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ABSTRACT
We present the first fully unsupervised approach to metaphor interpretation, and a system that
produces literal paraphrases for metaphorical expressions. Such a form of interpretation is
directly transferable to other NLP applications that can benefit from a metaphor processing
component. Our method is different from previous work in that it does not rely on any
manually annotated data or lexical resources. First, our method computes candidate paraphrases
according to the context in which the metaphor appears, using a vector space model. It then
uses a selectional preference model to measure the degree of literalness of the paraphrases. The
system identifies correct paraphrases with a precision of 0.52 at top rank, which is a promising
result for a fully unsupervised approach.
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1 Introduction

Metaphor has traditionally been viewed as an artistic device that lends vividness and distinction
to its author’s style. This view was first challenged by Lakoff and Johnson (1980), who claimed
that it is a productive phenomenon that operates at the level of mental processes. Humans often
use metaphor to describe abstract concepts through reference to more concrete experiences.

Being a characteristic property of human thought and communication, metaphor becomes an
important problem for natural language processing. Shutova and Teufel (2010) have shown in
an empirical study that the use of metaphor is ubiquitous in natural language text (according
to their data, on average every third sentence in general domain text contains a metaphorical
expression). Due to this high frequency usage, a system capable of recognizing and interpreting
metaphorical expressions in unrestricted text would become an invaluable component of many
semantics-oriented NLP applications.

The majority of previous computational approaches to metaphor rely on manually created
knowledge and thus operate on a limited domain and are expensive to build and extend. Hand-
coded knowledge has proved useful for both metaphor identification, i.e. distinguishing between
literal and metaphorical language in text (Fass, 1991; Martin, 1990; Krishnakumaran and Zhu,
2007; Gedigian et al., 2006) and metaphor interpretation, i.e. identifying the intended literal
meaning of a metaphorical expression (Fass, 1991; Martin, 1990; Narayanan, 1997; Barnden
and Lee, 2002). However, to be applicable in a real-world setting a metaphor processing system
needs to be able to identify and interpret metaphorical expressions in unrestricted text. The
recent metaphor paraphrasing approach of Shutova (2010) was designed with this requirement
in mind and used statistical methods, but still relied on the WordNet (Fellbaum, 1998) database
to generate the initial set of paraphrases. In this paper, we take the metaphor paraphrasing
task a step further and present a fully unsupervised approach to this problem. In our method,
candidate substitutes for the metaphorical term are generated using a vector space model.
Vector space models have been previously used in the general lexical substitution task (Mitchell
and Lapata, 2008; Erk and Padó, 2008, 2009; Thater et al., 2009, 2010; Erk and Padó, 2010;
Van de Cruys et al., 2011). However, (to the best of our knowledge) they have not yet been
deployed in tasks involving figurative meaning transfers, such as interpretation of metonymy
or metaphor. In this paper, we address this problem and apply a vector space model of word
meaning in context to metaphor paraphrasing, appropriately adapting it to the task.

In comparison to lexical substitution, metaphor paraphrasing presents an additional challenge,
namely that of discriminating between literal and metaphorical substitutes. Shutova (2010)
used a selectional preference-based model for this purpose, obtaining encouraging results
in a supervised setting. We evaluate the capacity of our vector space model to discriminate
between literal and figurative paraphrases on its own, as well as integrating it with a selec-
tional preference-based model similar to that of Shutova (2010) and thus evaluating the latter
in an unsupervised setting. Our system thus operates in two steps. It first computes candi-
date paraphrases according to a latent model of semantic similarity based on the context of
the metaphorically used word, and then measures the literalness of the candidates using a
selectional preference model.

We focus on paraphrasing metaphorical verbs and evaluate our system using the dataset of
Shutova (2010) especially designed for this task. The comparison against a paraphrasing gold
standard provided by Shutova (2010) is complemented by an evaluation against direct human
judgements of system output.
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2 Method

2.1 Generation of candidate paraphrases using a vector space model

Paraphrase candidates are generated by first computing the specific meaning of the metaphorical
term in its context. The meaning of a word instance in context is computed by adapting its
original (global) meaning vector according to the dependency relations in which the word
instance participates. For this purpose, we build a factorization model in which words, together
with their window-based context words and their dependency relations, are linked to latent
dimensions. Both types of contexts are combined to be able to induce broad, topical semantics
as well as tight, synonym-like semantics. The factorization model allows us to determine
which dimensions are important for a particular context, and adapt the dependency-based
feature vector of the word accordingly. The model uses non-negative matrix factorization
(NMF) (Lee and Seung, 2000) in order to find latent dimensions, using the minimization of
the Kullback-Leibler divergence as an objective function. A more detailed description of the
factorization model can be found in Van de Cruys et al. (2011).

Our paraphrase generation model has been trained on part of the UKWaC corpus (Baroni et al.,
2009), covering about 500M words. The corpus has been part of speech tagged and lemmatized
with Stanford Part-Of-Speech Tagger (Toutanova and Manning, 2000; Toutanova et al., 2003),
and parsed with MaltParser (Nivre et al., 2006), so that dependency triples could be extracted.

Using the latent distributions yielded by our factorization model, it is now possible to compute
the meaning vector for a particular word in context, and subsequently the most similar words
to this meaning vector, which will be our candidate paraphrases.

Intuitively, the contextual features of the word (i.e. the dependency-based context features) will
highlight the important semantic dimensions of the particular instance, creating a probability
distribution over latent factors p(z|d j). Using this probability distribution, a new probability
distribution is determined over dependency features given the context, following equation 1.

p(d|d j) = p(z|d j)p(d|z) (1)

The last step is to weight the original probability vector of the word according to the prob-
ability vector of the dependency features given the word’s context, by taking the pointwise
multiplication of probability vectors p(d|wi) and p(d|d j).

p(d|wi , d j) = p(d|wi) · p(d|d j) (2)

This final step is a crucial one in the model. The model is not just based on latent factors; rather,
the latent factors are used to determine which of the features in the original word vector are
the salient ones given a particular context. This allows us to compute an accurate adaptation of
the original word vector in context.

As an example, take the metaphorical expression reflect concern. We want to compute the
meaning vector for the verb reflect (wi) in the context of its direct object, concerndob j (d j).
Using the probability distribution over latent factors given the dependency context p(z|d j) (a
result that comes out of the factorization), we can compute the probability of dependency
features given the context – p(d|d j).

The former step yields a general probability distribution over dependency features that tells
us how likely a particular dependency feature is given the context concerndob j that the verb

1123



appears in. Our last step is now to weight the original probability vector of the target word (the
aggregate of dependency-based context features over all contexts of the target word) according
to the new distribution given the context in which the verb appears. Features associated with
concern (or more specifically, the dependency features associated with latent factors that are
related to the feature concerndob j) will be emphasized, while features associated with unrelated
latent factors are leveled out. We can now return to our original matrix A and compute the top
similar words for the adapted vector of reflect given the dependency feature concerndob j , which
yields the results presented in 1. If we instead compute the meaning vector for reflect given the
dependency feature l i ghtdob j (as in the non-metaphorical expression reflect light), we get the
results in 2.

1. reflectV , concerndobj: address, highlight, express, . . .

2. reflectV , lightdobj: emit, shine, flash, . . .

The top 6 candidate paraphrases the model produces for some example metaphorical expressions
are shown in Table 1.

similarity score replacement

verb – direct object
reflect concern

0.1657 address
0.1638 highlight
0.1608 express
0.1488 focus
0.1473 outline
0.1415 comment

subject – verb
campaign surge

0.1492 subside
0.1214 intensify
0.1146 erupt
0.0967 plummet
0.0935 swell
0.0928 slump

Table 1: The list of paraphrases with the initial
ranking. The correct paraphrases are printed
in italic.

association replacement

verb – direct object
reflect concern

0.1822 express
0.0809 nurture
0.0771 share
0.0522 reinforce
0.0088 demonstrate
0.0088 lack

subject – verb
campaign surge

0.0377 intensify
0.0028 sweep
0.0009 boom
≈ 0 grow
≈ 0 sweep
≈ 0 plunge

Table 2: Paraphrases re-ranked by the selec-
tional preference model. Correct paraphrases
are printed in italic.

2.2 Reranking of candidate paraphrases using a selectional preference
model

The candidate lists which are generated by the vector space model contain a number of
substitutes that retain the meaning of a metaphorical expression as closely as possible. However,
due to the fact that the model favours the substitutes that are similar to the metaphorical verb,
the highly-ranked substitutes are sometimes also metaphorically used. For example, “speed
up change” is the top-ranked paraphrase for “accelerate change” and the literal paraphrase
“facilitate change” appears only in rank 10. As the task is to identify the literal interpretation,
this ranking still needs to be refined.
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Following Shutova (2010), we use a selectional preference model to discriminate between liter-
ally and metaphorically used substitutes. Verbs used metaphorically are likely to demonstrate
semantic preference for the source domain, e.g. speed up would select for MACHINES, or VEHICLES,
rather than CHANGE (the target domain), whereas the ones used literally for the target domain,
e.g. facilitate would select for PROCESSES (including CHANGE). We therefore expect that selecting
the verbs whose preferences the noun in the metaphorical expression matches best should allow
us to filter out non-literalness.

We automatically acquired selectional preference (SP) distributions of the candidate substitutes
(for subject-verb and verb-object relations) from the British National Corpus (BNC) (Burnard,
2007) parsed by the RASP parser (Briscoe et al., 2006). We obtained SP classes by clustering
the 2000 most frequent nouns in the BNC into 200 clusters using the algorithm of Sun and
Korhonen (2009). We quantified selectional preferences using the association measure proposed
by Resnik (1993). It represents SPs as the difference between the posterior distribution of noun
classes in a particular relation with the verb and their prior distribution in that syntactic position
irrespective of the identity of the verb. This difference then defines the selectional preference
strength (SPS) of the verb, quantified in terms of Kullback-Leibler divergence as follows.

SR(v) = D(P(c|v)||P(c)) =
∑

c

P(c|v) log
P(c|v)
P(c)

, (3)

where P(c) is the prior probability of the noun class, P(c|v) is the posterior probability of the
noun class given the verb and R is the grammatical relation. SPS measures how strongly the
predicate constrains its arguments. Resnik then quantifies how well a particular argument class
fits the verb using another measure called selectional association:

AR(v, c) =
1

SR(v)
P(c|v) log

P(c|v)
P(c)

(4)

We use selectional association as a measure of semantic fitness, i.e. literalness, of the para-
phrases. The selectional preference model was applied to the top 20 substitutes suggested by
the vector space model. The threshold of 20 substitutes was set experimentally on a small
development set. The paraphrases were re-ranked based on their selectional association with
the noun in the context. Those paraphrases that are not well suited or used metaphorically are
dispreferred within this ranking. The new ranking (top 6 paraphrases) is shown in Table 2. The
expectation is that the paraphrase in the first rank (i.e. the verb with which the noun in the
context has the highest association) represents a literal interpretation.

3 Evaluation and Discussion

We compared the rankings of the initial candidate generation by the vector space model (VS)
and the selectional preference-based reranking (SP) to that of an unsupervised paraphrasing
baseline. We thus evaluated the ability of VS on its own to detect literal paraphrases, as well
as the effectiveness of the SP model of Shutova (2010) in an unsupervised setting and in
combination with VS.

3.1 Dataset

To our knowledge, the only metaphor paraphrasing dataset and gold standard available to date
is that of Shutova (2010). We used this dataset to develop and test our system. Shutova (2010)
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annotated metaphorical expressions in a subset of the BNC sampling various genres: literature,
newspaper/journal articles, essays on politics, international relations and sociology, radio
broadcast (transcribed speech). The dataset consists of 62 phrases that include a metaphorical
verb and either a subject or a direct object. The metaphorical expressions in the dataset include
e.g. stir excitement, reflect enthusiasm, accelerate change, grasp theory, cast doubt, suppress
memory, throw remark (verb-object constructions) and campaign surged, factor shaped [..],
tension mounted, ideology embraces, changes operated, approach focuses, example illustrates
(subject-verb constructions). 10 phrases in the dataset were used during development to
observe the behavior of the system, and the remaining 52 constituted the test set. 11 of them
were subject-verb constructions and 41 were verb-direct object constructions.

3.2 Baseline system

The baseline system is also unsupervised and incorporates two methods: that of generating most
similar substitutes for the metaphorical verb regardless of its context and a method for their
re-ranking based on the likelihood of their co-occurrence with the noun in the metaphorical
expression. Thus a list of most similar substitutes is first generated using a standard dependency-
based vector space model (Padó and Lapata, 2007). The likelihood of a paraphrase is then
calculated as a joint probability of the candidate substitutes and the noun in the context as
follows:

Lv = P(v, n)) = P(v) · P(n|v) = f (v)∑
k f (vk)

· f (v, n)
f (v)

=
f (v, n)∑

k f (vk)
(5)

where f (v, n) is the frequency of the co-occurrence of the substitute with the context and∑
k f (vk) is the total number of verbs in the corpus.

3.3 Evaluation method and results

We evaluated the paraphrases with the aid of human judges and against a human-created gold
standard in two different experimental settings.

Setting 1 Human judges were presented with a set of sentences containing metaphorical
expressions and their rank 1 paraphrases produced by VS, by SP and by the baseline, randomised.
They were asked to mark the ones that have the same meaning as the metaphorically used term
– and are used literally in the context of the paraphrase expression – as correct.

We had 4 volunteer annotators who were all native speakers of English and had no or sparse
linguistic expertise. Their agreement on the task was κ = 0.54 (n = 2, N = 115, k = 4), whereby
the main source of disagreement was the presence of highly conventionalised metaphorical
paraphrases. We then evaluated the system performance against their judgements in terms
of precision at rank 1, P(1). Precision at rank 1 measures the proportion of correct literal
interpretations among the paraphrases in rank 1. A paraphrase was considered correct if at
least 3 judges out of 4 marked it as such. The results are demonstrated in Table 3. The VS
model identifies literal paraphrases with P(1) = 0.48 and the SP model with P(1) = 0.52. Both
models outperform the baseline that only achieves P(1) = 0.40.

Setting 2 We then also evaluated VS, SP and baseline rankings against a human-constructed
paraphrasing gold standard. The gold standard was created by Shutova (2010) as follows.
Five independent annotators were presented with a set of sentences containing metaphorical
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relation baseline P(1) VS P(1) SP P(1) Shutova (2010) P(1)

verb – direct object 0.37 0.43 0.48 0.79
verb – subject 0.54 0.64 0.72 0.83

Average across dataset 0.40 0.48 0.52 0.81

Table 3: Results in the evaluation setting 1

expressions and asked to write down all suitable literal paraphrases for the metaphorical
verbs. The annotators were all native speakers of English and had some linguistics background.
Shutova (2010) then compiled a gold standard incorporating all of their annotations. For
example, the gold standard for the phrase brushed aside the accusations contained the verbs
rejected, ignored, disregarded, dismissed, overlooked, discarded.

However, given that the metaphor paraphrasing task is open-ended, it is hard to construct a
comprehensive gold standard. For example, for the phrase stir excitement the gold standard
includes the paraphrase create excitement, but not provoke excitement or stimulate excitement,
which are more precise paraphrases. Thus the gold standard evaluation may unfairly penalise
the system, which motivates our two-phase evaluation against both the gold standard and direct
judgements of system output.

The system output was compared against the gold standard using mean average precision (MAP)
as a measure. MAP is defined as follows:

MAP =
1

M

M∑
j=1

1

N j

N j∑
i=1

Pji , (6)

where M is the number of metaphorical expressions, N j is the number of correct paraphrases
for the metaphorical expression, Pji is the precision at each correct paraphrase (the number of
correct paraphrases among the top i ranks). First, average precision is estimated for individual
metaphorical expressions, and then the mean is computed across the dataset. This measure
allows us to assess ranking quality beyond rank 1, as well as the recall of the system. As
compared to the gold standard, MAP of VS is 0.40, MAP of SP is 0.41 and that of the baseline is
0.37.

3.4 Discussion

Our system consistently produces better results than the baseline, with an improvement of
12% in precision on our human evaluation (SP) and an improvement of 4% MAP on the gold
standard (SP). At first sight, these improvements of our unsupervised system may not seem very
high, in particular when compared to the results of the supervised system of Shutova (2010).
Note, however, that our results are in line with the performance of unsupervised approaches on
the lexical substitution task. Unsupervised approaches to lexical substitution perform well below
their supervised counterparts (which are usually based on WordNet), and often have difficulties
getting significant improvements over a baseline of a simple dependency-based vector space
model of semantic similarity (Erk and Padó, 2008; Van de Cruys et al., 2011). We therefore
think that the method presented here takes a promising step in the direction of unsupervised
metaphor paraphrasing.

The SP re-ranking of the candidates yields an improvement over the VS model used on its own,
as expected. Our data analysis has shown that SP produces higher quality top paraphrases with

1127



respect to their literalness, however the two models perform similarly on the meaning retention
task (according to our own judgements 55% of the top ranked paraphrases had a similar
meaning to that of a metaphorical verb for both models). The difference in MAP scores of the
two models is, however, not as high as that of the respective P(1) scores. This can be explained
by the fact that the VS model produces a number of antonymous candidates. The candidates
are then re-ranked by the SP model which does not consider meaning retention, but rather the
semantic fit of a candidate interpretation in the context. As a result, a number of antonymous
paraphrases that are highly associated with the noun in the context get ranked above some of
the correct literal paraphrases, lowering the method’s MAP score. For example, the antonymous
paraphrase tension eased for the metaphorical expression tension mounted is ranked higher
than the correct paraphrase tension intensified. In general, antonymous paraphrasing was the
most common type of error. Antonyms are known to attract high similarity scores within a
distributional similarity framework. This is an issue that needs to be addressed in the future, in
lexical substitution in general and metaphor paraphrasing in particular.

Although the SP model generally improves the initial VS ranking, there were some instances
where this was not the case. One such example is the metaphorical expression break agreement.
The top ranked paraphrases suggested in the first step, breach and violate, were overrun by the
well matching paraphrases ratify and sign, that have a different – almost opposite – meaning.

The baseline tends to produce metaphorical paraphrases rather than literal ones. However,
in a few cases the baseline suggests better rank 1 paraphrases than the system. For example,
it interprets the expression leak a report as circulate a report, as opposed to print a report
incorrectly suggested by the system. This is due to the fact that the paraphrase generation relies
entirely on one single context word (in this case report); taking a broader context into account
might alleviate this problem.

4 Conclusion

In this paper we presented the first fully unsupervised approach to metaphor interpretation. Our
system produces literal paraphrases for metaphorical expressions in unrestricted text. Producing
metaphorical interpretations in textual format makes our system directly usable by other NLP
applications that can benefit from a metaphor processing component. The fact that, unlike all
previous approaches to this problem, our system does not use any supervision makes it easily
scalable to new domains and applications, as well as portable to a wider range of languages.

Our method identifies literal paraphrases for metaphorical expressions with a precision of
0.52 measured at top-ranked paraphrases. Given the unsupervised nature of our system and
considering the state-of-the-art in unsupervised lexical substitution, we consider this a promising
result. Following Shutova (2010), the current experimental design and test set focuses on
subject-verb and verb-object metaphors only, but we expect the method to be equally applicable
to other parts of speech and a wider range of syntactic constructions. Our context-based vector
space model is suited to all part-of-speech classes and types of relations. Selectional preferences
have been previously successfully acquired not only for verbs, but also for nouns, adjectives and
even prepositions (Brockmann and Lapata, 2003; Zapirain et al., 2009; Ó Séaghdha, 2010).
Extending the system to deal with further syntactic constructions is thus part of our future work.
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