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Abstract

Speech prosody is known to be central in advanced communication technologies. However,
despite the advances of theoretical studies in speech prosody, so far, no large scale prosody
annotated resources that would facilitate empirical research and the development of empirical
computational approaches are available. This is to a large extent due to the fact that current com-
mon prosody annotation conventions offer a descriptive framework of intonation contours and
phrasing based on labels. This makes it difficult to reach a satisfactory inter-annotator agree-
ment during the annotation of gold standard annotations and, subsequently, to create consistent
large scale annotations. To address this problem, we present an annotation schema for promi-
nence and boundary labeling of prosodic phrases based upon acoustic parameters and a tagger for
prosody annotation at the prosodic phrase level. Evaluation proves that inter-annotator agreement
reaches satisfactory values, from 0.60 to 0.80 Cohen’s kappa, while the prosody tagger achieves
acceptable recall and f-measure figures for five spontaneous samples used in the evaluation of
monologue and dialogue formats in English and Spanish. The work presented in this paper is a
first step towards a semi-automatic acquisition of large corpora for empirical prosodic analysis.

1 Introduction

Speech prosody is known to be central in advanced communication technologies. It is decisive in struc-
turing the message, stressing parts of the message that the interlocutor considers important, and reveal-
ing information about the interlocutor’s attitude and affection state (Nooteboom, 1997; Wennerstrom,
2001). However, despite the advances of theoretical studies in speech prosody, so far, no sufficiently
large, well-annotated prosody material has been created to support empirical studies and drive the re-
search on empirical techniques for analysis and generation of prosodic cues, especially for application in
human-computer interaction technologies. Common annotation conventions, such as the ToBI conven-
tion (Beckman et al., 2005), provide a descriptive framework of intonation contours and phrasing based
upon labels that are language-dependent and rather subjective, which makes it difficult to reach a satis-
factory inter-annotator agreement for creating gold standard annotations to train and evaluate algorithms.

It is, therefore, not surprising that empirical research is still based upon rather small laboratory ex-
periments. A further consequence of the lack of sound universal prosody annotation conventions is
that current methodologies applied to speech prosody segmentation are still based upon textual and lin-
guistic units (usually words or syntax) rather than on acoustic and phonological units (prosodic phrases
and prosodic words). These limitations become an insurmountable barrier for technologies that aim at
grasping prosodic cues in spontaneous speech, where many complex prosodic, linguistic and affective
phenomena occur (hesitations, incoherent discourse structure, false starts, continuation rising tunes for
holding the floor, expression of emotions, speech acts, prosodic disambiguation, etc.). These inherent
characteristics of oral language cannot be dealt with using strategies that belong to written language.
For instance, sentences with false starts including a filled pause (e.g., They’ve never . . . mmm well, my
brother’s been to Barcelona).

To overcome the limitations of the current annotation practice and advance in the derivation of more
meaningful communicative units from speech as well as in the generation of more natural synthesized
speech in the field of human-machine interaction technologies, we need:
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• a parametric language-independent annotation schema of prosody at the acoustic level that can be
used by computational models for automatic segmentation and prominence detection;

• prosody taggers and acoustic feature extractors that distill acoustic features from raw speech signals.

In what follows, we address both tasks. First, we present an annotation schema that is implemented
as a modular script, deployed as an extended version of the Praat software (Boersma, 2001) into which a
functionality for feature annotation and retrieval is incorporated. Such a feature annotation functionality
contributes to the independent modular structure and also helps visualization and manual revision of the
output within the same Praat environment. Then, we introduce our prosody tagger. Results on inter-
annotator agreement and tagger performance compared to a baseline using only F0 cues show that our
work is a relevant contribution to the state of the art in the field of speech prosody processing.

The rest of the paper is structured as follows. Section 2 provides an overview of the theoretical
approaches in speech prosody, existing automatic tools for labeling prosody and a brief description of
the Praat software used for the implementation of our prosody tagger. Section 3 describes the adapted
methodology, which is based on theoretical studies of hierarchical prosody and the annotation schema
used for manual annotation and for the implementation of the automatic prosody tagger. Section 4
covers the architecture and technical description of the prosody tagger and Praat’s extended functionality
developed for feature annotation. Section 5 discusses the inter-annotator agreement and evaluation of the
performance of our methodology for automatic segmentation and prominence labeling at the prosodic
phrase level. Finally, conclusions and future work are drawn in Section 6.

2 Related Work

Theoretical studies of speech prosody have claimed since the 1980’s the hierarchical nature of prosodic
events in self-contained units (Selkirk, 1984; Ladd, 2008; Gussenhoven, 1984). They describe intonation
as a suprasegmental feature, which goes beyond textual segments and has its own structure and phonol-
ogy. These theoretical studies, especially the one by Selkirk (1984), describe prosody as a hierarchical
entity composed of embedded prosodic levels. In our work, we focus on the prosodic phrase (PPh)
and the phenomenon of prominence at the PPh level. Our interest in the PPhs stems from the fact that
the PPh level has been shown to correlate with the extended thematic structure advocated by Mel’čuk
(2001); see, e.g., Domı́nguez et al. (2014).1 This correlation proved to be instrumental for the prediction
of expressive prosodic contours (Domı́nguez et al., 2016a).

Recently, a series of models for a computational representation of the intonation contour have been
developed and made available in an open initiative for their comparison and further study under the
Common Prosody Platform (CPP)2 (Prom-On et al., 2016): the Command-Response (CR) model, the
Autosegmental-Metrical (AM) model, the Task-Dynamic (TD) model and the Target Approximation (TA)
model. However, these models are limited to a representation of fundamental frequency (F0) contours,
which is known to be only one element of speech prosody (Tseng, 2004).

Regarding automatic annotation for prosody involving machine learning techniques, AuToBI3 (Rosen-
berg, 2010) was the first publicly available tool to automatically annotate intonation (again, mainly F0
contours and also breaks) with ToBI labels (Silverman et al., 2010). However, AuToBI has several lim-
itations. Thus, it outputs word-by-word annotation, which is a handicap for obtaining a higher-level
representation. Furthermore, it is trained on an English corpus of broadcasting radio news, making it
domain- and language-specific. In line with AuToBI, ANALOR4 (Avanzi et al., 2008) is a tool for
semi-automatic annotation of French prosodic structure, trained on a small corpus of radio broadcast.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Contrary to other theories of information structure based upon simple theme-rheme division (Steedman, ), Mel’čuk (2001)’s
extended thematic structure allows embeddedness of thematicity spans and propositions.

2http://commonprosodyplatform.org/
3http://eniac.cs.qc.cuny.edu/andrew/autobi/
4http://www.lattice.cnrs.fr/Analor.html?lang=fr
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Like AuToBI, it is domain- and language-specific, but it allows segmentation of an utterance into major
prosodic units.

Praat (Boersma, 2001) is an open-source platform for phonetic research widely used by the speech
community for annotation, analysis and synthesis purposes. Praat allows the annotation of sound files by
means of tiers. Each tier, which is mapped to the whole time-stamp of the associated sound file, includes
interval or point annotations that cannot overlap. Each annotation has a label and this label is the only
information that can be included into any annotation. Since the labels cannot be extracted as objects in
the main Praat window, no action can be scripted based upon smaller units than tiers. Notwithstanding,
Praat is a powerful tool, user-friendly, programmable, freely available, running on many platforms, and
actively maintained (Mertens, 2004). Due to all these characteristics, a number of Praat-based tools
have appeared over the last decade, among them, e.g., ProsodyPro (Xu, 2013). However, many of these
tools create a set of parallel tiers, assigning different labels to these tiers, and then, output extracted
acoustic features in a text format for further processing using other platforms. For example, Praaline
(Christodoulides, 2014) process the txt file externally using the R statistical package.

3 Methodology

The main goal of the present work is the development and implementation of a methodology that serves
as a scaffolding upon which further improvements and empirical studies can be built upon. One of the
requirements, as introduced before, is that this methodology is versatile in the sense that it is language-
independent and is able to describe prosodic cues in natural language using a parametric approach. A
second goal of our work is to implement a prosody tagger embedded into a Praat-based platform that
allows feature annotation and retrieval of any segment below the tier level. In what follows, we introduce
the methodology used in the annotation and implementation of a prosody tagger following a discrete
representation based upon normalized acoustic parameters (see Section 3.1). The specific annotation
guidelines for manual annotation are detailed in Section 3.2. A technical specification of the implemen-
tation of the prosodic tagger is outlined in Section 4.

3.1 Acoustic Parameters in Prosodic Units

A key element in our methodology is the concept of prosody as a multidimensional acoustic entity,
which involves F0, intensity, and duration acoustic elements. Our methodology involves a combination
of normalized acoustic parameters that has been proven by recent studies to yield better results in the
task of the prediction of prosodic labels (Domı́nguez et al., 2016b).

Figure 1: Example of prosodic units.

Figure 1 shows a snapshot of an instance of an utterance containing two propositions (in Mel’čuk
(2001)’s terminology). The snapshot corresponds to a continuation rise (L H-H% according to the ToBI
convention (Silverman et al., 2010)) in the first proposition and a typical falling tune (H H-L%) in the
second. Looking at the graphic representation of the intonation and intensity contours provided by the
Praat algorithm, we can clearly observe how these lines form a homogeneous picture (marked by an
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ellipse in Figure 1) that corresponds exactly with the PPh division. Nevertheless, as we are dealing with
spontaneous speech, there are some areas where the division is not that clear, as can be observed in the
central part of the utterance. This homogeneity observed in Figure 1 (which is also auditorily perceived
by an expert annotator) can be translated into a vector of normalized acoustic values, which are computed
at different levels.

For the representation of the vectors, we adopt a practical approach based upon the actual functions
already provided by Praat for speech signal processing. We establish different levels of abstraction, which
do not strictly correspond to theoretical representations as such, but follow the idea that prosodic units to
be tagged must follow a certain parametric logic in terms of positive or negative deviations at each level
in their associated segments. Consequently, we consider as Level 1 (L1) the whole utterance or speech
sample; as Level 2 (L2) each voiced segment within the utterance; Level 3 (L3) PPhs once they are
segmented. Domı́nguez et al. (2016b) describe boundary tones in terms of a combination of normalized
acoustic parameters, showing also that such a combination performs better than each acoustic element
individually for the prediction of prosodic cues.

3.2 Annotation Guidelines

In this section, a set of guidelines for the annotation of prominence and boundaries at the PPh level is
introduced. Since the corpus used for evaluation is spontaneous speech, which has inherent difficulties
especially for segmentation, specific notes on how to proceed in controversial points are included in these
guidelines.

A PPh is defined as a prosodic unit that forms a homogeneous unit in terms of F0 and intensity curves
and is signaled by one or a combination of acoustic parameters as outlined in the previous section. A
PPh is marked according to the following criteria:

– In case there is one or (usually) a combination of the following conditions: pause, final rising
intonation, lengthening of the last word, sharp fall in intensity, a PPh boundary is to be marked.

– In terms of content packaging, a PPh must contain at least one complete concept (usually a predicate
with its arguments) of a considerable length relative to the whole utterance and associated voiced
segment respectively.

– In spontaneous speech, disfluencies such as disruptions, truncated phrases and hesitations may in-
fluence manual labeling of prosodic units. Therefore, all these events are to be included in the
closest PPh, unless a pause precedes or follows such disfluencies.

– If the contour following an unvoiced phoneme (with undefined F0 value) is perceived as a continu-
ation of the previous F0 contour (forming an homogeneous unit), no boundary is to be inserted. On
the contrary, if the F0 contour is significantly different after the F0 phonemic disruption, a boundary
is to be marked.

Prominence within each PPh is marked in accordance with the following criteria:

– Prominent words are defined as a combination of one or (usually) several of the following parame-
ters: F0 peak, high intensity, longer duration within its PPh.

– At least one word must be labeled as prominent within each PPh.

– Perceived relevant content must not be used as a criterion to label prosodic prominence (e.g., in noun
compounds, an element tends to be perceived more prominent as it carries the semantic meaning of
the unit).

– If a combination of acoustic parameters occurs within a word,5 this word should have more weight
than another word showing, for example, an F0 peak and no other acoustic cue.

5We refer to textual units in this case, as we are not aiming at segmenting prosodic words yet
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Figure 2: Prosody tagger’s architecture.

4 Prosody Tagger Implementation

Our prosody tagger is available as a web service.6 Any speech sample in wav format and associated
TextGrid with word division can be uploaded, such that the segmentation into PPhs and prominence
within the segmented PPhs is displayed on screen and also for download in TextGrid format. All scripts
and the extended Praat version for feature annotation are also available under a Creative Common’s
license7.

The architecture of the prosody tagger has been conceived as a modular platform such that its optimiza-
tion and further development (including prosodic word detection) can be attained focusing on specific
intermediate steps within the whole pipeline. Acoustic information extracted from different modules
is annotated in terms of feature vectors in each segment, including computed z-scores within different
prosodic units (so far, from Levels 1 to 3), as introduced in previous sections. Those features can be
visualized, retrieved and used for processing at any stage thanks to the extension for feature annotation
performed on Praat. Acoustic parameters include, but are not limited to, F0, intensity and duration el-
ements, as Praat allows extraction of a wider range of acoustic parameters (such as jitter, shimmer and
pulses, among others).

Figure 2 sketches the modular architecture of the prosody tagger with two possible configurations: (i)
Default 1: using only raw audio (as wav file), and (ii) Default 2: using both raw audio (wav file) and
importing external word segmentation (in TextGrid format), which must be uploaded by the user. For
the Default 2 configuration presented in this study, we have used for word segmentation the proprietary
Automatic Speech Recognition system Scribe8 by Vocapia Research.9 The output of Scribe is converted
from xml into TextGrid format. In what follows, a description of each module’s functionality is outlined
and annotated acoustic features are specified at each stage.

Module 1 uses the wav file and creates a TextGrid using the built-in function in Praat To TextGrid
(silences), which automatically detects unvoiced and voiced segments as intervals. Then, a pitch object
and an intensity object are extracted from the sound file. The function To IntensityTier (peaks) is per-
formed on the intensity object to select salient peaks. The F0 information is extracted at standard frame
rates from the pitch object to associate extracted intensity peaks to the ones that involve F0; the distance
between these peak candidates is also considered for syllable nuclei detection. A point tier is created
and points matching the combination of intensity, F0 and time distance within each voiced segment are
annotated. As features, absolute intensity, F0 and the associated voiced interval are stored in each point
segment.

Module 2 makes use of the intensity object created in Module 1 to extract intensity valleys using the
Praat function To IntensityTier (valleys). Standard intensity frames are selected if their intensity z-score

6http://kristina.taln.upf.edu/praatweb/
7https://github.com/monikaUPF/modularProsodyTagger
8https://scribe.vocapia.com/; Scribe is currently run as a beta version.
9http://www.vocapia.com/
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Figure 3: All modules’ output for calculation.

(relative to L1) is lower than 0. Then, the lowest values in intensity relative to each voiced fragment (L2)
are labeled in a new point tier taking into account the distance between them. Annotated features from
this module are: intensity z-score relative to the whole sound (L1) and intensity z-score relative to the
associated voiced segment (L2) at each valley point.

Module 3 extracts acoustic values, computes z-scores at available levels, and annotates results as
features in each segment. At L1, mean and standard deviation of intensity and F0, together with duration
for the whole file, are annotated. These values serve for calculation of z-scores at lower levels in the
hierarchy. At L2, annotated features include both absolute values for F0, intensity and duration for
further calculation of z-scores in peak and valley tiers (created in Module 1 and 2 respectively) and z-
scores derived from L1 values. In the peak and valley tiers, the distance to the previous point is also
annotated as a feature. For the first point in the tier, the distance to the boundary of its associated voiced
segment is specified as reference.

If a TextGrid with the word segmentation is available, Module 4 exports this tier and annotates features
at each marked interval. Consequently, prominence predicted in Module 6 outputs prominent words if
these segments are provided by the user. Extracted acoustic parameters and annotated features in this
module include: (i) z-scores relative to their associated L2 voiced interval (the z-score values for intensity
and F0 are extracted and annotated as features for each word segment obtained by Module 1); (ii) time
landmarks, i.e., time of minimum value of intensity and maximum F0 within each word; (iii) duration:
absolute duration of the word, and relative duration to the corresponding voiced segment and to the whole
sample.

Module 5 uses voiced segments and valleys to predict PPh boundaries. They are derived from the
information extracted in the L2 voiced/silence segments detected by Module 1 and from the valleys
marked in Module 2. Valleys and peaks contained in each L2 voiced segment are looped in to find the
smallest z-score values of intensity within each voiced range and measuring the distance of these valleys
to the closest peaks. If the distance of one of the closest peaks is greater than or equal to 0.2 seconds, the
z-score is among the minimum in the range, and F0 value is undefined, then a PPh boundary is marked.

Finally, Module 6 performs prominence detection on each PPh predicted in the previous module. If
no word alignment is available, only syllable peaks predicted in Module 1 are used. Consequently, this
module outputs prominent points that correspond to peak points in configuration 1 and prominent word
intervals in configuration 2. For calculation of prominence, a combination of F0, intensity and duration
cues are taken into account as described in Section 3. Figure 3 displays all tiers created by each module as
described above for computation and the final output with the tagging of PPh boundaries and prominent
words after the whole pipeline has been executed running a default 2 configuration.

5 Evaluation

A total of five different spontaneous speech samples are used in the evaluation, both for inter-annotator
agreement and the prosody tagger’s performance: three dialogues in Spanish and two monologues in
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American English. Table 1 shows the specific information details for each sample. Dialogues in Spanish
are set in a medical context; a male doctor is involved in all of them talking to a patient. Gender is
represented in all file names with the convention “f” and “m” for female and male respectively. Files
“es 01mm” and “es 02mm” include the same speakers in the same conversational context, where a
patient complains to the doctor, but in “es 01mm”, the doctor shows a negative response, while in
“es 02mm”, he acts in a comprehensive and pro-active way. Monologues in English are biographical
introductions of the speakers (birthplace, family, recent activities, etc.). Original sound files, transcripts
and annotations used in this evaluation will be made available upon request to the authors and acceptance
of associated license terms.

Length
Filename Format Seconds Words
es 01mm dialogue 36 196
es 02mm dialogue 28 150
es 03fm dialogue 152 545
en 04m monologue 70 213
en 05f monologue 30 282

TOTAL 316 1386

Table 1: Corpus used in evaluation.

Filename Prominence Boundary
es 01mm 0.55 0.98
es 02mm 0.63 0.72
es 03fm 0.51 0.78
en 04m 0.72 0.93
en 05f 0.69 0.70

Table 2: Inter-annotator agreement Co-
hen’s kappa.

Two expert annotators, proficient in both English and Spanish, have independently labeled both speech
samples following the guidelines outlined above in Section 3.2. Cohen’s kappa (Cohen, 1960) has been
calculated for inter-annotator agreement for each prominence and boundary labeling task. Evaluation
is performed on the Default 2 configuration using word segmentation to facilitate the computation and
objectiveness of the validation process. A baseline pipeline using only duration and F0 parameters for
the same task has been implemented. Inter-annotator kappa results are presented in Section 5.1. The
tagger’s accuracy, precision and recall compared to the baseline is reported in Section 5.2.

5.1 Inter-annotator agreement

Table 2 provides kappa values for PPh boundary and prominence labeling of our corpus. If annotators
label words that are part of the same prosodic word (e.g, they coincide in the final initial word boundary
or are separated by a function word, which is usually unstressed), we count this as a partial match for
the kappa computation. In order to count matches automatically under Praat, annotators are asked to
insert interval boundaries duplicating the word boundaries which are automatically marked, so that we
can compare boundary times for the computation of matches.

A kappa within the range of 0.6-0.8 (within a scale between 0 and 1) is considered satisfactory, and
above 0.8 perfect (Cohen, 1960). In Table 2, kappa values that are in line with these thresholds are
highlighted in bold for each task (i.e., prominence and boundary labeling within PPh level). Results prove
that agreement ranges from 0.51 and 0.98. A higher agreement is observed in the boundary labeling task
for all voice samples. No significant differences are observed between English and Spanish samples in
boundary detection. However, in prominence labeling, two Spanish samples (files “es 01mm” and “es -
03fm”) only reach a moderate agreement of 0.55 and 0.51 respectively and, in the overall picture, kappa
values for prominence in Spanish are lower than those for English, which might be due to the dialogue
format of the samples with shorter interventions, affective states displayed by participants (perceived
emotional behavior conveyed by prosody) and quick turn movements between speakers. Nevertheless,
we cannot infer that prominence annotation could be language-dependent as such: the corpus we use
for evaluation is simply too small for such conclusions. Further research could exploit these techniques,
or even a combination of semi-automatic annotation using the prosody tagger presented in this paper,
to explore how linguistic parameters such as the discourse type (dialogue in Spanish versus monologue
in English), register, gender or speaker idiosyncrasies may affect inter-annotator agreement and tagger’s
performance in this respect.
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5.2 Automatic prosody labeling performance
In order to evaluate the performance of the automatic prosody tagger, we count as full matches those
matches that have been labeled as full either by one or by both annotators. For prominence labeling only,
we include into the match count also partial matches, i.e., words that coincide in one interval boundary
or belong to the same prosodic word – as already done in the inter-annotator agreement exercise. Bound-
aries that match with a time margin of ±0.25 seconds are considered to be partial matches. For PPh
boundaries, we count it as a match (or true positive), if the automatic tool labels a boundary which has
only been labeled by one annotator. Table 3 presents the accuracy, precision, recall and F-measure scores
for full matches (F) and full and partial matches (F&P), both for the baseline and our tagger (recall that
the baseline uses F0 only).

Accuracy Precision Recall F-Measure
P B P B P B P B

baseline (F) 0.83 0.89 0.49 0.88 0.22 0.28 0.30 0.42
tagger (F) 0.84 0.88 0.52 0.58 0.32 0.43 0.36 0.55
baseline (F&P) 0.90 0.90 0.84 0.88 0.37 0.28 0.51 0.42
tagger (F&P) 0.91 0.89 0.80 0.63 0.49 0.49 0.61 0.55

Table 3: Automatic prosody tagger’s accuracy, precision and recall.

Table 3 shows that the prosody tagger performs at accuracy rates higher than 0.84 in both promi-
nence (P) and boundary (B) detection tasks. The baseline achieves higher precision figures (especially
in boundary detection) than our tagger. A closer look at the output reveals that the baseline marked only
those boundaries that included a clear pause, i.e., “safe” candidates. In contrast, the tagger marked not
only those clear pauses, but also more subtle boundaries that involved an intensity decrease and not nec-
essarily a pause. On the other side, the tagger reaches considerably higher recall figures than the baseline
for both prominence and boundary detection tasks. The F-measure figures show that overall, the tagger
performs better. Still, since our methodology is based upon the deviation of normalized values, neutral
speech might pose a problem when trying to tag both prominence and boundaries, as there is a tendency
towards less variable prosodic cues in this register. Further empirical studies using a semi-automatic
approach and optimization of the tagger are needed to have a deeper insight into this and other issues.

6 Conclusions

The integration of a parametric prosody annotation methodology into speech signal processing research
is essential in order to reach a close to natural segmentation of spontaneous speech samples and to facil-
itate the task of the annotation of large corpora for training algorithms for the generation of expressive
synthesized speech.

We presented an annotation schema that facilitates a hierarchical acoustic representation of prosody
and a tagger that automatically tags speech samples in accordance with this schema. The rather high
inter-annotator agreement figures show that our annotation schema is coherent and objective, i.e., does
not depend on potentially subjective criteria of the individual annotators. Recall results surpassing the
baseline prove that our automatic prosody tagger is flexible enough to support language independent
speech signal analysis and detection of prominence and boundaries at the PPh level using a combina-
tion of acoustic features, rather than merely F0 contours, as previous empirical and theoretical studies
claimed. Improved recall scores also indicate that the number of true positives from the total number of
words which actually belong to the positive class, i.e., labeled as positive by the manual annotators, is
much higher than the baseline’s.

The present implementation may be extended for other applications or further smaller prosodic unit
detection (such as prosodic words) due to its modular architecture and open-source philosophy. More-
over, this paper briefly presents an extended Praat functionality for feature annotation to provide easy
access and manual revision of the tagger’s output as well as retrieval of annotated features at any stage
of the computation process. The modularity and prosodically-oriented methodology used in the devel-
opment of the tagger provides a suitable framework for the deployment of more complex data-driven
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approaches, which are able to learn from prosodic units instead of textual units, and thus, get closer to
more natural and expressive results when applied to generation of prosodic cues.

All in all, the presented methodology and implementation serves as a platform upon which further
research lines and experiments can be run to increase the knowledge in the area of speech technologies
and test advanced implementations for human-machine interaction technologies. In the future, we plan to
explore the re-implementation of the tagger as a neural network application. Extracted acoustic features
combined with linguistic features such as part of speech tag, syntactic dependencies and communicative
structure, will be put to the test to observe whether prediction is enhanced, as previously suggested by
empirical studies such as (Domı́nguez et al., 2016b).
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