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ABSTRACT
Reducing the reliance of semantic role labeling (SRL) methods on human-annotated data has
become an active area of research. However, the prior work has largely focused on either (1)
looking into ways to improve supervised SRL systems by producing surrogate annotated data
and reducing sparsity of lexical features or (2) considering completely unsupervised semantic
role induction settings. In this work, we aim to link these two veins of research by studying
how unsupervised techniques can be improved by exploiting small amounts of labeled data.
We extend a state-of-the-art Bayesian model for unsupervised semantic role induction to better
accommodate for annotated sentences. Our semi-supervised method outperforms a strong
supervised baseline when only a small amount of labeled data is available.

KEYWORDS: semantic role labeling, semi-supervised learning, shallow semantics, Bayesian
model.
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1 Introduction

Shallow representations of meaning, and semantic role labels in particular, have a long history
in linguistics (Fillmore, 1968). More recently, with the emergence of large annotated resources
such as PropBank (Palmer et al., 2005) and FrameNet (Baker et al., 1998), automatic semantic
role labeling (SRL) has attracted a lot of attention (Gildea and Jurafsky, 2002; Carreras and
Màrquez, 2005; Surdeanu et al., 2008; Hajič et al., 2009).

SRL representations encode the underlying predicate-argument structure of sentences, or, more
specifically, for every predicate in a sentence they identify a set of arguments and associate
each argument with an underlying semantic role, such as an agent (an initiator or doer of the
action) or a patient (an affected entity). SRL representations have many potential applications
in NLP and have been shown to benefit question answering (Shen and Lapata, 2007; Kaisser
and Webber, 2007), textual entailment (Sammons et al., 2009), machine translation (Wu and
Fung, 2009; Liu and Gildea, 2010; Wu et al., 2011; Gao and Vogel, 2011), and dialogue systems
(Basili et al., 2009; van der Plas et al., 2009), among others.

Most of the current statistical approaches to SRL are supervised, requiring large quantities of
human annotated data to estimate model parameters. However, such resources are expensive
to create and only available for a small number of languages and domains. Moreover, when
moved to a new domain, performance of these models tends to degrade substantially (Pradhan
et al., 2008). Scarcity of annotated data has motivated the research into techniques capable of
exploiting unlabeled data, that is, semi-supervised and unsupervised learning.

The existing semi-supervised approaches to SRL can largely be regarded as extensions to
supervised techniques, as they use supervised learning as sub-routines in the estimation process.
These include self-training and co-training methods (He and Gildea, 2006b; Lee et al., 2007;
Kaljahi and Samad, 2010), mono-lingual and cross-lingual annotation projection (Fürstenau
and Lapata, 2009; Pado and Lapata, 2009; van der Plas et al., 2011), and methods which exploit
or induce word representations to reduce the sparsity of lexicalized features (He and Gildea,
2006a; Deschacht and Moens, 2009; Collobert et al., 2011). Most of these approaches, especially
the bootstrapping-style methods (He and Gildea, 2006b; Lee et al., 2007; Kaljahi and Samad,
2010; Fürstenau and Lapata, 2009), have achieved minimal or even no improvement from
using unlabeled data. Consequently, the development of effective semi-supervised techniques
remains an important and largely unresolved problem.

Another vein of research exploiting unlabeled data for shallow semantic parsing has focused on
purely unsupervised set-ups (Swier and Stevenson, 2004; Grenager and Manning, 2006; Lang
and Lapata, 2010, 2011a,b; Titov and Klementiev, 2012; Garg and Henderson, 2012; Fürstenau
and Rambow, 2012). The unsupervised setting is important in itself, and the development of
these methods arguably provides interesting insights into modeling implicit supervision signals
present in unlabeled data. However, given that small amounts of labeled data are often easy to
obtain, it is surprising that no previous work that we are aware of looked into integration of
labeled data into unsupervised SRL systems.1 Moreover, due to the inherent difference in the
clustering metrics used for unsupervised SRL and the labeled accuracy scores used to evaluate
supervised SRL methods, they have so far never been properly compared. These are the gaps
addressed by this paper.

In this work, we show how a state-of-the-art unsupervised Bayesian model (BayesSRL) (Titov

1This semi-supervised learning setting is sometimes referred to as semi-unsupervised (Daumé III, 2009).
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and Klementiev, 2012) can be used in a semi-supervised set-up. BayesSRL is especially appropri-
ate for our study as it automatically induces a common representation encoding properties of the
syntax-semantics interface that are valid across predicates, contrasting much of other research
on unsupervised SRL where separate models were induced for each predicate (Grenager and
Manning, 2006; Lang and Lapata, 2010, 2011a,b; Garg and Henderson, 2012; Fürstenau and
Rambow, 2012). These models would not be able exploit sparse labeled data effectively, as they
would essentially split this scarce data into even smaller (and often empty) training sets.

A straightforward way of integrating labeled data into learning of a generative model would
amount to maximizing joint probability of labeled and unlabeled data. However, due to hard
constraints in the BayesSRL model and the great disbalance between the amount of labeled and
unlabeled data, we argue that a different approach is preferred. Namely, we use labeled data to
construct an informed prior over the potential semantic representations and also modify the
model to integrate the labels as soft constraints on admissible semantic structures.

We compare the semi-supervised approach we propose to a state-of-the-art supervised
method (Johansson and Nugues, 2008a). Though the BayesSRL model exploits a cross-predicate
representation, it does not align roles across predicates which prevents us from using supervised
evaluation metrics. Consequently, we evaluate the methods using clustering measures: the
harmonic mean of purity and collocation, a common metric for unsupervised SRL evaluation
(Lang and Lapata, 2010), and the information-theoretic V-Measure (Rosenberg and Hirschberg,
2007).

The semi-supervised method outperforms its supervised counterpart when the amount of labeled
data is small. Unsurprisingly, it does not fare as well when the amount of data increases. We
believe that this is primarily due to the overly coarse modeling of the syntax-semantics interface,
as it is optimized for the unsupervised setting. Nevertheless, these results strongly suggest that
approaching the semi-supervised learning setting for SRL from an unsupervised perspective
is a promising research direction and that the existing unsupervised SRL methods are already
mature enough to be useful for low resource languages with little or no labeled data available.

2 Background

In this section, we begin by formally defining the semantic role labeling task, and then discuss the
distance-dependent Chinese Restaurant process (Blei and Frazier, 2011), used as a component
in the BayesSRL model and crucial for effective learning in the semi-supervised setting. We
conclude the section with a short description of the BayesSRL model.

2.1 Task Definition

The SRL task involves prediction of predicate argument structure, i.e. both identification of
arguments as well as assignment of labels according to their underlying semantic role. For
example, in the following sentences:

(a) [A0 Mary] opened [A1 the door].
(b) [A1 The door] opened.
(c) [A1 The door] was opened [A0 by Mary].

Mary always takes an agent role (A0 in the PropBank notation (Palmer et al., 2005)) for the
predicate open, and door is always a patient (A1).
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In this work we focus on the labeling stage of semantic role labeling. Identification, though
an important problem, can be tackled with heuristics (Lang and Lapata, 2011a; Grenager
and Manning, 2006; de Marneffe et al., 2006), with unsupervised techniques (Abend et al.,
2009) or potentially by using a supervised classifier trained on a small amount of data. In our
experiments we use the heuristic identifier of Lang and Lapata (2011a). Also, as in much of
the previous work on supervised and unsupervised SRL, we rely on automatically generated
syntactic dependency trees.

In the labeling stage, semantic roles are represented by clusters of arguments, and labeling a
particular argument corresponds to deciding on its role cluster. However, instead of dealing
with argument occurrences directly, in BayesSRL they are represented as predicate-specific
syntactic signatures, called argument keys. The following syntactic features are used to form the
argument key representation:

• Active or passive verb voice (ACT/PASS).
• Argument position relative to predicate (LEFT/RIGHT).
• Syntactic relation to its governor.
• Preposition used for argument realization.

In the above example, the argument keys for candidate arguments Mary for sentences (a)
and (c) would be ACT:LEFT:SBJ and PASS:RIGHT:LGS->by,2 respectively. While aiming to
increase the purity of argument key clusters, this particular representation will not always
produce a good match: e.g. door in sentence (b) will have the same key as Mary in sentence (a).
Consequently, this introduces an upper bound on the model performance: in our experimental
set-up the upper bound on the purity of clustering was equal to 91.7%.

Increasing the expressiveness of the argument key representation by using features of the
syntactic frame would enable us to distinguish that pair of arguments. However, we keep this
representation, in part to compare with previous work and in part because we are primarily
interested in set-ups with little annotated data where this upper bound would not be as limiting.

The clustering implicitly defines the set of permissible alternations, or changes in the syn-
tactic realization of the argument structure of the verb. For example, passivization can be
roughly represented with the clustering of the key ACT:LEFT:SBJ with PASS:RIGHT:LGS->by

and ACT:RIGHT:OBJ with PASS:LEFT:SBJ.

In sum, BayesSRL treats the unsupervised semantic role labeling task as clustering of argument
keys. Thus, argument occurrences in the corpus whose keys are clustered together are assigned
to the same semantic role. The objective of this work is to study how argument key clusterings
can be improved by using small amounts of annotated data.

2.2 Distance-dependent CRPs

The Chinese Restaurant Process (CRP), a standard component in non-parametric Bayesian
modeling, defines a probability distributions over partitions of a set of objects. It encodes
general rich-get-richer dynamics and, as such, is often useful in modeling long tail distributions.
CRPs do not distinguish between individual objects and, consequently, prior probability that two
objects would end up in the same subset is constant for any choice of objects. Distant-dependent

2LGS denotes a logical subject in a passive construction (Surdeanu et al., 2008).

2638



CRPs (dd-CRPs) (Blei and Frazier, 2011) use a similarity function di j in generating partitions:
they prefer to place pairs (i, j) with larger similarity di j in a single subset. More formally, each
object i chooses itself a partner ci with the probability

p(ci = j|D,α)∝
�

di j , i 6= j
α, i = j (1)

where α is a non-negative concentration parameter. The resulting partition is defined by
connected components in the directed graph encoded by the partnership relation c. Unlike
normal CRP, dd-CRP lacks the exchangeability property and the probability of a given partition
cannot be efficiently computed. Nevertheless, efficient inference is possible with MCMC
techniques or approximate MAP search methods.

The prior is invariant under joint rescaling of the concentration parameter and the similarity
scores, and the proportion of the concentration parameter to the distance parameters can be
regarded as a parameter controlling granularity of clustering. We use a slight extension to the
original dd-CRP by allowing the concentration parameter to be different for every example and,
therefore, write it as αi = dii .

The similarities D can be fixed and used to encode prior knowledge about the problem (Blei
and Frazier, 2011; Socher et al., 2011; Duan et al., 2007; Jensen and Shore, 2011) or can be
induced automatically by sharing them across several instances of the clustering problem in a
multi-task setting (Titov and Klementiev, 2012). In this work, as discussed in Section 3.2, we
use the dd-CRP priors to fill both of these roles.

2.3 BayesSRL Model

In this section we describe the Bayesian model which we use as a basis for our semi-supervised
learning approach. For more detailed and formal description of the model we refer the reader
to Titov and Klementiev (2012). In this work we use the coupled version of the BayesSRL model,
that is the model which induces cross-predicate representations.

In Section 2.1 we defined our task as clustering of argument keys, where each cluster cor-
responds to a semantic role. If an argument key k is assigned to a role r (k ∈ r), all of its
occurrences are labeled r.

The Bayesian model encodes two common assumptions about semantic roles. First, it enforces
the selectional restriction assumption: namely it stipulates that the distribution over potential
argument fillers is sparse for every role, implying that ‘peaky’ distributions of arguments for
each role r are preferred to flat distributions. Second, each role normally appears at most once
per predicate occurrence. The inference algorithm will search for a clustering which meets the
above requirements to the maximal extent.

As we argued in Section 2.1, clusterings of argument keys implicitly encode the pattern of
alternations for a predicate. The set of permissible alternations is predicate-specific,3 but still
most of the alternation are shared across several or many predicates (e.g., passivization or
dativization). Consequently, BayesSRL regards semantic role induction as a multi-task clustering
problem and encodes the relative ‘popularity’ of alternations by quantifying how likely a pair of
keys is to be clustered. These scores (di j for every pair of argument keys i and j) are induced
automatically within the model, and treated as latent variables shared across predicates.

3Or, at least specific to a class of predicates (Levin, 1993).
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Parameters:

D ∼ NonIn f orm [similarity graph]
for each predicate p = 1, 2, . . . :
Bp ∼ dd-CRP(α, D) [partition of arg keys]
for each role r ∈ Bp:
θp,r ∼ DP(β , H(A)) [distrib of arg fillers] ψp,r ∼ Beta(η0,η1) [geom distr for dup roles]

Data generation:

for each predicate p = 1, 2, . . . :
for each occurrence s of p:
for every role r ∈ Bp:
if [n∼ Uni f (0, 1)] = 1: [role appears at least once]
GenArgument(p, r) [draw one arg]
while [n∼ψp,r] = 1: [continue generation]
GenArgument(p, r) [draw more args]

GenArgument(p, r):
kp,r ∼ Uni f (1, . . . , |r|) [draw arg key]
xp,r ∼ θp,r [draw arg filler]

Figure 1: The BayesSRL model.

The model associates two distributions with each predicate: one governs the selection of argu-
ment fillers for each semantic role, and the other models (and penalizes) duplicate occurrence
of roles. Each predicate occurrence is generated independently given these distributions. Let
us describe the model by first defining how the set of model parameters and an argument key
clustering are drawn, and then explaining the generation of individual predicate and argument
instances. The generative story is formally presented in Figure 1.

The generation starts by choosing a graph D with non-negative weights di, j on edges from
a non-informative prior, in other words, uniformly over the space of such graphs. Then for
each predicate p, a partition of argument keys Bp is drawn from a distance-dependent Chinese
Restaurant Process dd-CRP(α, D), with each subset r ∈ Bp representing a single semantic role.

Next, the parameters are generated from the corresponding prior distributions. For details, we
refer the reader to Titov and Klementiev (2012).

Now, when parameters and argument key clusterings are chosen, we can summarize the
remainder of the generative story as follows. We begin by independently drawing occurrences
for each predicate. For each predicate role we independently decide on the number of role
occurrences. Then each of the arguments is generated (see GenArgument) by choosing an
argument key kp,r uniformly from the set of argument keys assigned to the cluster r, and finally
choosing its filler xp,r , where the filler is the lemma of the syntactic head of the argument.

In sum, the properties of the BayesSRL model most relevant to the discussion of the semi-
supervised extension are (1) induction of predicate-specific hard clustering of argument keys
and (2) learning of a cross-predicate similarity measure D over pairs of argument keys.

2640



GenArgument(p, r):
b ∼ Bernoull i(ε)
if b = 1:
kp,r ∼ H(K) [noisy arg key]

else
kp,r ∼ Uni f (1, . . . , |r|) [true arg key]
xp,r ∼ θp,r [draw arg filler]

Figure 2: A modified model of argument generation.

3 Semi-Supervised Extension

In this section, we discuss two ways that the labeled data can be exploited in estimating the
BayesSRL model. In practice, we found that their combination yields the best result.

3.1 Adding Labels

The integration of labeled data in a generative model is usually trivial and amounts to maxi-
mizing the joint likelihood of the observable data. In practice, it implies that the observable
labels will be clamped in the estimation process. The straightforward application of this idea to
our set-up is problematic. The BayesSRL method makes hard decisions about the clustering
of argument keys, and, given the imperfect purity of argument keys and potential annotation
errors, no single clustering would be entirely compatible with the labeled data, resulting in
zero probability for any model state. Intuitively, one would want to relax this compatibility
assumption by allowing for some inconsistency between induced clusterings and labeled data,
while still favoring more compatible configurations.

A standard trick to achieve this behavior within the generative framework is to assume that with
some small probability ε the true outcome is substituted with a random pick. The parameter
ε would serve as a penalty for inconsistency, the smaller the probability ε, the more severe is
the penalty. In our case, it translates into modifying the GenArgument(p, r) by introducing the
possibility of drawing the random argument key from some base distribution H(K), instead of
choosing it from the set of keys associated with r (See Figure 2). We use the normalized counts
of argument keys in the corpus as the base distribution H(K).

Labeled data integrated in this relaxed BayesSRL model would affect the induced shared prior
D and, consequently, the information present in the labeled data would be propagated across
different predicates. Unfortunately, there are two problems with using this approach which
negatively affect practical results.

The first deficiency is connected with the fact that in practice the amount of unlabeled data
vastly exceeds the amount of labeled data nullifying the effect of the latter during estimation.
A standard heuristic approach to mitigate this deficiency is to reweigh the data to put an
extra emphasis on the labeled part. This technique is unlikely to be very effective here as the
argument key clusterings are drawn from dd-CRP(α, D) once for each predicate, not once per
predicate occurrence, and the proportion of predicates in labeled and unlabeled data would
remain unaffected by instance reweighting.

Another problem is more subtle. As discussed in Titov and Klementiev (2012), their method
induces the pairwise clustering preferences D but does not attempt to learn the concentration
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parameters αk and also enforces a form of normalization on the pairwise similarity, effectively
‘freezing’ the granularity of clusterings. This is fairly natural for an unsupervised setting where
the model designer should have some form of control over the granularity but not as desirable
in the semi-supervised setting where the granularity should be learned from the annotated data.
In fact, as we will see in Section 4, labeled data mostly provides evidence for combining clusters
(thus increasing collocation), and, consequently, the ability to learn granularity is crucial.

Thus, a compromise is necessary between (a) learning the granularity from labeled data and
(b) limiting the influence of unlabeled data on cluster granularity. We implement this idea by
using annotated examples to construct an informed prior.

3.2 Constructing Informed Priors

An alternative approach to directly incorporating the labeled data in the objective function
would be to use the data to define an informed ‘prior’ over argument key clusterings. To this
end, we estimate from the labeled data how likely argument keys k and k′ are to belong to the
same role and how likely a specific key k is to be left unclustered. We use the former to set
the similarity d̂kk′ , and the latter to set the concentration parameter αk for the dd-CRP model.
More precisely, we estimate both the predicate-specific similarities d̂(p) and the cross-predicate
similarities d̂. When generating partitions Bp (see Figure 1), we multiply d̂(p), d̂, and the
automatically induced prior d and use the resulting combined similarity in the dd-CRP process.
The concentration parameters are combined in the same way as similarities. This techniques
corresponds to the standard product-of-expert combination approach (Hinton, 2002). The
remaining part of the section describes this idea more formally.

Initially we will consider individual predicates and then we will generalize the approach to
cross-predicate similarities. Consider a predicate p, and assume that we have K different
argument keys and R different roles,4 and that each argument key k appears Nk times in
the labeled data, and is annotated Nk,r times with role r. In order to estimate the required
probabilities we need to make assumptions about the joint generation of labels and argument
keys.

We assume that there exists a fixed latent mapping g from argument keys to semantic roles and
any such mapping is a-priori equiprobable, P(g) = const. However, when generating a label
g(k) for a key k, we assume that it can be replaced by any of the remaining R− 1 roles with
small probability γ. The probability of the set of labeled examples Xk associated with the key k
given a mapping g can be written as

P(Xk|g(k) = r) = (1− γ)Nk,r

� γ
R− 1

�Nk−Nk,r

.

The joint probability of the sets of labeled examples Xk and Xk′ under the assumptions that
either (1) the two keys belong to the same (any) role or (2) belong to two different roles can

4In our experiments we set R to 21, the number of distinct roles in PropBank, and K to the number of argument
keys appearing both in labeled and unlabeled data for the considered predicate.
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be computed by summing over the roles:5

P(Xk, Xk′ |g(k) = g(k′))

=
∑

r

P(Xk|g(k) = r)P(Xk′ |g(k′) = r)

P(Xk, Xk′ |g(k) 6= g(k′))

=
∑

r

P(Xk|g(k) = r)
∑
r ′ 6=r

P(Xk′ |g(k′) = r ′)

The posterior probability that two keys belong to the same role P(g(k) = g(k′)|X ), where X is
the entire labeled dataset, is given by renormalizing the two likelihoods above. As the distance
d(p)kk′ in dd-CRP essentially encodes how much more likely the two keys are clustered together
than by random chance, we compute the similarity as

d̂(p)kk′ =
P(g(k) = g(k′)|X )
P(g(k) = g(k′))

, (2)

where P(g(k) = g(k′)) is the prior probability that two keys are labeled with the same role,
equal to 1/R.

A very similar algebra is used to derive the probability that an argument key k is the only key
assigned to some role P( 6 ∃k′, k 6= k′ : g(k) = g(k′)|X ). The concentration parameter α̂k is set to

α̂
(p)
k =

P( 6 ∃k′, k 6= k′ : g(k) = g(k′)|X )
P( 6 ∃k′, k 6= k′ : g(k) = g(k′))

, (3)

where the denominator is the prior probability of not sharing the role with any other argument
key, (R− 1)k−1/Rk−1. Note that if no labeled data is available for the considered predicate p,
equations (2) and (3) would yield 1 and, as desired, the prior would not affect prediction of
other experts in the product-of-expert combination.

The above approach induces predicate specific priors but this is insufficient for all but very
frequent predicates. Consequently, we use a similar approach to define cross-predicate similari-
ties d̂ but with a larger γ′, thus penalizing less severely for violations. For the cross-predicate
similarities, the assumption is that (independently over pairs of keys) each pair of keys either
shares a role in all the predicates or the two keys are labeled with a different role in all the
predicates. This implies that the similarities can be computed by multiplying the results of
computations (2) over all the predicates, while using the parameter γ′ instead of the original γ.
The same multiplication is done for the concentration parameter.

Note that in this approach we never attempted to encode cross-predicate correspondence
between labeled semantic roles, the prior (and the model as whole) is invariant under any
renaming of roles for individual predicates.

Admittedly, this method is not a proper estimation method for the BayesSRL model but rather
the use of an extrinsic probabilistic model to set the similarity scores in the dd-CRP prior. This
is in line with much of the work on using dd-CRPs where the similarities were used to encode
prior or external knowledge (Blei and Frazier, 2011; Socher et al., 2011; Duan et al., 2007;

5Note that we use here the fact that the mappings are equiprobable.
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Jensen and Shore, 2011) rather than estimated as in the multi-tasking set-up of Titov and
Klementiev (2012).

To induce the model in the semi-supervised set-up, we use the same approximate MAP search
algorithm, as originally proposed in Titov and Klementiev (2012) for the unsupervised setting.

4 Experiments

4.1 Data

Datasets. We evaluate our semi-supervised approach on the CoNLL 2009 distribution (Hajič
et al., 2009) of the Penn Treebank WSJ corpus (Marcus et al., 1993). We split the CoNLL
training set roughly in half: we draw annotated sentences from the first part (20,000 sentences),
and evaluate on the remaining 19,279 sentences. All, but the drawn annotated sentences are
used as unsupervised training data as standard for unsupervised SRL.

Syntactic annotation. We annotate the data with dependency structures predicted by the
syntactic component of the LTH system (Johansson and Nugues, 2008b), a more realistic setup
than making use of the gold syntactic annotation.

Predicate and argument identification. We select all non-auxiliary verbs as predicates.6 We
identify their arguments using a heuristic proposed in (Lang and Lapata, 2011a). Since our
goal is to evaluate the argument labeling stage of semantic role labeling, we use this argument
identification procedure for all of the systems in our experiments. The quality of argument
identification on CoNLL 2009 using predicted syntactic analyses was F1 82.7% (P 83.3% / R
82.0%).

4.2 Evaluation Metrics

We cannot use supervised metrics to evaluate our models, since we do not have an alignment
between gold labels and clusters induced in the unsupervised and semi-supervised set-up.7

Instead, we use the following two standard sets of clustering metrics for our evaluation:

Purity, Collocation, and F1. We use the standard purity (PU) and collocation (CO) metrics
as well as their harmonic mean (F1) to measure the quality of the resulting clusters. Purity
measures the degree to which each cluster contains arguments sharing the same gold role and
collocation evaluates the degree to which arguments with the same gold roles are assigned to a
single cluster, see (Lang and Lapata, 2010).

Homogeneity, Completeness, and V-Measure. Additionally, we also evaluate with the information-
theoretic V-Measure (V) (Rosenberg and Hirschberg, 2007). It is defined as the harmonic
mean of homogeneity (H) and completeness (C) scores, which attempt to measure similar
characteristics of the induced clustering as purity and collocation, respectively.

We compute the aggregate scores for all metrics over all predicates in the same way as Lang
and Lapata (2011a) by weighting the scores of each predicate by the number of its argument
occurrences. Since our goal is to evaluate the clustering algorithms, we do not include incorrectly
identified arguments when computing these metrics.

6In this work we do not disambiguate predicate senses.
7Our BayesSRL extension does not propagate role labels between predicates which we would need to compute

supervised metrics.
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Figure 4: Performance (F1) evaluated on all
roles except A0, A1, and AM∗ (modifier ar-
guments) vs. the number of annotated sen-
tences.

4.3 Model Parameters

The unsupervised model and the semi-supervised extension are robust to parameter settings.
While they could be tuned by visual inspection of the induced argument roles, as in much of
the previous work, we instead tuned them on the standard CoNLL held-out set primarily for
replicability reasons.

4.4 Systems

In our experiments, we compare the performance of three systems: our semi-supervised
extension (SemiSup) to the original state-of-the-art unsupervised model (Unsupervised) of Titov
and Klementiev (2012), as well as the best CoNLL-08 shared task supervised SRL system
(Supervised) of Johansson and Nugues (2008b). We also compare against the syntactic
function baseline (SyntF), which is considered difficult to outperform in the unsupervised
setting (Grenager and Manning, 2006; Lang and Lapata, 2010). It simply clusters predicate
arguments according to the dependency relation to their head. As in previous work, we allocate
a cluster for each of 20 most frequent relations in the CoNLL dataset and one cluster for all
other relations.

4.5 Discussion

Figure 3 summarizes the results for the three systems and the syntactic baseline. The semi-
supervised model outperforms the supervised counterpart when up to about 350 annotated
sentences are available for training. It also continues to improve over the original unsupervised
model as more annotated sentences are used for training. Table 1 details the single point
of 300 labeled sentences on Figure 3 and breaks up the evaluation of the three systems and
the syntactic baseline. It also shows the effect of the two ways of exploiting labeled data we
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number of annotated sentences.
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Figure 6: Purity, Collocation, and F1 of our
semi-supervised extension (SemiSup) evalu-
ated on all roles except A0, A1, and AM∗ vs.
the number of annotated sentences.

PU CO F1 H C V
Supervised 88.0 84.5 86.2 79.6 74.7 77.0
Unsupervised 89.6 83.0 86.2 83.8 73.3 78.2
SemiSup 89.7 84.4 87.0 83.6 74.9 79.0
SemiSup-l 89.5 84.2 86.8 83.3 74.6 78.7
SemiSup-p 90.0 82.5 86.1 84.4 72.8 78.2
SyntF 83.3 81.6 82.5 73.4 70.4 71.9

Table 1: Purity (PU), Collocation (CO), and F1, as well as Homogeneity (H), Completeness
(C), and V-Measure (V) for for a single point (300 labeled sentences) on Figure 3. Results
are for the syntactic baseline (SyntF), the supervised system (Supervised), the unsupervised
model (Unsupervised), our semi-supervised extension (SemiSup), as well as our extension
without adding labeled data to the generative story (SemiSup-l), and without the informed prior
(SemiSup-p).

proposed in Section 3. SemiSup-l and SemiSup-p is our semi-supervised (SemiSup) method
without adding labeled data to the generative story, and without informed priors, respectively.
Note, that while adding labeled data alone does not improve over the performance of the
unsupervised model for this number of labeled examples, the combination of the two methods
yields a substantial improvement both in terms of F1 and V-Measure.

A0 and A1 arguments are annotated in PropBank based on the proto-role theory presented in
(Dowty, 1991) and correspond to proto-agents and proto-patients, respectively, while arguments
receiving an AM∗ label are supposed to be adjuncts, and the roles they express are consistent
across all verbs. In order to evaluate the model performance on arguments which do not
necessarily express consistent semantic roles across verbs, we next exclude A0, A1, and AM∗
from evaluation (Figure 4). The semi-supervised extension again substantially outperforms the
supervised model when fewer than about 700 annotated examples are available.

Finally, Purity / Collocation breakdown for our semi-supervised extension (SemiSup) evaluated
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an all roles and all roles except A0, A1, and AM∗ is shown on Figure 5 and Figure 6, respectively.
Labeled data mostly provides evidence for combining clusters, so more labeled data implies
collocation improvements albeit with some drop in purity.

Our semi-supervised method outperforms the state-of-the-art supervised model when the
number of labeled sentences is relatively small, but falls behind when the amount of annotated
data grows. This is likely due to the simplistic and overly coarse representation and modeling of
the linking between syntax and semantics which places an upper bound on how well the original
unsupervised model and the semi-supervised extension can do. However, our results strongly
suggest that approaching semi-supervised SRL by exploiting labeled data in unsupervised
methods is a promising research direction. Existing state-of-the-art methods can already be
used for languages and domains for which little or no annotated data is available.

5 Additional Related Work

Additionally to the semi-supervised approaches to SRL discussed in the introduction, semi-
supervised and weakly-supervised techniques have also been explored for other types of
semantic representations but these studies have mostly focused on restricted domains (Kate
and Mooney, 2007; Liang et al., 2009; Titov and Kozhevnikov, 2010; Goldwasser et al., 2011;
Liang et al., 2011). Similarly, unsupervised induction for other shallow semantic formalisms
include Poon and Domingos (2009, 2010) and Titov and Klementiev (2011).

A related problem of inducing script knowledge, or narrative event chains, has recently received
a considerable attention (Chambers and Jurafsky, 2008; Manshadi et al., 2008; Chambers and
Jurafsky, 2009; Regneri et al., 2010, 2011) with approaches mostly considering unsupervised
or weakly-supervised setting due to scarcity of labeled data. Though in this paper we focus on
the labeling of arguments the complementary task of unsupervised argument identification was
considered in Abend et al. (2009).

Unsupervised learning has been one of the central paradigms for the closely-related area of
relation extraction, where several techniques have been proposed to cluster semantically similar
verbalizations of relations (Lin and Pantel, 2001; Banko et al., 2007). Similarly to SRL, semi-
supervised approaches in this area are also typically based on bootstrapping techniques (e.g.,
(Agichtein and Gravano, 2000; Rosenfeld and Feldman, 2007)) and often achieve impressive
results. However, their set-up is arguably different from ours as relation extractors are generally
more precision-oriented, focus primarily on binary relations and can partially sidestep the
complexity of language.

6 Conclusions

In this work, we demonstrated that unsupervised techniques can be improved by exploiting
small amounts of labeled data yielding SRL parsers competitive with supervised approaches in
a low resource setting. We also uncovered some of the deficiencies of the existing unsupervised
approaches; namely, overly coarse modeling of syntax-semantics interface resulting in a lower
asymptotic performance in semi-supervised settings. These results motivate further research
into design of generative models appropriate for semi-supervised learning of shallow semantics.
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