by a substantial margin: 6% F-score
for the Maltparser and 3% for the MSTparser compared with the best result. These results
lead us to expect that features generated from Maltparser output will perform better than
those from the MSTparser, LTH scheme notwithstanding.

3 CCG reranking

We follow the CCG reranker implementation described in Ng et al. (2010) and use the n-best
C&C parser described in Brennan (2008); Ng and Curran (2012). This reranker is inspired by
Charniak and Johnson (2005), with many new features designed to address specifics of the
CCG formalism and evaluation process. For each n-best parse, the reranker uses a regression
model to predict its expected F-score, and chooses the model with the highest predicted score.
The log score and rank assigned to each derivation by the parser were encoded as core features
in the reranker, and here we briefly summarise the other feature groups:

Tree Topology features describe the overall shape of the parse tree, to capture the fact that
English generally favours right-branching parse trees, with heavy constituents generally occur-
ring in the sentence-final position.

Local Context features represent fragments of the tree as well as layers of vertical and hori-
zontal context that are difficult to encode in the parser model.

Argument-Adjunct features represent different attachment points for arguments and adjuncts
and their wider context. Incorrect argument-adjunct distinctions can cause multiple CCG de-
pendency errors due to the subcategorization information encoded in CCG categories.

Grammar-based features encode combinator sequences or combinations that may indicate an
overly complicated or undesirable derivation. Additionally, these features encode the actual
dependencies as these are the target of the evaluation.

C&C features from the parser are also incorporated as described in Clark and Curran (2007).
These features encode combinations of word-category, word-POS, root-word, CCG rule, dis-
tance, and dependency information.

4 DG-derived Features

This section describes the DG-derived features. For convenience, we refer to the converted
Stanford dependency output of an n-best CCG parse as the CCG Dependency Parse (CDP), as
opposed to the Malt/MST Dependency Parse (MDP).

Our DG features are designed to capture the desirable and undesirable characteristics of the CDP

and MDP, as well as the ways in which dependencies match and mismatch between the two.
The dependencies from each n-best CDP are compared pairwise with the dependencies from the

520-fold cross-validation on sections 02-21 is used to create reranker training data.
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1-best MDP for the corresponding sentence. Matching dependencies are those where the head
and dependent are the same in the CDP and MDP. These dependencies also have a directionality
component: whether the match occurs in the same direction (head and dependent are the same
in CDP and MDP), or in the reverse direction (head and dependent are in opposition in the CDP

and MDP). Mismatching dependencies are classified as being a head-dependent pair existing
only in the CDP, or only in the MDP.

Our intuition is that the reranker should learn to prefer or disprefer particular properties of
matching and mismatching dependencies. For example, it may learn that a particular CCG de-
pendency is usually expressed in the same or opposite direction in the dependency parse. It
may learn that a particular dependency is always expected to be mismatching, or that particu-
lar heads tend to take the same pairs of dependents in both parses.

h d

Pair

h-1 h+1 d
Neighbour

gh h d
Grandparent

l

h d

Label

h d
Directionality

h d1 d2
Sibling

h d-1 d+1
Neighbour

ggh gh h d
Grandparent

n

h d
Length

h d
Directionality

Figure 5: Dependency representations for each feature group. The letters ggh, gh, h, d refer
to great grandparent head, grandparent head, head and dependent respectively.

For each matching dependency, binary indicator features were generated based on our feature
templates (depicted in Figure 5). These features represent fragments of one or more depen-
dency arcs that the reranker learns to favour or disprefer. Each feature includes components
specified by the template, a directionality marker, and all four combinations of the word and
POS tag for the head and dependent. Some of our templates also generate additional features
for each mismatching dependency, conjoined with a label indicating whether the dependency
existed only in the CDP or the MDP.

This approach differs from that of Sagae et al. (2007) since our reranker learns a separate
penalty parameter for each combination of DG and CCG constructions as a feature of our reg-
ularised MaxEnt reranker model; these weights are learnt as part of the reranker training
procedure. This enables our reranker to learn which DG constructions are most reliable and
informative for CCG parsing, and which DG constructions should be ignored.

Following are descriptions of our DG-derived feature templates, which correspond to various
dependency relations shown in Figure 5:

Pair-dependency features encode the head-dependent pair and a flag indicating a matching
or mismatching dependency.

Sibling-dependency features encode matching sets of heads and pairs of dependents between
the CDP and MDP. Multiple features are generated for each additional pair of matching depen-
dents per head.

Neighbour-dependency features encode the linear context of heads and dependents in a
sentence. For each matching dependency, the head is encoded with the word and POS tag in
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turn of words immediately to the left and right of its dependent. This procedure is repeated
for the dependent with the neighbours of its head.

Grandparent-dependency features encode matching relationships of a great-grandparent
head, grandparent head, head, and dependent between the CDP and MDP.

We also developed features that included further arc-level information from the dependency
parses. These included:

Label-dependency features mimic the pair dependency features, but also include the label
assigned by the dependency parser to the arc. This feature was not used for the CoNLL scheme
(as this scheme does not include labels), but was active for each of the others.

Length-dependency features encode matching dependencies conjoined with the bucketed
length of the dependency with respect to intervening tokens between head and dependent.
The bucket intervals were set at 1, 2, 5, and 8 based on an analysis of typical lengths.

Directionality-dependency features consider, given a matching dependency, the additional
matching dependencies that the head or dependent are part of. We term the dependencies in
this set that are headed by the head or dependent as out arcs, and all others as in arcs. This
feature template encodes the number of out arcs for each matching dependency, as well as a
real value feature encoding the ratio of out arcs to in arcs.

match mismatch

We
PRP

are
VBP

about
VBG

to
TO

see
VB

if
IN

advertising
NN

works
VBZ

We
PRP

are
VBP

about
VBG

to
TO

see
VB

if
IN

advertising
NN

works
VBZ

Match: (about, see) (see, to) (works, advertising)
MismatchCDP: (about, are) (about, We) (see, We) (see, works) (works, if)
MismatchMDP: (are, We) (are, about) (see, if) (if, works)

Figure 6: Matching and mismatching pair dependencies between a CCG parse (top) and CoNLL
parse (bottom) for the sentence We are about to see if advertising works.

Figure 6 illustrates matching and mismatching pair dependencies for the sentence shown in
Figure 2, with dependencies involving punctuation ignored. There are three matching depen-
dencies, five mismatching dependencies from to the CCG parse, and four mismatching depen-
dencies from the DG parse. Table 2 lists examples of the pair-dependency features generated
from these parses.

5 Results

We ran two classes of reranker experiments for each dependency scheme: one using gold-
standard DG dependencies that were directly converted from the treebank data, and one using
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Dependency Features
(about, see) match:about:see, match:about:VB, match:VBG:see,

match:VBG:VB

(see, We) nomatch-ccg:see:We, nomatch-ccg:VB:We,

nomatch-ccg:see:PRP, nomatch-ccg:VB:PRP

(see, if) nomatch-malt:see:if, nomatch-malt:VB:if,

nomatch-malt:see:IN, nomatch-malt:VB:IN

Table 2: The generation process for pair-dependency features. Each feature template follows
a similar pattern.

parser-predicted DG dependencies. The gold experiment allowed us to investigate the upper
performance bound of our reranking technique and of our DG-derived features. We evaluate
using the standard CCG dependency recovery metric over section 00 of CCGbank.

We use the reranker settings that Ng et al. (2010) found to provide best performance: regres-
sion learning, 10-best mode, and no feature pruning. We use the same experimental settings
reported in Nivre et al. (2010) and McDonald et al. (2005) for the Maltparser and MSTparser
respectively. This means that both parsers will produce a projective dependency tree for each
scheme that we experimented with.

5.1 Overall Comparison

section 00 (dev) LP LR LF

Baselines
C&C normal ’07 87.27 86.41 86.84
Reranker ’10 87.57 86.69 87.13

Gold

CoNLL features 89.17 88.21 88.69
Stanford features 88.97 88.06 88.51
LTH features 88.95 88.01 88.48
Fanse features 89.61 88.72 89.16

Malt
Predicted

CoNLL features 87.74 86.85 87.29
Stanford features 87.80 86.90 87.35
LTH features 87.43 86.50 86.96
Fanse features 87.82 86.93 87.37

MST
Predicted

CoNLL features 87.65 86.77 87.21
Stanford features 87.60 86.71 87.15
LTH features 87.58 86.69 87.14
Fanse features 87.61 86.72 87.17

Table 3: Parsing performance for the four DG schemes in gold and predicted configurations
over section 00 of CCGbank

Table 3 records the labeled precision (LP), recall (LR) and F-score (LF) per system over section
00 of CCGbank. We compare our results to that of the C&C’07 baseline and the Reranker ’10
baseline of Ng et al. (2010); the latter uses only the features defined in Ng et al. (2010),
whereas our work includes the DG-derived features previous described. Each dependency
scheme was tested in turn with the same feature set.

The gold results show that performance improvements of over 2% F-score are possible with
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perfect DG-derived features. Each of the DG schemes performs similarly, with the exception
of the Fanse scheme, which provides roughly 0.5% higher F-score than the others. The Fanse
scheme is generated with the NP-bracketed version of the Penn Treebank, and also incorporates
deeper linguistic analysis than the other schemes. However, it is interesting that the LTH
dependencies generated from the same enriched corpus have the lowest upper bound.

The Maltparser-predicted results show that, with the exception of the LTH DG, the DG-derived
features perform roughly on par with each other and generally better than the Reranker ’10.
However, the LTH features perform substantially worse than the others and also worse than
Reranker ’10; this corresponds with the Maltparser performing worst with respect to unlabeled
attachment on that scheme. In contrast, the MSTparser feature results are each indistinguish-
able from one another, despite the very different performance of the baseline with respect to
each scheme. The MSTparser results are also indistinguishable from the Reranker ’10 system;
this shows that the MSTparser does not produce enough useful variations compared with CCG

for our procedure to work.

5.2 Isolation experiments
We took our best performing systems, which used the Fanse and CoNLL-based features for
the Maltparser and MSTparser respectively, and investigated the individual impact of the DG-
derived features. We did this by running the reranker with DG-derived features only over
section 00 of CCGbank, and comparing our results with those of Reranker ’10 (CCG features
only) and the full system. Table 4 summarises the results; DG denotes our new features, and
CCG denotes the CCG features.

section 00 (dev) LP LR LF
Reranker ’10 CCG 87.57 86.69 87.13

Gold
Fanse DG 89.43 88.44 88.93
CCG +Fanse DG 89.61 88.72 89.16

Malt
Predicted

Fanse DG 86.79 85.79 86.29
CCG +Fanse DG 87.82 86.93 87.37

MST
Predicted

CoNLL DG 85.94 84.80 85.36
CCG +CoNLL DG 87.65 86.77 87.21

Table 4: A comparison of DG-derived features in isolation and in combination with CCG reranker
features over section 00 of CCGbank.

The gold results show that the DG-derived features perform strongly in isolation and outper-
form Reranker ’10. However, performance is much worse using automatic DG parses compared
to Reranker ’10; F-score drops from 88.93% to 86.29% for the Maltparser-predicted experi-
ment, and to 85.35% for MSTparser-predicted. These experiments are simply the result of
removing the CCG features from the best performing system, and show that automatically pro-
duced DG features in isolation are harmful for reranking. However, the abstraction provided by
automatic DG features prove useful in combination with CCG features and lead to a performance
improvement.

5.3 Dependency lengths
Figure 7-(a) plots the labeled F-scores with respect to dependency length (number of words
between the head and dependent) on section 00 for the best Fanse and CoNLL features. Our
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Figure 7: Labeled F-score performance by bucketed dependency lengths for the Maltparser-
predicted Fanse and MSTparser-predicted CoNLL experiments. Test conducted over CCGbank
section 00.

new DG-derived features improve the Fanse performance across all dependency lengths com-
pared to the C&C baseline and Reranker ’10. In particular, we have improvements of 2.86%
and 1.67% over the C&C baseline and Reranker ’10 respectively when the dependency length is
between 21 and 25, though the number of these dependencies is relatively small. In contrast,
the MSTparser-predicted CoNLL features perform worse than the Reranker ’10 as the depen-
dency length grows though even though the CoNLL features perform better than the C&C’07
baseline for all dependency lengths.

We repeated the dependency length analysis with DG-derived features in isolation, as per the
previous section. As can be seen from Figure 7-(b), Fanse DG-derived features in isolation per-
form poorly, while combining CCG and DG features gives an overall performance improvement
over CCG features alone for all dependency lengths. Our CCG +Fanse DG reranker performs well
for dependency lengths 21-25, with an F-score difference of 1.67% compared to Reranker ’10.
However, the F-score of CCG +CoNLL DG starts falling below the performance of CCG features
beyond the dependency length 10.

These results all show a similar pattern, where F-score is very high for short dependencies,
drops sharply up to length 6-10 words, and levels out for longer lengths. Interestingly, we
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notice that the performance using only Fanse DG-derived features slightly increases as the
dependency length grows beyond 15. For dependencies of length 25 and longer, the Fanse fea-
tures in isolation actually outperform CCG features in isolation. Additionally, the performance
improvement for the CCG +Fanse features over Reranker ’10 is more substantial at longer
dependency lengths – contrary to our initial expectations given the relative strengths of the
parsers we used. One possible reason may be due to the generation of the Fanse scheme over
the NP-enriched Penn Treebank. In contrast, the C&C parser was trained over a non-enriched
version of CCGbank where all the noun phrases are right-branching. More errors may have
crept into the noun phrase results as they typically contain short dependencies.

5.4 Subtractive feature analysis

section 00 (dev) LP LR LF

Gold

CCG +Fanse DG 89.61 88.72 89.16
-Pair/Neighbour 89.49 88.61 89.05
-Sibling 89.64 88.76 89.20
-Grandparent 89.58 88.71 89.14
-Label 89.53 88.63 89.07
-Length 89.13 88.25 88.69
-Directionality 89.18 88.31 88.74

Malt
Predicted

CCG +Fanse DG 87.82 86.93 87.37
-Pair/Neighbour 87.66 86.78 87.22
-Sibling 87.69 86.80 87.24
-Grandparent 87.72 86.85 87.28
-Label 87.67 86.79 87.23
-Length 87.68 86.82 87.25
-Directionality 87.69 86.82 87.25

MST
Predicted

CCG +CoNLL DG 87.65 86.77 87.21
-Pair/Neighbour 87.56 86.67 87.12
-Sibling 87.53 86.65 87.09
-Grandparent 87.58 86.70 87.14
-Length 87.56 86.69 87.12
-Directionality 87.76 86.84 87.30

Table 5: Subtractive analysis of each DG feature for the Fanse and CoNLL schemes on CCGbank
section 00. Bolded rows indicate the most substantial performance drops.
We performed a subtractive analysis to investigate the individual contribution of each feature
type. We can see in Table 5 that different features are important for the gold and predicted
experiments. Removing the length or directionality-dependency features causes a substantial
performance decrease in the gold-standard experiment. This seems to suggest that certain de-
pendencies between words will only exist with a certain length between head and dependent,
and that words also have a relatively predictable number of incoming and outgoing arcs in the
gold standard.

In contrast, the removal of no individual feature causes a significant change in F-score in either
the Maltparser-predicted or MSTparser-predicted experiments. The introduction of parse er-
rors has reduced the reliance of the reranker on length and directionality features, and caused
it to smooth out the weights to other features. In this setting it is the combination of small
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contributions from many features that is important.

5.5 Final results

We used the Fanse and CoNLL features, as these performed best on the development data for
the Maltparser and MSTparser respectively, for a single run on the final test set of section 23 of
CCGbank. Table 7 shows that the Fanse features with the Maltparser improve F-score relative
to the C&C baseline and Reranker ’10 systems. In particular, our final result of 87.93% F-score
is a 0.5% improvement over the baseline parser, and a 0.35% gain over Reranker ’10. These
results are significant at p< 0.05, as tested using Bikel’s approximate randomisation procedure
6.

section 23 (test) LP LR LF
C&C normal ’07 87.81 87.06 87.43
Reranker ’10 (CCG) 87.98 87.18 87.58
Fanse CCG +DG features (Maltparser) 88.32 87.54 87.93
CoNLL CCG +DG features (MSTparser) 88.02 87.20 87.61

Table 7: Final test results for the best DG parser-predicted features over section 23 of CCGbank.

Conclusion

In this paper we proposed new DG-derived features, generated by a dependency parser and
incorporated into a CCG parser using reranking. We observe significant performance improve-
ments using the DG-derived features from the Maltparser, and also show that there remains
substantial potential in the DG-derived features with improved dependency parsing.

The LTH and Fanse dependency schemes were created from the NP-bracketed Penn Treebank
of Vadas and Curran (2007). While the Fanse features performed the best in our experiments
with the Maltparser, the LTH features performed poorly, further work should experiment with
the standard Penn Treebank as the basis for conversion, as well as generating the CoNLL and
Stanford schemes with the enriched corpus.

We plan to develop features to address more specific linguistic phenomena such as coordi-
nation and prepositional phrase attachment. The dependency schemes each represent these
phenomena differently (see Section 2.5), and they are a particular issue in parsing. New fea-
tures that compare the way different schemes represent these phenomena may allow us to
better represent and reproduce them in parsing.

Our work focused on English parsing and we used the Maltparser and MSTparser indepen-
dently of one another to generate features. It would be interesting to examine the effect of our
features on parsing and reranking in different languages, as well as developing new features
that compare the output of both dependency parsers. Additionally, we did not use higher or-
der features for the Maltparser and MSTparser. Since these features are not present in the C&C

parser, further work should explore whether enabling these features helps reranking.

We have developed a technique for incorporating parse information from one formalism as
features for reranking another. This allows us to exploit the strengths of each formalism in a
flexible framework with arbitrarily complex features.

6based on Dan Bikel’s script at http://www.cis.upenn.edu/~dbikel/software.html#comparator
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