
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 950–961, Dublin, Ireland, August 23-29 2014.

Lexical Chaining for Measuring Discourse Coherence Quality in
Test-taker Essays

Swapna Somasundaran
Educational Testing Service

660 Rosedale Road
Princeton, NJ 08540

ssomasundaran@ets.org

Jill Burstein
Educational Testing Service

660 Rosedale Road
Princeton, NJ 08540
jburstein@ets.org

Martin Chodorow
Hunter College, CUNY

695 Park Avenue
New York, NY 10065

martin.chodorow@hunter.cuny.edu

Abstract

This paper presents an investigation of lexical chaining (Morris and Hirst, 1991) for measuring
discourse coherence quality in test-taker essays. We hypothesize that attributes of lexical chains,
as well as interactions between lexical chains and explicit discourse elements, can be harnessed
for representing coherence. Our experiments reveal that performance achieved by our new lexical
chain features is better than that of previous discourse features used for this task, and that the best
system performance is achieved when combining lexical chaining features with complementary
discourse features, such as those provided by a discourse parser based on rhetorical structure
theory, and features that reflect errors in grammar, word usage, and mechanics.

1 Introduction

Coherence, the reader’s ability to construct meaning from a document, is greatly influenced by the pres-
ence and organization of cohesive elements in the text (Halliday and Hasan, 1976; Moe, 1979). The
lexical chain (Morris and Hirst, 1991) is one such element. It consists of a sequence of related words that
contribute to the continuity of meaning based on word repetition, synonymy and similarity. In this paper
we explore how lexical chains can be employed to measure coherence in essays. Specifically, our goal
is to investigate how attributes of lexical chains can encode discourse coherence quality, such as adher-
ence to the essay topic, elaboration, usage of varied vocabulary, and sound organization of thoughts and
ideas. To do this, we build lexical chains and extract linguistically-motivated features from them. The
number of chains and their properties, such as length, density and link strength, can potentially reveal
discourse qualities related to focus and elaboration. In addition, features that capture the interactions
between chains and explicit discourse cues, such as transition words, can show if the cohesive elements
in text have been organized in a coherent fashion.

The main contributions of this paper are as follows: We use lexical chaining features to train a dis-
course coherence classifier on annotated essays from six different essay-writing tasks which differ in
essay genre and/or test-taker population. We then perform experiments to measure the effect of the fea-
tures when they are used alone and when they are combined with state-of-the-art features to classify the
coherence quality of essays. Our results indicate that lexical chaining features yield better results than
discourse features previously explored for this task and that the best performing feature combinations
contain lexical chaining features. We also show that lexical chaining features can improve system per-
formance across multiple genres of writing and populations. Our efforts result in the creation of a higher
performing state-of-the-art feature set for measuring coherence in test-taker writing.

The rest of the paper is organized as follows: In Section 2, we describe our intuitions about lexical
chains and how they can be used for measuring discourse coherence quality in essays. Section 3 describes
our data, and Section 4 describes our experiments in predicting discourse coherence quality. We discuss
related work in Section 5 and conclude in Section 6.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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2 Lexical Chains and Discourse Coherence Quality

According to Morris and Hirst (1991), lexical cohesion is the result of chains of related words that con-
tribute to the continuity of lexical meaning. These sequences are characterized by the relations between
the words, as well as by their distance and density within a given span. Lexical chains do not stop at
sentence boundaries – they can connect a pair of adjacent words or range over an entire text. Morris
and Hirst also observe that lexical chains tend to delineate portions of text that have a strong unity of
meaning. In this paper, we use this underlying principle of cohesion to detect the quality of coherence
in a discourse. Specifically, we employ lexical chains to quantify and represent expectations for coher-
ent discourse in test-taker essays. Presumably, violations of these expectations would indicate lack of
(or poor) coherence. We believe lexical chains have the potential to reveal the following characteristics
about discourse coherence in essays:
Text unity: Textual continuity is vital for the reader’s ability to construct meaning from the text (Halli-
day and Hasan, 1976). Coherent essays generally maintain focus over the main theme, so lexical chains
constructed over such essays will have chains representing the central topic running through most of the
length of the essay. These types of chains would presumably represent the main claim or position in
persuasive texts, the main object or person in descriptive texts, and the main story-line in narrative texts.
On the other hand, incoherent texts that jump from one topic to another, or do not adhere to a central
idea, will exhibit no chains or chains with very few member words.
Elaboration and Detailing: A function of elaboration in discourse is to overcome misunderstanding or
lack of understanding, and to enrich the understanding of the reader by expressing the same thought from
a different perspective (Hobbs, 1979). Good writers usually initiate topics, ideas or claims and provide
clear elaborations or reasons. That is, a sequence of many related words and phrases will be evoked to
explain an idea or provide an account of the writer’s reasoning. This development and detailing will be
exhibited by lexical chains with a good number of member words.
Variety: While cohesiveness is vital for coherence, too much repetition of the same word can, in fact,
harm the discourse quality (Witte and Faigley, 1981). Using a variety of words to express an idea or
elaborate on a topic is generally a characteristic of skillful writing. Lexical chains corresponding to such
writing will have a variety of similar words within the same chain.
Organization: In addition to cohesion (as represented by lexical chains in our case), one other factor
must be present for text to have coherence – organization (Moe, 1979; Perfetti and Lesgold, 1977). Thus,
it is important to organize ideas using clear discourse transitions. Transitions from one topic to another,
or from a topic to its subtopic, should be clearly cued in order to assist the reader’s understanding of
the discourse. Consequently, in coherent writing, we would expect lexical chain patterns to synchronize
with discourse cues. For example, we would expect some chains to start after a new (sub) topic initiation
cue, such as “Secondly” or “Finally”, and at least some chains (corresponding to the previous topic) to
end immediately before the cue. Similarly, we would expect at least some chains to cross over discourse
cues indicating elaboration or reason (e.g. “because”) due to topic continuity.

2.1 Features for Measuring Discourse Coherence

In order to measure discourse coherence quality, we create features based on attributes of lexical chains
extracted from essays. These features are then used to train a machine learning model, using essays
manually labeled for overall discourse coherence quality.

2.1.1 Lexical Chain Construction
Lexical chains in a text are composed of words and terms that are related. Based on Hirst and St-
Onge (1995), these relations can be exact repetitions, called extra-strong relations, close synonyms,
called strong relations, or words with weaker semantic relations, called medium-strong relations. We
implement the lexical chaining program described in Hirst and St. Onge (1995), where if a word or
phrase is potentially chainable, it is considered a candidate node for existing chains. First, an extra-
strong relation is sought throughout all existing chains, and if one is found, the word is added to it. If
not, strong relations are sought, but for these, the search scope is limited to the words in any chain that is
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no farther away than the previous six sentences in the text; the search ends as soon as a strong relation is
found. Finally, if no relationship has yet been found, medium-strong relations are sought with the search
scope limited to words in chains that are no farther away than the previous three sentences. If the node
cannot be added to any existing chains, it forms its own single-node chain.

In this work, nouns are the focus of the lexical chains. Nouns, adjective-noun and noun-noun structures
are identified as potential chain participants. Lin’s thesaurus (Lin, 1998) is used to measure similarity
between words and phrases. Candidate pairs receiving similarity scores greater than 0.8 are considered
to have an extra-strong relationship (word repetition receives a similarity score of 1), pairs with similarity
greater than 0.172 are considered to have a strong relation, and pairs with similarity scores greater than
0.099 are considered to have a medium-strong relation. These thresholds were chosen after qualitative
inspection of a separate development data set of essays, and are also based on a previous finding (Burstein
et al., 2012) that 0.172 is the mean similarity value across different parts of speech in the Lin thesaurus.

We created two feature sets to capture the intuitions described above. The first set, LEX-1, encodes
the characteristics of text unity, elaboration and variety, while the second, LEX-2, encodes organization.

2.1.2 LEX-1 feature set

In order to capture text unity and detailing, we create features such as: total number of chains in the
essay, average chain size, number (and percentage) of large chains (chains having more than four nodes
are considered to be large chains1). As discussed previously, essays that show ample chaining might do
so because they adhere to themes and their development, while the presence of large, dense chains might
be an indicator that a topic is being discussed in detail. To represent variety, we employ features such
as number (and percentage) of chains that have a variety of words (chains containing more than one
word/phrase type are considered to have variety), as well as number (and percentage) of large chains
with a variety of words. To encode the characteristics of cohesive relationships, we look at the nature
of the links. Examples of these features are: number and percentage of each link type, number (and
percentage) of links of each type in large chains as well as in small chains. Corresponding to each
feature that uses counts (e.g. total number of chains) we also created normalized versions of the numbers
to account for the essay length. LEX-1 has a total of 38 features.

2.1.3 LEX-2 feature set

LEX-2 features capture the interactions between discourse transitions, indicated by explicit discourse
cues, and lexical chaining patterns. For this, we use a discourse cue tagger described in Burstein et al.
(1998) that was specifically developed for tagging discourse cues in the essay genre. Using patterns and
syntactic rules, the tagger automatically identifies words and phrases used as discourse cues, and assigns
them a discourse tag. Each tag has a primary component, indicating whether an argument (or topic) is
being initialized (arg-init) or developed (arg-dev), and a secondary component indicating the specific
type of discourse initialization (e.g. CLAIM, SUMMARY), or development (e.g. CLAIM, CONTRAST).
Examples of the discourse tags and their cues are: arg-init:SUMMARY (e.g. all in all, in conclusion,
in summary, overall), arg-init:TRANSITION (e.g. let us), arg-init:PARALLEL (e.g. firstly, similarly,
finally), arg-dev:CONTRAST (e.g. nonetheless, however, on the contrary, rather than, even if ), arg-
dev:EVIDENCE (e.g. because of, since), arg-dev:INFERENCE (e.g. as a result, consequently, there-
fore), arg-dev:DETAIL (e.g. as well as, in this case, in addition, such as), arg-dev:REFORMULATION
(e.g. in other words, that is).

For each discourse cue tagged in the text, we replace the cue with its tag and measure the number of
chains that (1) start after it, (2) end before it, and (3) continue over it (chains having nodes before and
after the tag). We create such features for the tags in the original form (e.g. arg-dev:DETAIL), as well
as for the primary component alone (e.g. arg-dev) and the secondary component alone (e.g. DETAIL).
This alleviates the data sparseness that we see with certain tags, and results in a total of 138 tags for the
LEX-2 feature set.

1This number was chosen after inspecting chains in a separate development data set.
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3 Data

We use essays from different essay-writing tasks, representing different genres, writing proficiency and
populations. Specifically, our essays consist of the following six subsets:

1. PE-G-N: Persuasive/Expository essays written by graduate school applicants who are a mix of
native and non-native speakers. (e.g. “As people rely more and more on technology to solve prob-
lems, the ability of humans to think for themselves will surely deteriorate. Discuss the extent to
which you agree or disagree ... ” ) [n= 145 essays]

2. AC-G-N: Argumentation critique essays written by graduate school applicants who are a mix of
native and non-native speakers. (“Examine the stated and/or unstated assumptions of the argument.
Be sure to explain how the argument depends on the assumptions and what the implications are if
the assumptions prove unwarranted ...”) [n= 138 essays]

3. PE-UG-NN: Persuasive/Expository essays written by undergraduate and graduate school appli-
cants, who are non-native speakers. [n= 146 essays]

4. CS-UG-NN: Contrastive summary essays written by undergraduate and graduate school applicants
who are non-native speakers. Here, the prompt focuses on a specific type of summarization, where
ideas from an audio lecture are to be contrasted with ideas from a written passage. [n= 147 essays]

5. S-G-N: Subject matter essays written by graduates in a professional licensure exam who are a mix
of native and non-native speakers. [n= 150 essays]

6. M-K12-N: A Mix of expository, persuasive, descriptive and narrative essays written by K-12 school
students who are a mix of native and non-native speakers. [n= 150 essays]

Of the total of 876 essays, 40 essays were used for system development, and the rest were used for
cross-validation experiments. Each essay in the data set was manually annotated for overall discourse
coherence quality by annotators not involved in this research. The discourse coherence score was as-
signed using a 4-point scale (with score point 4 for excellent discourse coherence). Twenty percent of
the essays were double annotated and the rest were annotated by one of the annotators. Inter-annotator
agreement over the doubly annotated essays, calculated using quadratic weighted kappa (QWK), was
0.61 (substantial agreement). The data distribution for each score point was: 1% for score 1, 9% for
score 2, 27% for score 3, 63% for score 4.

4 Experiments

4.1 Baseline Features

A review by Burstein et al. (2013a) describes the several systems that measure discourse coherence
quality across various text genres including test-taker essays. Features used to evaluate the discourse
coherence quality systems in this study include those previously discussed in Burstein et al. (described
below). In addition to comparing our features with previously explored features, our goal is to see if the
state-of-the-art feature set can be extended with the use of lexical chaining features.

Entity-grid transition probabilities (entity). Entity-grid transition probabilities (Barzilay and Lap-
ata, 2008) are intended to address unity, progression and coherence by tracking nouns and pronouns in
text. An entity grid is constructed in which all entities (nouns and pronouns) are represented by their
syntactic roles in a sentence (i.e., Subject, Object, Other). Entity grid transitions track how the same
word appears in a syntactic role across adjacent sentences.

Type/Token Ratios for Entities (type/token). These are modified entity-grid transition probabilities.
While the entity grid only captures, for example “Subject-Subject” transitions, type/token ratios capture
the proportion of unique words that make such transitions. Higher ratios indicate that more concepts are
being introduced in a given syntactic role, and lower ratios indicate fewer concepts.
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RST-derived features (RST). Rhetorical relations (Mann and Thompson, 1988) derived from an RST
parser (Marcu, 2000) are used to evaluate if and how certain rhetorical relations, combinations of rhetor-
ical relations, or rhetorical relation tree structures contribute to discourse coherence quality. These in-
clude: (a) relative frequencies of n-gram rhetorical relations in the context of the RST parse tree structure
(unigrams, or occurrences of a single relation (e.g., ThemeShift); bigrams, (e.g., “ThemeShift -> Elab-
oration”); and trigrams, (e.g., “ThemeShift -> Elaboration -> Circumstance”)); (b) relative proportions
of leaf-parent relation types in the tree structure; and (c) counts of root node relation types in the trees.

Maximum LSA Value for Distant Sentence Pairs (maxLSA). This feature set is the maximum
Latent Semantic Analysis (LSA) similarity score found between pairs of sentences that are separated
by at least 5 intervening sentences in the essay. It captures reintroduction of topics later in an essay,
consistent with a backward inference strategy (Van den Broek et al., 1993; Van den Broek, 2012). LSA
has also been employed to measure semantic relatedness between texts for discourse coherence (Foltz et
al., 1998).

Grammatical error features (gramErr). These features address errors in grammar that could inter-
fere with a reader’s ability to construct meaning and have been used in previous studies (e.g. (Attali and
Burstein, 2006; Burstein et al., 2013b)). Specifically, they are based on more than 30 kinds of errors in
grammar, such as subject-verb agreement errors, in word usage, such as missing article errors, and in
spelling. We use e-raterr, an essay scoring engine developed by Educational Testing Service (ETS), to
detect the grammar errors. Aggregate counts of these errors are used as features for predicting discourse
coherence.

Program Features (program). This is a single feature for identifying the data type listed in Section
3. Genre and population play an important role with respect to discourse coherence – essays written
by more advanced writers, such as those at the graduate level, are typically more coherent than essays
written by populations where English is a second language, or by K-12 school students. Note that the
program feature is not linguistically motivated – it does not capture the writing construct or a writing
skill. However, it is a strong feature as it can reliably bias the system to change its expectations about the
discourse quality based on population and task.

4.2 Principal Components Analysis

To reduce the number of lexical chain features, a Principal Components Analysis (PCA) was calculated
on an independent set of 6000 essays randomly sampled from the six task types. For 38 LEX-1 features,
a 4-component solution accounted for about 0.70 of the feature variance. An 8-component solution
explained about 0.30 of the feature variance for the 138 LEX-2 features. (While the variance was lower
for this PCA solution, the components were fairly clean.) The component scores were then computed
for the 876 essays in our annotated data set. The 4-component scores were used as LEX-1 features, and
the 8-component scores were used as LEX-2 features. PCA was used for lexical chaining features in
order to reduce the number of features used to build the models rather than using a much larger number
of correlated features. PCA was not applied to features from previous work, as we wanted to reproduce
their performance.

4.3 Results

A 10-fold cross-validation was run with an unscaled, gradient boosting regressor2 tuned using quadratic
weighted kappa3. Specifically, we used the standard Gradient Boosting Regressor in the scikit-learn
toolkit4 (Pedregosa et al., 2011). The learner was trained to assign 4-point coherence quality scores
using different combinations of the feature sets described in sections 2.1 and 4.1. In addition to each of
the individual features in Section 4.1, we tested two baseline feature combinations: Baseline-1, a system
using all discourse-based features from Section 4.1, and Baseline-2, a system using all features described
in Section 4.1.

2We experimented with SVMs and Random Forest learners too, but the best results were obtained with the regressor.
3The software for the regressor can be found at https://github.com/EducationalTestingService/skll/
4http://scikit-learn.org/stable/modules/generated/sklearn.ensemble
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Performance was calculated using Quadratic Weighted Kappa (QWK) (Cohen, 1968), which measures
the agreement between the system score and the human-annotated coherence score. QWK corrects for
chance agreement, and it penalizes large disagreements more than small disagreements. The formula for
QWK is as follows:

κ = 1−

k∑
i=1

k∑
j=1

wijoij

k∑
i=1

k∑
j=1

wijeij

where k is the total number of categories (4 in our case), oij is the observed value in cell i, j of the
confusion matrix between system predictions and human scores, eij is the expected value for cell i, j,
and wij is the weight given to the discrepancy between categoryi and categoryj . The expected value
eij is calculated as:

eij =

k∑
j=1

oij

k∑
i=1

oij

k∑
i=1

k∑
j=1

oij

For quadratic weighted kappa, wij is calculated as:

wij = 1− (i− j)2
(k − 1)2

where i and j are categories, and k is the total number of categories. We use QWK as it is the standard
evaluation metric used in automated essay scoring, and it also helps us to compare our results with
previous work.

Table 1 reports the results for our proposed features and for each individual feature set investigated in
previous work. Here, feature sets explicitly targeting discourse phenomena are grouped under Discourse-
based Features. The features grouped under Non-Discourse Features also capture coherence quality;
however they are based on grammatical errors or data type information. The best performing system in
each group is shown in bold. We see that the full set of lexical chaining features (LEX-1 + LEX-2) is the
best performing discourse-based feature set. It performs better than each of the other discourse-based
features used alone, and also better than Baseline-1, which uses a combination of all discourse-based
features from previous work. Notice that the performance of each discourse-based system is below the
performance of both gramErr and program, indicating that they can play an important role in predicting
text coherence.

While grammar (gramErr) and data type (program) are powerful features, it is also important to incor-
porate capabilities for detecting and evaluating discourse-specific phenomena to ensure construct rele-
vance, as the grading guidelines for essays specify the need for proper organization of ideas (e.g.“sustains
a well-focused, well-organized analysis, connecting ideas logically”). Lack of construct relevance has
been a major criticism of automated scoring methods (Deane, 2013; Shermis and Burstein, 2013). Ad-
ditionally, discourse-relevant features will allow for interpretable, useful, explicit feedback to students
regarding discourse coherence and its breakdown.

In Table 1 we also see that no individual discourse-based system outperforms Baseline-2, compris-
ing all features from the state-of-the-art (Section 4.1). In fact, the human-system agreement obtained
by Baseline-2 surpasses the human-human agreement (QWK of 0.61) reported in Section 3. This phe-
nomenon is not uncommon in essay scoring. For example, Bridgeman et al. (2012) performed detailed
analyses and found that across all test populations, human-automated system score correlations surpassed
human-human score correlations.

Because the gramErr and program features contain information that is complementary to discourse-
based features, we combined the discourse features, first with gramErr features, and then with
gramErr+program features. Table 2 reports the results from these experiments. The best performing sys-
tem for each column is in bold, and all features with QWK higher than Baseline-2 are in italics. Here,
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Feature set QWK
Discourse-based features

LEX-1+ LEX-2 0.316
LEX-1 0.176
LEX-2 0.246
entity 0.249
type/token 0.178
RST 0.295
maxLSA 0.171
Baseline-1 0.302

Non-Discourse Features
gramErr 0.592
program 0.387
Baseline-2 0.631

Table 1: Performance of individual feature sets.

Feature set +gramErr +gramErr
+program

LEX-1+ LEX-2 0.608 0.646
LEX-1 0.611 0.650
LEX-2 0.577 0.654
entity 0.621 0.609
type/token 0.600 0.623
RST 0.612 0.649
maxLSA 0.592 0.650
gramErr+program 0.644

Table 2: Performance (QWK), of individ-
ual discourse-based features when gramErr is
added (column 2) and gramErr and program
are added (column 3)

we see that, when combined with gramErr+program, the full set of lexical chaining features (LEX-
1+LEX-2), as well as LEX-1 and LEX-2 individually, perform above Baseline-2. Surprisingly, we find
that when some individual discourse features from previous work are combined with gramErr+program,
they achieve better performance than Baseline-2 indicating that using the full combination of discourse
features may not result in the best system. In the last row, we see that the combination of gramErr
and program features alone (gramErr+program) is more competitive that Baseline-2, underscoring their
usefulness for detecting coherence quality.

Finally, we performed full ablation studies to see which feature set combination produces the best
system for identifying discourse coherence quality. Different combinations of the 8 feature sets resulted
in 255 different systems, which we ranked based on their performance. Table 3 lists some of the systems,
with their respective ranks and QWK values.

First, we observe that the best performing system contains the full set of lexical chaining features
and achieves a QWK of 0.673. In fact, all of the top-5 performing systems contain either LEX-1 or
LEX-2. The best performance produced by a system not containing any lexical chaining features ranks
eighth (gramErr+ maxLSA+ program+ RST). Notice that gramErr+program is at rank 31, Baseline-2
is at rank 61, and Baseline-1 is at rank 235. Interestingly, RST features are also seen in all of the top-5
systems, indicating that RST features and lexical chaining features capture complementary information
about discourse quality. Surprisingly, maxLSA features, which have the same underlying principle of
cohesion in text as lexical chains, are in some of the top-performing feature combinations (at ranks 4
and 5), indicating that, in addition to how ideas and themes are presented throughout the essay, the
re-introduction of topics is also important.

We tested the statistical significance of the performance differences between our best system (gramErr
+ LEX-2+ LEX-1+ maxLSA+ program+ RST, at rank 1 in Table 3) and three other systems (Baseline-1,
Baseline-2 and gramErr+program) by drawing 10,000 bootstrap samples (Berg-Kirkpatrick et al., 2012)
from our manually scored essays. For each sample, QWKs were calcuated between the human scores and
the predictions of our best system, and between the human scores and each of the other three systems’
predictions. For each sample, the differences in QWKs were recorded, and the distributions of differences
were used for significance testing. Results show that our best performing system is significantly better
than Baseline-1 (p < 0.001) and Baseline-2 (p < 0.01), and it marginally outperformed the system with
gramErr+program features (p < 0.06).

These results show that lexical chaining information is a reliable indicator of discourse quality, and
that it can be combined synergistically with other complementary features to extend the state-of-the-art
for measuring discourse coherence quality.

956



Feature set QWK Rank
gramErr + LEX-2+ LEX-1+ maxLSA+ program+ RST 0.673 1
gramErr+ LEX-1+ program+ RST 0.661 2
gramErr+ LEX-2+ program+ RST 0.661 3
gramErr+ LEX-2+ maxLSA+ program+ RST 0.660 4
gramErr+ LEX-1+ maxLSA+ program+ RST 0.659 5
gramErr+ maxLSA+ program+ RST 0.656 8
gramErr+ program 0.644 31
Baseline-2: entity+ gramErr+ RST+ maxLSA+ program+ type/token 0.631 61
Baseline-1: entity+ RST+ maxLSA+ type/token 0.302 235

Table 3: Performance (QWK), and ranks of systems using different feature combinations

4.4 Analysis by Data Type

In the previous section we saw that features based on lexical chaining are able to successfully encode and
predict the quality of discourse coherence. We now examine if this impact is uniform across all essay
genres and populations of writers. Table 4 shows the performance of gramErr +program (in column
2), the best performing features and their respective performance (Best system, columns 3 and 4), and
the best feature set when lexical chaining features are removed, with their respective performance (Best
Minus LEX-1 and LEX-2, columns 5 and 6). Here we use gramErr +program as an additional baseline,
as it was found to be more competitive than both Baseline-1 and Baseline-2.

Program gramErr Best system Best Minus LEX-1 and LEX-2
+prog Features QWK Features QWK

CS-UG-NN 0.418 gramErr+ maxLSA+ RST 0.523 gramErr+ maxLSA+ RST 0.523
PE-UG-NN 0.406 gramErr + LEX-2 + maxLSA + RST 0.468 gramErr 0.406
PE-G-N 0.614 gramErr + LEX-1 + maxLSA 0.676 gramErr + maxLSA 0.650
AC-G-N 0.744 gramErr + LEX-2 + maxLSA 0.839 gramErr + maxLSA + type/token 0.766
S-G-N 0.414 entity + gramErr+ LEX-1+ RST+

type/token
0.532 gramErr+ RST+ type/token 0.487

M-K12-N 0.635 gramErr + LEX-2 + maxLSA 0.656 gramErr + maxLSA + RST +
type/token

0.649

Table 4: Performance of feature sets by data type. Best performance is shown in bold.

In general, for all data types, addition of discourse features produces improvement over just using a
combination of gramErr and program features. Also, the addition of lexical chaining features produces
performance improvement for most data types. Specifically, there is substantial improvement in perfor-
mance for persuasive writing (PE-UG-NN and PE-G-N), expository subject writing (S-G-N) and writing
involving critical argumentation (AC-G-N). M-K12-N, which is composed of a mix of genres and writing
proficiency, shows a minor improvement. Interestingly, for contrastive summarization (CS-UG-NN), the
best system for predicting discourse coherence does not employ any lexical chaining features. For this
type of writing, the best feature set using lexical chaining features achieved a QWK of 0.465, which im-
proves over gramErr+program but is lower than the best performing feature set. This is perhaps because
the discourse phenomena targeted by our lexical chaining features (topical detailing, variety and organi-
zation) are already provided for the writer in the source document and the audio lecture, i.e., the materials
that are to be referred to in writing this type of essay. Thus, other features play a more prominent role,
such as the RST features that capture local discourse organization which is needed, for example, when
drawing a contrast between two sources of conflicting information.

957



5 Related Work

5.1 Discourse coherence quality

A number of models for measuring the quality of discourse coherence have been based on Centering
Theory (Grosz et al., 1995). For example, Barzilay and Lapata (2008) construct entity grids based
on syntactic subjects and objects. Their algorithm keeps track of the distribution of entity transitions
between adjacent sentences and computes a value for all transition types based on their proportion of
occurrence in a text. The algorithm has been evaluated with three tasks using well-formed newspaper
corpora: text ordering, summary coherence evaluation, and readability assessment. Along similar lines,
Rus and Niraula (2012) find centered paragraphs based on prominent syntactic roles. Similarly, Milt-
sakaki and Kukich (2000) use manually marked centering information and find that higher numbers of
Rough Shifts within paragraphs are indicative of a lack of coherence. Using well-formed texts, Pitler
and Nenkova (2008) show that a text coherence detection system yields the best performance when it
includes features using the Barzilay and Lapata (2008) entity grids, syntactic features, discourse rela-
tions from the Penn Discourse Treebank (Prasad et al., 2008), and vocabulary and length features. Wang,
Harrington, and White (2012) combine the approaches from Barzilay and Lapata (2008), and Miltsakaki
and Kukich (2000) to detect coherence breakdown points. The biggest difference between our approach
and the approaches based on Centering Theory is that we do not use syntactically prominent items or try
to establish a center. Instead, multiple concurrent thematic chains can “flow” through the paragraph, and
their length, density, and interaction with discourse markers are used to model coherence.

In other related work, Lin et al. (2011) use discourse relations from Discourse Lexicalized Tree
Adjoining Grammar (D-LTAG) and compile sub-sequences of discourse role transitions to see how the
discourse role of a term varies through the progression of the text. Our work, in contrast, traces how
chains or thematic threads are organized with respect to the discourse. Our approach also differs from
models that measure local coherence between adjacent sentences (Foltz et al., 1998), in that lexical chains
can run though the length of the entire text, and hence the features derived from them are able to capture
aggregate thematic properties of the entire text such as number, distribution and elaboration of topics.

Discourse coherence models have been previously employed for the task of information-ordering in
well-formed texts (e.g., (Soricut and Marcu, 2006; Elsner et al., 2007; Elsner and Charniak, 2008)).
In our tasks, discourse coherence quality is influenced by many factors including, but not limited to,
ordering of information, such as text unity, detailing and organization.

Higgins et al. (2004) implemented a genre-dependent system to predict discourse coherence quality
in essays. Their approach, however, was reliant on organizational structures particular to expository and
persuasive essays, such as thesis statement and conclusion.

5.2 Lexical Chaining and Cohesion

Lexical chaining has been used in a number of applications such as news segmentation (Stokes, 2003),
question-answering (Moldovan and Novischi, 2002), summarization (Barzilay and Elhadad, 1997), de-
tection and correction of malapropisms (Hirst and St-Onge, 1995), topic detection (Hatch et al., 2000),
topic tracking (Carthy and Sherwood-Smith, 2002), and keyword extraction (Ercan and Cicekli, 2007).

In a closely related study, Feng et al. (2009) use lexical chains to measure readability. Lexical chain
features are employed to indicate the number of entities/concepts that a reader must keep in mind while
reading a document, and two of their features (number of chains in the document and average length of
chains) overlap with our LEX-1 features. Our work also differs from systems using cohesion to measure
writing quality (e.g., (Witte and Faigley, 1981; Flor et al., 2013)), in that we focus on predicting the
quality of discourse coherence.

6 Conclusion

In this paper, we investigated the use of lexical chaining for measuring discourse coherence quality.
Based on intuitions about what makes a text coherent, we extracted two sets of features from lexical
chains, one encoding how topical themes and cohesive elements are addressed in the text, and another
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encoding how the topical themes interact with explicit discourse organizational cues. We performed
detailed experiments which showed that lexical chaining features are useful for predicting discourse
coherence quality. Specifically, when compared to other previously explored discourse-based features,
we found that our lexical chaining features are best performers when used alone. We then experimented
with various feature combinations and showed that top performing systems contain lexical chaining
features. Our analyses also indicated that lexical chaining features can improve performance on various
genres of writing by different populations of writers. Our future work on measuring discourse coherence
quality involves extending chains by using verb information and by exploring finer distinctions within
the chains themselves (e.g., topical and sub-topical chains).
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