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ABSTRACT
Word alignment is a critical component of machine translation systems. Various methods for
word alignment have been proposed, and different models can produce significantly different
outputs. To exploit the advantages of different models, we propose three ways to combine
multiple alignments for machine translation: (1) alignment selection, a novel method to select
an alignment with the least expected loss from multiple alignments within the minimum
Bayes risk framework; (2) alignment refinement, an improved algorithm to refine multiple
alignments into a new alignment that favors the consensus of various models; (3) alignment
compaction, a compact representation that encodes all alignments generated by different
methods (including (1) and (2) above) using a novel calculation of link probabilities. Experi-
ments show that our approach not only improves the alignment quality, but also significantly
improves translation performance by up to 1.96 BLEU points over single best alignments, and
1.28 points over merging rules extracted from multiple alignments individually.

KEYWORDS: alignment combination, minimum Bayes risk, alignment refinement, weighted
alignment matrix.
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Alignments GIZA++ Berkeley Vigne
GIZA++ – 70.29% 75.17%
Berkeley 70.29% – 73.25%

Vigne 75.17% 73.25% –

Table 1: Agreement of alignment links between different alignment models. Here we use
three different alignment models: GIZA++ (Och and Ney, 2003), the unsupervised Berkeley
aligner (Liang et al., 2006), and a discriminative aligner Vigne (Liu et al., 2010).

1 Introduction

Word alignment is a preliminary step for statistical machine translation (SMT). Most SMT
systems, not only phrase-based models (Och and Ney, 2004; Koehn et al., 2003; Chiang,
2005; Xiong et al., 2006), but also syntax-based models (Galley et al., 2006; Shen et al., 2008;
Liu et al., 2006; Huang et al., 2006), rely heavily on word-aligned bilingual corpora.

Various methods for word alignment, including generative methods (Brown et al., 1993;
Vogel et al., 1996; Liang et al., 2006) and discriminative methods (Moore et al., 2006;
Taskar et al., 2005; Blunsom and Cohn, 2006; Liu et al., 2010), have been proposed in the
literature. Different models produce significantly different alignments. 1 Table 1 shows the
agreement between each pair of alignments on 1.5M Chinese-English parallel sentence pairs.
Here agreement is computed by using one alignment model’s output as a gold standard to eval-
uate the other alignment model’s output in terms of F1 score (Xiao et al., 2010). The higher
the agreement score is, the more similar two alignments are. Table 1 shows that the agreement
scores are always below 76%.

Therefore, it is natural to combine multiple alignments to improve both alignment quality
and translation quality. In this paper, we propose three ways to exploit multiple alignments
for machine translation: alignment selection, refinement and compaction. Alignment selection
chooses high quality alignments while refinement generates new and more reliable alignments.
Alignment compaction encodes multiple possible alignments. We show that these methods
work well together: alignment refinement e.g. offers high quality alignment choices, that can
be exploited by alignment compaction.

2 Related Work

Our research builds on previous work in the field of minimum Bayes risk (MBR) decision,
system combination and model compaction. MBR decision aims to find the candidate hypoth-
esis that has the least expected loss under a probability model when the true reference is
not known (Brickel and Doksum, 1977). Diverse loss functions have been described by using
different evaluation criteria for loss calculation, e.g. edit distance and sentence-level BLEU
in SMT (Kumar and Byrne, 2004; Tromble et al., 2008; González-Rubio et al., 2011). In our
work, we select an alignment within the MBR framework using a number of loss functions at
both alignment and phrase levels.

System combination, the process which integrates fragment outputs from multiple systems,
has produced substantial improvements in many natural language processing tasks, includ-
ing parsing (Henderson and Brill, 1999; Sagae and Lavie, 2006; Fossum and Knight, 2009),
word segmentation (Sun and Wan, 2012) and machine translation (Rosti et al., 2007; He et al.,

1These alignments have equivalent qualities compared to a true gold standard (see in Table 2).
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2008; Feng et al., 2009), just to name a few. Alignment combination has also been explored
previously (Och and Ney, 2003; Koehn et al., 2003; Ayan et al., 2005; DeNero and Macherey,
2011). We draw inspiration from (Och and Ney, 2003; Koehn et al., 2003) but our technique
differs from previous work in that (1) they require exactly two bidirectional alignments while
our approach can use an arbitrary number of alignments; (2) we take into account the occur-
rences of potential links, which turns out to be important.

Previous research has demonstrated that compact representations can produce improved re-
sults by offering more alternatives, e.g. using forests over 1-best trees (Mi and Huang, 2008;
Tu et al., 2010), word lattices over 1-best segmentations (Dyer et al., 2008), and weighted
alignment matrices (WAMs) over 1-best alignments (Liu et al., 2009; Tu et al., 2011). Instead
of using k-best alignments from the same model, as in (Liu et al., 2009; Tu et al., 2011), here
we construct WAMs from multiple alignments generated by different models (including MBR-
based and refined models). As the alignment probabilities are generally incomparable between
different alignment models, we propose a novel calculation of link probabilities in WAMs.

3 Approach

3.1 Alignment Selection

Alignment selection refers to selecting one alignment from multiple alignments using mini-
mum Bayes risk. If the reference alignment a was known, we could measure each alignment
ai using the loss function L (ai , a). In the MBR framework, although the true reference align-
ment is unknown, we assume that the individual alignment models’ output forms a reasonable
distribution over possible reference alignments. The MBR decision aims to find the candidate
alignment that has the least expected loss under the distribution (Brickel and Doksum, 1977).

3.1.1 MBR Decision

MBR decision has the following form:

â = arg min
ai∈A
R(ai) = arg min

ai∈A

∑
a j∈A

L (ai , a j) · p(a j | f , e) (1)

where R(ai) denotes the Bayes risk of candidate alignment ai under loss function L , A indi-
cates the set of alignments generated by different models. In general, for different alignment
models, the probabilities p(a| f , e) are not directly comparable. For simplicity, in our work
below we assume that they are in fact comparable and have the same value. 2

3.1.2 Loss Functions

The loss function L (ai , a j) is used to measure the quality of alignments. Here we introduce a
set of metrics for the evaluation of alignments at both alignment and phrase levels.

AER

Alignment error rate (Och and Ney, 2003) has been used as the official evaluation criterion in
most alignment shared tasks (Liu et al., 2009). AER scores are given by:

AER(S, P,A) = 1− (|A∩ S|+ |A∩ P|)/(|A|+ |S|) (2)
2Alignment probabilities can be set empirically based on (expected overall) performance (Fossum and Knight,

2009), or uniformly without any bias (Xiao et al., 2010; Duan et al., 2010). We tried a few other settings and found
them to be less effective.
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Figure 1: (a) Alignment of a sentence pair generated by GIZA++ (a1), (b) alignment of the
same sentence by Berkeley aligner (a2), (c) another alignment by Vigne (a3).

where S and P are sets of sure and possible links in a hand-aligned reference alignment re-
spectively, and A is a candidate alignment. Note that S is a subset of P: S ⊆ P. As there is no
reference alignment that is hand-aligned by human experts in our work, we cannot distinguish
sure links from possible links. Therefore, we regard all links to be sure links: S = P. With this,
the AER score is calculated by:

AER(ai, a j) = 1− (2× |ai ∩ a j|)/(|ai |+ |a j |) (3)

CPER

Although widely used, AER is criticized for correlating poorly with translation perfor-
mance (Ayan and Dorr, 2006; Fraser and Marcu, 2007). Therefore, Ayan and Dorr (2006)
have proposed constituent phrase error rate (CPER) for evaluating word alignments at the
phrase level instead of the alignment level. CPER can be computed as:

CPER(ai , a j) = 1− (2× |Pai
∩ Pa j
|)/(|Pai

|+ |Pa j
|) (4)

where Pa denotes the set of phrases that are consistent with a given alignment a. Compared
with AER, CPER penalizes dissimilar alignment links more heavily. As a dissimilar link reduces
the number of intersected links of two alignments by 1 in AER, it might lead to more than one
different phrase pair added to or removed from the set of phrases (Ayan and Dorr, 2006).

CHER

As CPER evaluates word alignments in the context of phrase-based MT, we propose a similar
metric called constituent hierarchical-phrase error rate (CHER) for hierarchical-phrase models.
The difference between them is that we use Ha instead of Pa, where Ha denotes the hierarchical
phrases extracted. Hierarchical phrases are more sensitive to word alignments because they
are sensitive to inside (i.e. subtracted) phrases.

3.2 Alignment Refinement

Alignment refinement refers to extracting parts of multiple alignments and constructing a new
alignment instead of selecting the best one from existing alignments. A simple way to refine
multiple alignments is to employ their intersection or union. However, using intersection will
result in a high-precision but low-recall alignment, while using union will result in a high-recall
but low-precision alignment. Koehn et al. (2003) show performance improvements by finding
a balance between the intersection and union with the grow-diag-final algorithm.
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Figure 2: (a) The refined alignment generated from multiple alignments in Figure 1, (b) the
resulting weighted alignment matrix that samples the same alignments, where the number in
the cells are the probabilities of the corresponding link.

Unfortunately, this algorithm cannot be applied to our approach. This is because the grow-diag-
final algorithm requires exactly two bidirectional alignments, while we would use more than
two alignments. Therefore, we propose a variation of the grow-diag-final algorithm named
grow-diag-final-rank adapted for multiple alignments. The difference between the two algo-
rithms is that we take into account the occurrences of conflicting links. Conflicting links refer
to triples <li , l j , lk>, in which li and l j are the links that share the same source side, and l j
and lk share the same target side. For example, the triple < (de, ’s), (de, of), (fazhan, of)> is
conflicting because the first two share the same source side while the latter two share the same
target side.

Alignment refinement chooses the links with the most occurrences when there are conflicting
links. Intuitively, our approach is motivated by the following observation: the links that occur
more often in different alignments frequently have a higher confidence than those that occur
less often. Our algorithm favors the links that occur frequently. As an example, consider the
conflicting links < (de, ’s), (de, of), (fazhan, of)>: without considering the number of their
occurrences, we would retain the first two links if we run grow-diag-final greedily. In contrast,
considering that the links (de, ’s) and (fazhan, of) occur twice while (de, of) only occurs once,
we prefer to retain (de, ’s) and (fazhan, of). Figure 2(a) shows the refined alignment generated
from the three alignments in Figure 1 using the grow-diag-final-rank algorithm.

3.3 Alignment Compaction

Given the original alignments and the alignments generated by alignment refinement, it is
quite natural to try to encode them in a compact representation. In this paper, we use weighted
alignment matrices for this purpose. A weighted alignment matrix (Liu et al., 2009) is a matrix
to encode the probabilities of k-best alignments of the same sentence pair. Each element in the
matrix stores a link probability which is estimated from a k-best list.

pm( j, i) =

∑K
k=1 p(ak| f , e) ·δ(ak, j, i)∑K

k=1 p(ak| f , e)
(5)

where

δ(ak, j, i) =
�

1 ( j, i) ∈ ak
0 otherwise (6)
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Here ak ∈ K is a k-best list, p(ak| f , e) is the probability of an alignment ak in the k-best
list. Intuitively, a higher link probability pm( j, i) indicates high agreement between different
alignments, thereby high quality.

(Liu et al., 2009; Tu et al., 2011) have shown that WAMs yield encouraging results by making
good use of k-best alignments from a single alignment model. Unlike in this previous work,
in our approach we construct WAMs from alignments generated by different models (includ-
ing MBR-based and refined models). In a k-best list, each alignment is weighted using their
probabilities since they are obtained from the same model, and a higher weight denotes that
the alignment model has higher confidence in the output. In contrast, the alignments in our
work are generated by different models and their probabilities are generally incomparable. As
noted above, we assume that all the alignments have the same probabilities. Then, we obtain:

pm( j, i) =

∑N
k=1 δ(ak, j, i)

N
(7)

Figure 2(b) shows the WAM that captures the three alignments in Figure 1.3

We then follow (Tu et al., 2011) to extract hierarchical phrases from WAM and calculate their
translation and lexical probabilities. Instead of extracting phrase pairs that respect the word
alignment, Tu et al. (2011) enumerate all potential phrase pairs and calculate their fractional
counts. As they soften the alignment consistency constraint, there exists a massive number of
phrase pairs extracted from the training corpus. To maintain a reasonable phrase table size,
they discard any phrase pair that has a fractional count lower than a threshold t. For further
details, see (Tu et al., 2011).

4 Experiments

4.1 Setup

We carry out our experiments using a reimplementation of the hierarchical phrase-based sys-
tem (Chiang, 2005) on the NIST Chinese-English translation tasks. Our training data contains
1.5M sentence pairs from LDC dataset.4 We train a 4-gram language model on the Xinhua por-
tion of the GIGAWORD corpus using the SRI Language Toolkit (Stolcke, 2002) with modified
Kneser-Ney Smoothing (Kneser and Ney, 1995). We use minimum error rate training (Och,
2003) to optimize the feature weights on the MT02 testset, and test on the MT03/04/05 test-
sets. For evaluation, case-insensitive NIST BLEU (Papineni et al., 2002) is used to measure
translation performance.

Three alignment models are chosen for our experiments with default settings:
GIZA++ (Och and Ney, 2003), the unsupervised Berkeley aligner (Liang et al., 2006), and
the linear modeling alignment Vigne (Liu et al., 2010). We use the three baseline alignments
to select MBR alignments and to generate a refined alignment. We use all three baseline
alignments, as well as all of the MBR and refined alignments in the WAM-based compaction
approach. When extracting rules from WAM, we follow (Tu et al., 2011) to set the pruning
threshold t=0.5.

3In practice, alignment compaction encodes both baseline alignments and the new alignments in Section 3.1
and 3.2.

4The corpus includes LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08
and LDC2005T06.
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Alignments AER BAER CPER CHER
GIZA++ 22.50 27.92 24.11 33.23
Berkeley 21.11 26.41 23.35 34.44

Vigne 19.13 24.05 23.54 34.02
SelectionAER 17.93 23.29 22.10 31.47

SelectionC PER 18.32 23.72 21.53 30.56
SelectionCHER 18.52 23.93 21.68 30.84
Refinement 18.79 24.43 21.50 30.31

Table 2: Evaluation of alignment quality. Here “SelectionL ” indicates the alignment selected
from multiple single alignments using MBR decision under the loss function L (e.g. AER,
CPER and CHER). For all metrics, the lower the score is, the better the alignment quality is.

4.2 Evaluation of Alignment Quality

In this section, we investigate the quality of different alignments on the Chinese-English lan-
guage pair data. We annotated 1007 sentences with annotations that distinguish between sure
and possible links.5 We used 502 sentences as the tuning set, and 505 sentences as the test set.
We run GIZA++ and the Berkeley aligner on the training corpus as well as the test set. We
tune the feature weights of Vigne on the tuning set using AER as the optimization criterion. We
evaluate alignments in terms of AER, CPER and CHER as described in Section 3.1.2. Inspired
by Fraser and Marcu (2007), we also employ a new metric called balanced AER (BAER) that
considers only the sure links in the reference alignments:

BAER(S,A) = 1− (2× |A∩ S|)/(|A|+ |S|) (8)

For all metrics, lower score indicates better alignment quality.

Table 2 lists the alignment quality results for different alignment strategies. We find that both
selection and refinement methods outperform single alignments at all metrics, indicating that
our methods improve the quality of alignment in a certain way. One finding is that the selection
method usually achieves the best score at the metric it uses as loss function. For example, the
selection method using AER as loss function outperforms other alignments at the AER and
BAER metrics while underperforming at other metrics. This is intuitive, since the method
always selects the alignment with the minimum expected loss under the metric.

4.3 Evaluation of Translation Quality

Table 3 summaries the results of translation performance with different alignment methods.

• Baseline results. We have three baseline systems: GIZA++, Berkeley and Vigne. The
results show that GIZA++ achieves the best performance among the baseline systems.
Therefore, we compare our methods with GIZA++ system in the following analysis.

• Rule Merging. Different alignments generally result in very different sets of hierarchical
rules. As one would expect, merging them outperforms using any of them individually
through enlarging the rule coverage. Experimental results show that merging rules in-
deed outperforms using single best alignments, at the cost of a much larger rule table.

5available at http://nlp.ict.ac.cn/∼tuzhaopeng/ .
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Alignments Links Rules DEV MT03 MT04 MT05 Avg.
GIZA++ 45.4M 143M 35.07 33.11 35.06 32.98 33.72
Berkeley 33.7M 270M 34.72 32.64 34.93 32.58 33.38

Vigne 35.6M 140M 34.64 33.16 34.29 32.45 33.30
Rule Merging – 553M 35.55 34.12** 35.88** 33.66* 34.55

Inter 24.5M 178M 34.10 32.35 34.17 32.47 33.00
Union 55.6M 94M 34.83 33.42 35.04 33.05 33.84

SelectionAER 37.9M 175M 35.35 33.65** 35.82** 33.56* 34.34
SelectionC PER 38.9M 187M 35.36 34.21** 36.05** 33.71** 34.66
SelectionCHER 39.1M 182M 35.71 34.16** 35.88** 33.94** 34.66
Refinement 45.5M 210M 35.44 33.81** 35.98** 33.95** 34.58
Compaction 55.6M 319M 36.64 35.01** 36.81** 34.94** 35.59

Table 3: Evaluation of translation quality. “Links” denotes the number of links in the alignment
and “Rules” denotes the number of rules (Chiang, 2005) extracted from the corresponding
alignment. “Avg.” is the average BLEU score on the three test sets. Significance tests are
done against GIZA++ on test sets following the sign-test approach (Collins et al., 2005), and
“**” and “*” denote p-value less than 0.01 and 0.05, respectively. Furthermore, Compaction is
significantly better than Rule Merging for p-value less than 0.01 on all test sets.

• Alignment Selection. Concerning selection methods, the results show that using loss
functions at phrase level (i.e. CPER and CHER) outperforms loss function at alignment
level (i.e AER). One possible reason is that CPER and CHER relate more tightly to the
translation performance, because they care about the phrases which are used directly
in machine translation. In brief, using selection methods with different loss functions
improves translation performance in BLEU score by up to 0.92 points on average.

• Alignment Refinement. Table 3 shows that simply using the intersection (Inter) or
union (Union) does not achieve any improvement. This is in accord with intuition, be-
cause intersection discards many useful links while union includes many incorrect links.
By contrast, alignment refinement finds a good balance between them, and achieves
significant improvement in BLEU score ranging from 0.70 to 0.97 points.

• Alignment Compaction. Alignment compaction encodes all alignments and achieves
the best result, which improves BLEU scores by between 1.75 and 1.96 points. Compared
with rule merging, alignment combination produces substantial improvements in both
translation performance and rule table size.

5 Conclusion

In this paper, we have presented three simple and effective methods to make use of multi-
ple alignments. First, we select the alignments with minimum Bayes risk using different loss
functions at both alignment and phrase levels. Then, we refine multiple alignments using
an improved grow-diag-final-rank algorithm that considers the occurrences of alignment links.
Finally, we use a compact representation named weighted alignment matrix to represent all
alignments (including MBR-based and refined alignments) and propose a novel calculation of
link probabilities. Experimental results show that our method not only improves the align-
ment quality, but also significantly improves translation performance over both single best
alignments and merging rules extracted from different single alignments individually.
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Collins, M., Koehn, P., and Kučerová, I. (2005). Clause restructuring for statistical machine
translation. In Proceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics, pages 531–540. Association for Computational Linguistics.

DeNero, J. and Macherey, K. (2011). Model-based aligner combination using dual decomposi-
tion. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 420–429, Portland, Oregon, USA. Association for Com-
putational Linguistics.

Duan, N., Li, M., Zhang, D., and Zhou, M. (2010). Mixture model-based minimum bayes
risk decoding using multiple machine translation systems. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics (Coling 2010), pages 313–321, Beijing, China.
International Committee on Computational Linguistics.

Dyer, C., Muresan, S., and Resnik, P. (2008). Generalizing word lattice translation. In Pro-
ceedings of ACL-08: HLT, pages 1012–1020, Columbus, Ohio. Association for Computational
Linguistics.

1257



Feng, Y., Liu, Y., Mi, H., Liu, Q., and Lü, Y. (2009). Lattice-based system combination for
statistical machine translation. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 1105–1113, Singapore. Association for Computational
Linguistics.

Fossum, V. and Knight, K. (2009). Combining constituent parsers. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, Companion Volume: Short Papers, pages 253–256,
Boulder, Colorado. Association for Computational Linguistics.

Fraser, A. and Marcu, D. (2007). Measuring word alignment quality for statistical machine
translation. Computational Linguistics, 33(3):293–303.

Galley, M., Graehl, J., Knight, K., Marcu, D., DeNeefe, S., Wang, W., and Thayer, I. (2006).
Scalable inference and training of context-rich syntactic translation models. In Proceedings of
the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pages 961–968, Sydney, Australia. Association for
Computational Linguistics.

González-Rubio, J., Juan, A., and Casacuberta, F. (2011). Minimum bayes-risk system combi-
nation. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1268–1277, Portland, Oregon, USA. Association
for Computational Linguistics.

He, X., Yang, M., Gao, J., Nguyen, P., and Moore, R. (2008). Indirect-hmm-based hypothesis
alignment for computing outputs from machine translation systems. In Proceedings of the
2008 Conference on Empirical Methods in Natural Language Processing, pages 98–107, Hon-
olulu, Hawaii. Association for Computational Linguistics.

Henderson, J. C. and Brill, E. (1999). Exploiting diversity in natural language processing:
Combining parsers. In Proceedings of the Fourth Conference on Empirical Methods in Natural
Language Processing, pages 187–194.

Huang, L., Knight, K., and Joshi, A. (2006). Statistical syntax-directed translation with ex-
tended domain of locality. In Proceedings of AMTA, pages 66–73. Citeseer.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling. In
ICASSP IEEE INT CONF ACOUST SPEECH SIGNAL PROCESS PROC, volume 1, pages 181–184.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceed-
ings of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 48–54. Association for Computa-
tional Linguistics.

Kumar, S. and Byrne, W. (2004). Minimum bayes-risk decoding for statistical machine trans-
lation. In Susan Dumais, D. M. and Roukos, S., editors, HLT-NAACL 2004: Main Proceedings,
pages 169–176, Boston, Massachusetts, USA. Association for Computational Linguistics.

Liang, P., Taskar, B., and Klein, D. (2006). Alignment by agreement. In Proceedings of the
Human Language Technology Conference of the NAACL, Main Conference, pages 104–111, New
York City, USA. Association for Computational Linguistics.

1258



Liu, Y., Liu, Q., and Lin, S. (2006). Tree-to-string alignment template for statistical machine
translation. In Proceedings of the 21st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computational Linguistics, pages 609–616,
Sydney, Australia. Association for Computational Linguistics.

Liu, Y., Liu, Q., and Lin, S. (2010). Discriminative word alignment by linear modeling. Com-
putational Linguistics, 36(3):303–339.

Liu, Y., Xia, T., Xiao, X., and Liu, Q. (2009). Weighted alignment matrices for statistical
machine translation. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 1017–1026, Singapore. Association for Computational Linguistics.

Mi, H. and Huang, L. (2008). Forest-based translation rule extraction. In Proceedings of
the 2008 Conference on Empirical Methods in Natural Language Processing, pages 206–214,
Honolulu, Hawaii. Association for Computational Linguistics.

Moore, R. C., Yih, W.-t., and Bode, A. (2006). Improved discriminative bilingual word align-
ment. In Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics, pages 513–520, Sydney,
Australia. Association for Computational Linguistics.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association for Computational Linguistics, pages 160–167,
Sapporo, Japan. Association for Computational Linguistics.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Och, F. J. and Ney, H. (2004). The alignment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4):417–449.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of 40th Annual Meeting of the Association
for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association
for Computational Linguistics.

Rosti, A.-V., Ayan, N. F., Xiang, B., Matsoukas, S., Schwartz, R., and Dorr, B. (2007). Com-
bining outputs from multiple machine translation systems. In Human Language Technologies
2007: The Conference of the North American Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages 228–235, Rochester, New York. Association
for Computational Linguistics.

Sagae, K. and Lavie, A. (2006). Parser combination by reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 129–
132, New York City, USA. Association for Computational Linguistics.

Shen, L., Xu, J., and Weischedel, R. (2008). A new string-to-dependency machine translation
algorithm with a target dependency language model. In Proceedings of ACL-08: HLT, pages
577–585, Columbus, Ohio. Association for Computational Linguistics.

Stolcke, A. (2002). Srilm - an extensible language modeling toolkit. In Proceedings of Seventh
International Conference on Spoken Language Processing, volume 3, pages 901–904. Citeseer.

1259



Sun, W. and Wan, X. (2012). Reducing approximation and estimation errors for chinese
lexical processing with heterogeneous annotations. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 232–241, Jeju
Island, Korea. Association for Computational Linguistics.

Taskar, B., Simon, L.-J., and Dan, K. (2005). A discriminative matching approach to word
alignment. In Proceedings of Human Language Technology Conference and Conference on Em-
pirical Methods in Natural Language Processing, pages 73–80, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Tromble, R., Kumar, S., Och, F., and Macherey, W. (2008). Lattice Minimum Bayes-Risk
decoding for statistical machine translation. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 620–629, Honolulu, Hawaii. Association for
Computational Linguistics.

Tu, Z., Liu, Y., Hwang, Y.-S., Liu, Q., and Lin, S. (2010). Dependency forest for statisti-
cal machine translation. In Proceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010), pages 1092–1100, Beijing, China. International Committee on Com-
putational Linguistics.

Tu, Z., Liu, Y., Liu, Q., and Lin, S. (2011). Extracting Hierarchical Rules from a Weighted
Alignment Matrix. In Proceedings of 5th International Joint Conference on Natural Language
Processing, pages 1294–1303, Chiang Mai, Thailand. Asian Federation of Natural Language
Processing.

Vogel, S., Ney, H., and Tillmann, C. (1996). Hmm-based word alignment in statistical trans-
lation. In Proceedings of the 16th conference on Computational linguistics, pages 836–841.
Association for Computational Linguistics.

Xiao, T., Zhu, J., Zhang, H., and Zhu, M. (2010). An empirical study of translation rule
extraction with multiple parsers. In Coling 2010: Posters, pages 1345–1353, Beijing, China.
International Committee on Computational Linguistics.

Xiong, D., Liu, Q., and Lin, S. (2006). Maximum entropy based phrase reordering model for
statistical machine translation. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,
pages 521–528, Sydney, Australia. Association for Computational Linguistics.

1260


