
Proceedings of COLING 2012: Posters, pages 1361–1370,
COLING 2012, Mumbai, December 2012.

HYENA: Hierarchical Type Classification for Entity Names

Mohamed Amir Yose f 1 Sandro Bauer2 Johannes Ho f f ar t1

Marc Spaniol1 Gerhard Weikum1

(1) Max-Planck-Institut für Informatik, Saarbrücken, Germany
(2) Computer Laboratory, University of Cambridge, UK

{mamir|jhoffart|mspaniol|weikum}@mpi-inf.mpg.de, sandro.bauer@cl.cam.ac.uk

ABSTRACT
Inferring lexical type labels for entity mentions in texts is an important asset for NLP tasks like
semantic role labeling and named entity disambiguation (NED). Prior work has focused on flat
and relatively small type systems where most entities belong to exactly one type. This paper
addresses very fine-grained types organized in a hierarchical taxonomy, with several hundreds
of types at different levels. We present HYENA for multi-label hierarchical classification. HYENA
exploits gazetteer features and accounts for the joint evidence for types at different levels.
Experiments and an extrinsic study on NED demonstrate the practical viability of HYENA.

KEYWORDS: Fine-grained entity types, multi-labeling, hierarchical classification, meta-
classification.
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1 Introduction

Motivation: Web contents such as news, blogs, etc. are full of named entities. Recognizing
them and disambiguating them has been intensively studied (see, e.g., (Finkel et al., 2005;
Cucerzan, 2007; Milne and Witten, 2008; Hoffart et al., 2011; Ratinov et al., 2011)). Each entity
belongs to one or more lexical types associated with it. For instance, an entity such as Bob Dylan
should be assigned labels of type Singer, Musician, Poet, etc., and also the corresponding
supertype(s) (hypernyms) in a type hierarchy, in this case Person. Such fine-grained typing of
entities can be a great asset for various NLP tasks, e.g. semantic role labeling. Most notably,
named entity disambiguation (NED) can be boosted by knowing or inferring a mention’s lexical
types. For example, noun phrases such as “songwriter Dylan”, “Google founder Page”, or “rock
legend Page” can be easily mapped to the entities Bob Dylan, Larry Page, and Jimmy Page if
their respective types Singer, BusinessPerson, and Guitarist are available.

Problem Statement: State-of-the-art tools for named entity recognition like the Stanford NER
Tagger (Finkel et al., 2005) compute such lexical tags only for a small set of coarse-grained
types: Person, Location, and Organization (plus tags for non-entity phrases of type time,
money, percent, and date). There is little literature on fine-grained typing of entity mentions
(Fleischman and Hovy, 2002; Ekbal et al., 2010; Rahman and Ng, 2010; Ling and Weld, 2012),
and these approaches are pretty much limited to flat sets of several dozens of types. Because of
the relatively small number of types, an entity or mention is typically mapped to one type only.
The goal that we address in this paper is to extend such methods by automatically computing
lexical types for entity mentions, using a large set of types from a hierarchical taxonomy with
multiple levels. In this setting, many entities naturally belong to multiple types. So we face a
hierarchical multi-label classification problem (Tsoumakas et al., 2012).

Contribution: This paper introduces HYENA (Hierarchical tYpe classification for Entity NAmes).
HYENA is a multi-label classifier for entity types based on hierarchical taxonomies derived from
WordNet (Fellbaum, 1998) or knowledge bases like YAGO (Suchanek et al., 2007) or Freebase
(Bollacker et al., 2008). HYENA’s salient contributions are the following:

• the first method for entity-mention type classification that can handle multi-level type
hierarchies with hundreds of types and multiple labels per mention;
• extensions to consider cross-evidence and constraints between different types, by devel-

oping a meta-classifier demonstrating the superiority of HYENA;
• experiments against state-of-the-art baselines, demonstrating the superiority of HYENA;
• an extrinsic study on boosting NED by harnessing type information.

2 Type Hierarchy and Feature Set

2.1 Fine-grained Type Hierarchy

We have systematically derived a very fine-grained type taxonomy from the YAGO knowledge
base (Suchanek et al., 2007; Hoffart et al., 2012) which comes with a highly accurate mapping
of Wikipedia categories to WordNet synsets. We start with five broad classes namely PERSON,
LOCATION, ORGANIZATION, EVENT and ARTIFACT. Under each of these superclasses, we pick
100 prominent subclasses. The selection of subclasses is based on the population of the classes:
we rank them in descending order of the number of YAGO entities that belong to a class, and
pick the top 100 for each of the top-level superclasses. This results in a very fine-grained
reference taxonomy of 505 types, organized into a directed acyclic graph with 9 levels in its
deepest parts. For instance, this includes fine-grained classifications of an Adminstrative
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District in order to distinguish between Municipality, Township, Commune, etc. or
differentiations of Publications into Books, Periodicals and Magazines.

We are not aware of any similarly rich type hierarchies used in prior work on NER and entity
typing. Our approach can easily plug in alternative type taxonomies (e.g. derived from Freebase
or DBpedia as in (Ling and Weld, 2012), or from hand-crafted resources such as WordNet).

2.2 Feature Set

For a general approach and for applicability to arbitrary texts, we use only features that are
automatically extracted from input texts. We do not use any features that require manual
annotations, such as sense-tagging of general words and phrases in training documents. This
discriminates our method from some of the prior work which used WordNet senses as features
(e.g., (Rahman and Ng, 2010)).

Mention String: We derive the mention string itself (a noun phrase of one or more consecutive
words) as well as unigrams, bigrams, and trigrams that overlap with the mention string.

Sentence Surrounding Mention: We derive from a bounded window (size 3) around the
mention: all unigrams, bigrams, and trigrams in the sentence along with their distance to the
mention, and all unigrams along with their absolute distance to the mention.

Mention Paragraph: We consider the mention paragraph in order to obtain additional topical
cues about the mention type. We extract unigrams, bigrams, and trigrams in a bounded window
(2000 characters) around the mention (truncated at the paragraph boundaries).

Grammatical Features: We use part-of-speech tags (with/without distance) of the tokens
within a bounded window. Further, we resolve the first “he” or “she” pronoun in the same and
in the subsequent sentence (including distance) and the closest preceding verb-preposition pair.

Gazetteer Features: We build type-specific gazetteers of words occurring in entity names
derived from the YAGO knowledge base. YAGO has a huge dictionary of name-entity pairs
extracted from Wikipedia. We automatically construct a binary feature whether the mention
contains a word in this type’s gazetteer or not. This does not mean determining the mention
type(s) (e.g. “Alice” occurs in person subclasses but also in locations, songs, organizations, etc.).

3 Classifier

3.1 Hierarchical Classifier

Based on the feature set defined in the previous section, we build a set of type-specific classifiers
using the SVM software liblinear (Fan et al., 2008; Chang and Lin, 2011). As our YAGO-based
type system integrates WordNet and Wikipedia categories, we obtain ample training data from
Wikipedia effortlessly, by following Wikipedia anchor texts to the corresponding YAGO entities.

For each type, we consider Wikipedia mentions (and their context, cf. Section 2.2) of the type’s
instances as positive training samples. For discriminative learning, we use all siblings in the type
hierarchy as negative samples. As the subclasses of type t do not necessarily cover all entities,
we add a subclass Others to each non-leaf type. Positive samples for Others are instances of
type t that do not belong to any of its subclasses. Conversely, the classifiers for non-leaf nodes
include all instances of their subtypes as positive samples (with full weight). HYENA performs
type-specific classification in a top-down manner. A mention is assigned to all types for which
the classifier signals acceptance. If rejected, classification is stopped at this level.
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3.2 Meta Classifier

HYENA uses a global threshold θ for accepting to a class. Using a single parameter for all
types is not fully satisfying, as different types may exhibit very different characteristics. So the
optimal acceptance threshold may be highly type-dependent. To overcome this limitation, we
devised a meta classifier that ranks the types for each test mention by decreasing confidence
values and then predicts the “right” number of top-n labels to be assigned to a mention, similar
to the methodology of (Tang et al., 2009). We use the confidence values of the type-specific
classifier ensemble as meta-features, and train a multi-class logistic regression classifier to
obtain a suitable value n of features. We combine the base classifiers and the meta classifier by
first running the entire ensemble top-down along the type hierarchy, and then letting the meta
model decide on how many of the highest-scoring types we accept for a mention.

4 Experiments

4.1 Setup

System: The described methods are implemented in HYENA. The Stanford NLP tools are used
to identify mentions of named entities and to extract grammatical features from the context.
Data: We used the English Wikipedia edition as of 2012-05-02. In order to obtain ground-truth
type labels, we exploited the links to other Wikipedia articles, resolved the corresponding
YAGO2 entity and retrieved the semantic types. For example, from the Wikipedia markup:

“In June 1989, Obama met [[Michelle Obama|Michelle Robinson]] when he was
employed as a summer associate at the Chicago law firm of [[Sidley Austin]]”

the following YAGO2 entities are assigned:

Michelle Robinson→ http://yago-knowledge.org/resource/Michelle_Obama
Sidley Austin→ http://yago-knowledge.org/resource/Sidley_Austin

HYENA is trained on 50,000 randomly Wikipedia articles selected, containing around 1.6 million
entity mentions. 92% of the corresponding entities belong to at least one of our 5 top-level
types, with 11% belonging to at least two top-level types. Testing of HYENA is performed
on 10,000 randomly selected Wikipedia articles withheld from the same Wikipedia edition
and disjoint from the training data. All experimental data is available at http://www.mpi-
inf.mpg.de/yago-naga/hyena/.
Performance Measures: We report micro- and macro-evaluation numbers for precision, recall
and F1 scores. Let T be the set of all types in our hierarchy, and let It be the set of instances
tagged with type t, and let Ît the set of instances that are predicted to be of type t. The
measures used are:
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∑
t∈T

��It ∩ Ît

��
∑

t∈T

�� Ît

�� and Recal lmicro =

∑
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��It ∩ Ît
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��It
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∑
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��
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�� and Recal lmacro =
1
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∑
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��It ∩ Ît
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��It
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Competitors: We identified the methods by (Fleischman and Hovy, 2002) referred to as
HOVY, (Rahman and Ng, 2010) referred to as NG, and FIGER by (Ling and Weld, 2012) for
comparison (cf. Section 6). We conducted experiments on the competitors’ datasets to avoid
re-implementation and to give them the benefit of their original optimization and tuning.
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Macro Micro
Prec. Rec. F1 Prec. Rec. F1

5 Top-level Types 0.941 0.922 0.932 0.949 0.936 0.943
All 505 Types 0.878 0.863 0.87 0.913 0.932 0.922

Table 1: Overall Experimental Results for HYENA on Wikipedia 10000 articles
Macro Micro

Prec. Rec. F1 Prec. Rec. F1

5 Top-level Types
HOVY 0.522 0.464 0.491 0.568 0.51 0.537
HYENA 0.941 0.922 0.932 0.949 0.936 0.943

All 505 Types
HOVY 0.253 0.18 0.21 0.405 0.355 0.378
HYENA 0.878 0.863 0.87 0.913 0.932 0.922

Table 2: Results of HYENA vs HOVY (trained and tested on Wikipedia 10000 articles)

4.2 Multi-label Classification

We present multi-label experiments that are geared for high precision and high recall. Ex-
periments are performed against ground truth coming from Wikipedia, the BBN Pronoun
Coreference Corpus and Entity Type Corpus (LDC2005T33)and the FIGER-Gold dataset.

4.2.1 HYENA experiments on Wikipedia

The results of our HYENA approach on Wikipedia are shown in Table 1. HYENA achieves very
high F1 scores of around 94% for its 5 top-level types. Evaluated against the entire hierarchy,
F1 scores are still remarkably high with F1 scores of 87% and 92% for macro and micro
evaluations, respectively. The slightly weaker results for the macro evaluation are explainable
by our fine-grained hierarchy, which also contains a few “long-tail” types.

In order to compare against HOVY, we emulated their method within the HYENA framework.
This is done by specifically configuring the feature set, and using the same training and testing
instances as for HYENA. Results are shown in Table 2. HYENA significantly outperforms HOVY.
Similar to the results reported in (Fleischman and Hovy, 2002) HOVY shows decent performance
for the 5 top-level types, but performance sharply drops for subtypes at deeper levels.

4.2.2 HYENA Experiments on FIGER-GOLD

The FIGER-GOLD dataset consists of 18 news reports from a university website, as well as local
newspapers and specialized magazines (Ling and Weld, 2012). The test dataset was annotated
with at least one label per mention. This resulted in a total of 434 sentences with 563 entities
having 771 labels coming from 42 out of the 112 types. The original evaluation for FIGER was
instance-based. In order to compare against HYENA, a per-type evaluation is needed. To this
end, we created a per-type based classification of FIGER based on their output data. Since the
distribution of mentions on different types in the FIGER dataset is heavily skewed (e.g. 217
of the 562 entities are of type PERSON without finer-grained subtype annotation) we cover
in our evaluation the most 10% populated classes (covering around 70% of the tags). These
classes were then mapped onto the hierarchy of HYENA. Since all instances in the FIGER-GOLD
dataset are tagged with at least one class, we ran HYENA in two configurations: without any
modification as before (using a classifier trained to deal with abstract concepts, e.g. Chinese
Philosophy, that are of generic type ENTITY_OTHER) as well as by enforcing the assignment
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Macro Micro
Prec. Rec. F1 Prec. Rec. F1

FIGER 0.75 0.743 0.743 0.828 0.838 0.833
HYENA 0.745 0.631 0.684 0.815 0.645 0.72
HYENA (at least one tag) 0.724 0.801 0.75 0.788 0.814 0.801

Table 3: Results of HYENA vs FIGER (trained on Wikipedia and tested on FIGER-Gold)
Macro Micro

Prec. Rec. F1 Prec. Rec. F1

NG (trained on BBN) 0.859 0.864 0.862 0.812 0.871 0.84
HYENA (trained on Wikipedia) 0.943 0.406 0.568 0.932 0.371 0.531
HYENA (trained on Wikipedia, at least one tag) 0.818 0.671 0.737 0.835 0.632 0.719
HYENA (trained on BBN) 0.916 0.909 0.911 0.919 0.881 0.899

Table 4: Results of HYENA vs NG (tested on BBN Corpus)

of at least one class for all instances (referred to as “at least one tag”).

Results are shown in Table 3. In the standard configuration, HYENA shows precision scores
close to FIGER. However, HYENA suffers from the training against abstract concepts. In the
second configuration, both systems achieve results in the same range with slight advantages for
FIGER on micro-average and overall better results of HYENA on macro-average. However, 771
type labels for 562 entity mentions (not entities) is only a very moderate amount of multi-label
classification. This is disadvantageous for HYENA, which has been designed for data where the
number of labels per mention is higher.

4.2.3 HYENA Experiments on BBN

The BBN Pronoun Coreference and Entity Type Corpus consists of 2311 manually annotated
documents. Since NG exploits WordNet word-senses for disambiguation, the corpus is restricted
to those 200 documents (160 training, 40 testing) that have corresponding annotations. For
comparison against NG we performed a mapping onto the hierarchy of HYENA. Among the
16 types for the NG dataset (cf. (Rahman and Ng, 2010)), there are 8 non-entity types (e.g.
Date) and 5 descriptor types (_DESC) which cannot be mapped. This resulted in mapping the
3 top-level types: Person, Organization and GPE (country, city, states, etc.). Similar to the
FIGER-GOLD dataset, there are no unclassified mentions in the BBN corpus. Hence we ran
HYENA in three configurations: standard (“trained on Wikipedia”), enforcing at least one type
label to be assigned (“trained on Wikipedia, at least one tag”) and HYENA trained on the NG
training set (“trained on BBN”).

Results on the BBN dataset exhibit high precision of HYENA already with its standard configura-
tion (cf. Table 4). However, it suffers from low recall in this setting, due to training against
abstract concepts. When enforcing HYENA to assign at least one tag, F1 scores strongly improve.
In the third configuration, the fairest side-by-side comparison, we clearly outperform NG.

4.3 Meta-Classification

In use-cases for type labeling (e.g. NED), precision is often more important than recall. This
is particularly demanding for types that suffer from data sparsity (less prominent and/or less
populated types) deep in the type hierarchy. For example in NED, it may be crucial to distinguish
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Macro Micro
Prec. Rec. F1 Prec. Rec. F1

All 505 HYENA 0.878 0.863 0.87 0.913 0.932 0.922
Types HYENA + meta-classifier 0.89 0.837 0.862 0.916 0.914 0.915

Table 5: Performance gain in precision by meta-classification
Macro Micro

Prec. Rec. F1 Prec. Rec. F1

HYENA 0.673 0.638 0.644 0.659 0.681 0.67
HYENA + meta-classifier 0.693 0.619 0.638 0.674 0.66 0.667

Table 6: Meta-classifier impact on the 5% worst-performing classes

a Painter from a Musician. When applied, meta classification (see Section 3.2 for details)
improves macro-precision over all 505 types by more than 1% (cf. Table 5). When focusing on
the 5% types that performed worst without it, we even gained more than 2% in precision, as
shown in Table 6. The top-5 winners in this group gain from 5% up to 13%.

4.4 HYENA Feature Analysis

In addition to a comprehensive feature set, HYENA exploits a large amount of training data and
the gazetteer features derived from YAGO. To assess the impact of each asset, we varied the
number of training instances and en-/disabled gazetteer features (cf. Table 7). Precision and
recall improve from a larger training corpus, particularly for sparsely populated types. When
gazetteer features are disabled, performance drops significantly.

5 Extrinsic Study on Named Entity Disambiguation

We conducted an extrinsic study on harnessing HYENA for NED, based on a state-of-the-art
NED tool, AIDA by (Hoffart et al., 2011). This NED method uses a combination of contextual
similarity and entity-entity coherence for disambiguation. In order to speed up its computation-
ally expensive graph algorithms, it is desirable to prune the search space. Hence, we use the
type predictions by HYENA for pruning (e.g. for the sentence “He was born in Victoria” and the
mention “Victoria”, the entities of type Person, River and Lake should be dropped). To this
end, we use the confidence scores of HYENA to remove entities of types with type scores below
some threshold θ . Our technique proceeds in three steps:

1. Invoke HYENA on the mention to obtain the predicted types and confidence scores.
2. Generate entity candidates using AIDA and its underlying name-entity dictionary.
3. For each candidate, if there is no overlap between the entity types and the predicted

mention types with confidence greater than or equal to θ , drop the candidate.
4. Run AIDA on the reduced candidate space.

When dropping the correct entity, a mention becomes unsolvable. We vary the relaxation
parameter θ to investigate search space rdecution versus mentions that are rendered unsolvable.
We performed our experiment on the extended CoNLL 2003 NER dataset with manual entity
annotations from (Hoffart et al., 2011). With a pruning threshold of θ = −1, we can prune
almost 40% of all entities while rendering less than 8% of the mentions unsolvable (cf. Table 8).
The search space reduction of 40% actually results in a much larger saving in run-time because
the graph algorithm that AIDA uses for NED has super-linear complexity (NP-hard in the worst
case, but typically O(n log n) or O(n2) with appropriate approximation algorithms).
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Size of training set
(# of articles)

5 Top-level Types All 505 Types
Prec. Rec. F1 Prec. Rec. F1

50,000 0.949 0.936 0.942 0.913 0.932 0.922
20,000 0.937 0.924 0.93 0.893 0.917 0.905
5,000 0.92 0.903 0.912 0.869 0.89 0.879
50,000 (without gazetteers) 0.915 0.825 0.868 0.82 0.718 0.766

Table 7: Micro-average impact of varying the number of Wikipedia articles used for training
Threshold % dropped Entities % unsolvable Mentions avg. Document Prec. avg. Mention Prec.

0.0 49.2 16.1 0.659 0.639
−0.5 45.7 12.3 0.738 0.713
−1.5 28.8 4.7 0.791 0.779
−2.5 17.7 2.2 0.802 0.798
AIDA 0 0 0.82 0.823

Table 8: Impact of Varying Type Prediction Confidence Threshold on NED Results

6 Related Work

There is little prior work on the task of classifying named entities, given in the form of (still
ambiguous) noun phrases, onto fine-grained lexical types. (Fleischman and Hovy, 2002)
has been the first work to address type granularities that are finer than the handful of tags
used in classical NER work (person, organization, location, date, money, other – see, e.g.,
(Wacholder et al., 1997; Alfonseca and Manandhar, 2002; Cunningham, 2002; Finkel et al.,
2005)). It considered 8 sub-classes of the Person class, and developed a decision-tree classifier.
(Ekbal et al., 2010) developed a maximum entropy classifier using word-level features from
the mention contexts, but experimental results are flagged as non-reproducible in the ACL
Anthology. (Rahman and Ng, 2010) considered a two-level type hierarchy consisting of 29
top-level classes and a total of 92 sub-classes. These include many non-entity types such as
date, time, percent, money, quantity, ordinal, cardinal, etc. The method uses a rich set of
features, including WordNet senses of noun-phrase head words in mention contexts. (Giuliano,
2009) proposed an SVD-based latent topic model with a semantic kernel that captures word
proximities. The method was applied to a set of 21 different types; each mention is assigned to
exactly one type. The work of (Ling and Weld, 2012) considered a two-level taxonomy with
112 tags taken from the Freebase knowledge base, forming a two-level hierarchy with top-level
topics and 112 types (with entity instances). (Ling and Weld, 2012) trained a CRF for the joint
task of recognizing entity mentions and inferring type tags. The feature set included the ones
used in earlier work (see above) plus patterns from ReVerb (Fader et al., 2011).

7 Conclusions

We presented HYENA for fine-grained type classification of entity mentions. In contrast to prior
methods, we can deal with hundreds of types in a multi-level hierarchy, and consider that a
mention can have many different types. In experiments, HYENA outperformed state-of-the-art
competitors even on their original datasets and improved efficiency of NED by reducing the
search space.
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