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Abstract

In this work we tackle the challenge of identifying rhythmic patterns in poetry written in En-
glish. Although poetry is a literary form that makes use standard meters usually repeated among
different authors, we will see in this paper how performing such analyses is a difficult task in
machine learning due to the unexpected deviations from such standard patterns. After breaking
down some examples of classical poetry, we apply a number of NLP techniques for the scansion
of poetry, training and testing our systems against a human-annotated corpus. With these exper-
iments, our purpose is establish a baseline of automatic scansion of poetry using NLP tools in a
straightforward manner and to raise awareness of the difficulties of this task.

1 Introduction

Automatic analysis of the rhythmic patterns in poetry may appear deceptively simple. In fact, however,
it presents a challenge for structured prediction methods in NLP on par with the most difficult lan-
guage analysis tasks tackled today. What makes assigning rhythm to written poetry—i.e. “scansion”—a
particularly knotty puzzle as a sequence labeling task in NLP is that, while the rhythm in most lines
encountered in a work of poetry appears mundanely repetitive on the surface, poetry, while mostly a
constrained literary form, is prone to unexpected deviations of such standard patterns. These departures
of form, effortlessly understood and analyzed by competent speakers of the language, are tied to multiple
levels of language processing. Sometimes, a simple lengthening of a line, the removal of a syllable, an
onomatopoetic element, or even a semantic twist to the plot-line in a stanza of poetry can cue a sensitive
human reader to assign an apparently deviant rhythmic pattern onto a line of verse.

As an example of the simple and straightforward, consider a line from the ninth book of Paradise Lost,
by John Milton (Pickering, 1832, p. 128):

No more of talk where God or Angel guest

The even syllables of this line —more, talk, God, An- and guest—for most readers tend to appear
naturally more prominent. At first glance, we might be tempted to assume that this repeats itself through
the poem, which indeed is the case.

No more of talk where God or Angel guest
With Man, as with his friend, familiar us’d,

To sit indulgent, and with him partake

However, even here complications arise: in the second line above, we see that the word with appears as
both unstressed and stressed, showing that the process of assigning prominence to certain syllables cannot
depend purely on the lexical items themselves. Still, a naive sequence modeler that simply assumed that
the poem follows an unstressed-stressed alternation would fare reasonably well here.

In contrast, consider the first and the fourth quatrains from a well-known poem by Theodore Roethke
(1908–1963), My Papa’s Waltz (1942), which tells the awkward story of a young boy in first-person
whose father foists a late-night drunken waltz upon him in the kitchen.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/
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The whiskey on your breath You beat time on my head
Could make a small boy dizzy; With a palm caked hard by dirt,
But I hung on like death: Then waltzed me off to bed
Such waltzing was not easy. Still clinging to your shirt.

from Roethke (2011)

The poem, which starts off in the first line with a seeming monotonous regularity of iambic trimeter—
three syllable-pairs of DE-DUM per line—quickly departs from the form, as if mimicking the angular
and erratic 3/4 waltz beats of the drunken father’s performance. By the time we reach the word dizzy
in the second line we find a peculiar extra syllable that needs to be accommodated. But this breaks
the pattern, and we now need to decide whether to end the line small boy dizzy, or perhaps small boy
dizzy? The rhymes also become slanted (as in dizzy/easy) perhaps invoking images of slurring, and the
natural departure of the DE-DUM rhythmic patterns in what, for most readers, becomes a sequence of
two stressed syllables, beat time on my head, conjures up images of the father’s whacking the boy in an
off-beat fashion.1

Most “standard” structured prediction methods effortlessly produce 80%-90% accuracy when assign-
ing levels of stress to syllables, and do so by simply marking the most prominent rhythmic pattern me-
chanically. One cannot, however, conclude from this that automatic scansion of poetry is a simple task.
It merely reflects the pattern of alternation between a large number of regular lines and the unexpected
irregular interlude. Moving significantly beyond the accuracies that can be achieved with straightforward
machine learning methods remains a challenge for NLP.

In this paper we explore a number of machine learning techniques to automatically assign stress to
written poetry against human-annotated gold standards. While we do not expect to be able to tackle
highly problematic cases whose solutions require meta-readings, such as understanding the effects of
whiskey on the human sense of rhythm, our purpose is to set up a strong baseline and to explore the
low-hanging fruits available to us, and to establish the inherent difficulty of the task.

2 Scansion

Conventionally, the metrical scansion of a line of poetry should yield a representation which marks every
syllable with its level of stress and divides groups of syllables into units of feet. Typically two or more
levels of stress are used. Consider, again, the example line from Paradise Lost, whose natural analysis is

x / x / x / x / x /
No more |of talk |where god |or An|gel guest

where we use the symbol / to denote stressed (ictic) syllables,2 and x to denote unstressed (non-ictic)
ones, as is done in Steele (1999) and the Princeton Encyclopedia of Poetry and Poetics (Preminger et al.,
2015). The line in question follows the stress pattern

DE-DUM DE-DUM DE-DUM DE-DUM DE-DUM

and consists of five feet of two syllables each with an unstressed-stressed pattern. Indeed, this is the most
common meter in English poetry, iambic pentameter.

The above example is rather clear-cut. How a particular line of verse should be scanned, however, is
often a matter of contention. Consider, for example, the first three lines from the poem Sudden Light by
the English poet Dante Gabriel Rossetti (Rossetti, 1881):3

Then, now,–perchance again!
O round mine eyes your tresses shake!

Shall we not lie as we have lain
1We are lucky to have a recording of Roethke’s own rendering of the poem and know that the intended readings of the

passages mentioned are small boy dizzy and beat time on my head; see https://www.poets.org/poetsorg/poem/
my-papas-waltz-audio-only.

2In the case of inline examples, we will make use of bold letters to denote stress.
3This stanza did not appear in the first edition of Rossetti’s poem book, but did in the second.
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The third line is the one that is somewhat ambiguous. The line in question can be read as a sequence
of iambs, because the entire poem follows an iambic pattern (Shall we not lie as we have lain). But, in a
similar manner as is done in the first line from Shakespeare’s 18th sonnet (Shakespeare, 1609) (Shall I
compare thee to a summers day), a commonplace substitution can be made, changing the first iambic foot
to a trochee4 (Shall we). This leads to a so-called trochaic substitution. Apart from these two different
options, the line could also be analyzed as consisting of two double iambs5 (Shall we not lie as we have
lain). Finally, a last possible scansion would be to have assume a trochaic and a pyrrhic foot followed by
a double iamb (Shall we not lie as we have lain). In other words, there exists a set of possible analyses
for this line which may all be accepted as correct, or at least reasonable.

2.1 State of the art

Automatic scansion of poetry has attracted attention from numerous scholars in recent years and in the
following section we discuss some of them. Some works rely on statistical analyses, like Hayward (1996)
and Hayes et al. (2012). Others make use of linguistic knowledge obtained by generalizing observations
found in different kinds of poetry and propose hand-written rules for the assignment of stress. Recently,
as in other NLP tasks, data-driven approaches have emerged in automatic poetry analysis (Estes and
Hench, 2016).

Statistics about scansion

Hayward (1996) has as its goal to investigate whether it would be possible to differentiate among the
metrical patterns developed by individual writers and also the stylistic differences among periods. To
this end, the authors collected a corpus of work by several poets from different time periods and built a
neural network model (Rumelhart et al., 1988) to scan poems. Using this technique, Hayward analyzes
the work of ten different poets and reports that the neural model of poetic meter was successful in
determining “significant differences” among the analyzed poets.

Hayes et al. (2012) propose in their article a new approach to analysis in metrics. Their research is built
upon two main works: generative metrics (Halle and Keyser, 1971) and their own earlier work (Hayes
and Wilson, 2008) in the use of MaxEnt Grammars for the analysis of phonotactics. They propose a set
of constraints that can be assumed to be active when scanning a verse line, and according to the number
of times each of these constraints is not fulfilled and according to weights that each constraint have, they
determine if a line is metrical or not.

Rule-based scansion

Logan (1988) documents a set of programs to analyze sound and meter in poetry. This work falls in a
general genre of techniques that attempt to analyze the phonological structure of poems following the
generative phonological theory outlined by Chomsky and Halle (1968) and described by Brogan (1981).

Scandroid is a program that scans English verse written in either iambic or anapestic meter, designed
by Charles O. Hartman (Hartman, 1996; Hartman, 2005). The source code is publicly available.6 The
program can analyze poems and check if the predominant stress pattern is iambic or anapestic. However,
if the input poem’s meter is not one of those two, the system forces each line into one of them. This
system represents the current state of the art in the rhythmic analysis of poetry.

AnalysePoems is another tool for identification of metrical patterns written by Plamondon (2006). In
contrast with other programs, its main goal is not to perform a perfect scansion, but to only identify the
predominant meter in a poem. The program also returns the rhyme scheme that the line follows, such as,
ABCB for poems whose even lines rhyme.

Calliope is a similar tool, built on top of Scandroid (McAleese, 2007). It is an attempt to leverage
syntactic information in order to improve scansion. The program does not appear to be freely available.

4A sequence of syllables where the first one is stressed and the second one unstressed.
5Double iamb: two unstressed syllables and two stressed syllables [xx//].
6http://oak.conncoll.edu/cohar/Programs.htm
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One of the recent scansion implementations is ZeuScansion (Agirrezabal et al., 2016), a tool for scan-
sion of English poetry, which performs poetry scansion using a simplified version of various stress assign-
ment ‘rules-of-thumb’ developed by (Groves, 1998). We use this work as a baseline for our experiments.

The rule-based systems mentioned above were designed to work only with poetry in English. There
exist, however, several rule-based implementations for other languages, such as Spanish (Gervás, 2000;
Navarro-Colorado, 2015).

Supervised Learning & sequential modeling

Estes and Hench (2016) is a current work that makes use of supervised learning tools in order to metri-
cally analyze poems written in Middle High German. Middle High German poetry is a hybrid between
qualitative and quantitative verse, which means that both the length and the stress of syllables are taken
into account for patterning in the lines. In order to perform supervised learning, they use a corpus of
825 manually annotated lines, which are annotated by the authors. They report an F-score of 0.894 on
10-fold cross-validated development data and 0.904 on held-out testing data.

Unsupervised scansion

Greene et al. (2010) uses statistical methods in the analysis of poetry. For the learning process, The
Sonnets by Shakespeare was used, as well as a number of other works freely available online.7 They
learn word-stress patterns from the corpus using unsupervised learning and with the incorporation of
rhyme and discourse models, they use this system to generate English love poetry. In addition, they also
apply their models for the automatic translation of poetry, testing them with Italian three-line stanzas as
a source language and English iambic pentameter verse as the target language. We have not obtained an
implementation to review.

3 Corpora

As the gold standard material for training our scansion systems, we use a corpus of syllabified and
scanned poetry, For Better For Verse (4B4V), from the University of Virginia (Tucker, 2011).8 This
website was originally built as part of an interactive on-line tutorial to train people in the scansion of
English poetry in traditional meter. These manually annotated poems can be downloaded from a public
repository on GitHub.9

The entire collection comprises 78 poems containing approximately 1,100 lines in total. It includes
poetry covering a time-span from the 16th century until the 20th and for each century there are at least
6 poems and a maximum of 32 works. Sometimes, several analyses are given as correct in the gold
standard to accommodate a natural ambiguity when performing scansion. When two or more analyses
are available, we set the error-rate to be the minimum Levenshtein distance to each of the possible
analyses, in the same way as in ZeuScansion (Agirrezabal et al., 2016, p. 22) was evaluated.

4 Techniques / Features

We used several Machine Learning algorithms to test our feature configurations, some of them yielding
independent outputs, used as a greedy labeler, and some others resulting in structured output. As inde-
pendent predictors we used an implementation of Naive Bayes (Garner, 1995), Support Vector Machines
(Cortes and Vapnik, 1995; Fan et al., 2008) and the averaged Perceptron (Rosenblatt, 1958; Freund and
Schapire, 1999).10 As sequence-based predictors we used the widely employed Hidden Markov Models
(Rabiner, 1989; Halácsy et al., 2007) (HMMs) and Conditional Random Fields (Lafferty et al., 2001;
Okazaki, 2007) (CRFs).

7http://www.sonnets.org
8http://prosody.lib.virginia.edu/
9https://github.com/waynegraham/for_better_for_verse/tree/master/poems

10We used an Averaged Perceptron implementation publicly available at https://bitbucket.org/mhulden/
pyperceptron
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Feature template set

Below we show the set of feature templates that our supervised learning scansion systems use, which
include:

• Basic features that are (almost) language agnostic

– Syllable number within the word (SNOW): This specifies the syllable within the word in which
we are working currently. E.g., for the word ha-zel, whose lexical stress is /x, the specification
of the current syllable gives information about the lexical stress of the current syllable.

– Syllable number within the line (SNL): This feature helps to model the sequence in many types
of specially metered lines, e.g., iambic lines. It can resolve possibly ambiguous cases such as
the verb re-cord, whose lexical stress could be said to be x/. If we know that this word appears
in the last two positions of a trochaic poem, we can ensure that it will have the /x pattern.

– Number of syllables in the line (NSL): The combination of this feature and the previous one
helps in identifying the syllables at the end of a line which are usually more regular because of
rhyme patterns.

– Syllable phonological weight (SWEIGHT): this relies on a generalization that states that heavy
syllables—ones which end with a coda consonant or have diphthong nucleus—attract stress.
Our hypothesis is that this would be useful in the scansion system, as reflected in John Keats’
poem, “to swell the gourd and plump the hazel shells”.11

– The last 5 characters of the word (last character, last two characters, last three characters, last
four characters, and last five characters) (LC1. . . LC5): As primary stress of the words in En-
glish is usually concentrated in the last syllables of the word (roughly the last three syllables),
we expected the last characters to be informative (Hayes, 1995, p. 50). Although it could be
better to use the last characters of the syllable, as it was done in Estes and Hench (2016), we
tried to be more agnostic about the language in question when developing these basic features,
and chose the last characters of the word instead.

– Word length (WLEN): We expected this to be an informative feature.

• Other features

– Word: As the main basic units of the text, we used words as features.
– Syllable: Some syllables are almost always stressed, which could help in the inference of stress

patterns. For example, in Shakespeare’s Sonnets, the syllable “sire” is used 10 times and in all
of them it appears as stressed.

– POS-tag: The part of speech is a key element to decide whether a word is a content word or
function word, which affects the stress in many syllables, as in the following excerpt from The
voice by Thomas Hardy: “call to me call to me”, both the verb call and the pronoun me have
lexical stress, but the pronoun loses the prominence when read aloud because it is not a content
word. Previous works on poetry analysis, such as Groves (1998), rely on this information.

– Lexical stress (LS): Knowing the lexical stress sequence in a phrase is an important hint for
deducing the rhythmic pattern of a line of poetry. We include the lexical stress of the word
that we are analyzing at the moment. This lexical stress is calculated by using the NETTalk
dictionary (Sejnowski and Rosenberg, 1987) and when treating out-of-vocabulary words, we
calculate their stress using an SVM implementation given in Agirrezabal et al. (2014).

These last four features are extended to include their context as well. For example, we take the
current syllable ( syllable[t] ) into account but also additionally its previous and next 10 syllables
(syllable[t±10]). In the case of words, part of speech tags, and lexical stresses we decided to include the
± 5 surrounding elements.

11In this example we use an underline to mark if a syllable is heavy or not.
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5 Experiments

We first performed one experiment that only included basic features that could be inferred from each
word language-agnostically, and another experiment which included all the features presented above.
The simple feature configuration was composed of the first ten features above (SNOW, SNL, NSL,
WLEN, SWEIGHT and LC1. . . LC5). Training greedy sequence predictors with these attributes shows
us the basic capability of our predictors using little or (almost) no linguistic information. All these re-
sults are compared with the rule-based system ZeuScansion (Agirrezabal et al., 2016), our previous work
which we use as our baseline. Results with this feature configuration can be seen in Table 1 and it seems
that we could reach quite acceptable (although lower than our baseline) accuracies by simply extracting
basic attributes from words. The results of the classifiers using all the features are reported in Table 2.
Here, both the SVM and the Perceptron see their scores improve significantly. In the case of the Naive
Bayes classifier results do not improve as much as in the other cases, probably because of the sensitivity
to overlapping features in Naive Bayes. The difference between the linear SVM and the Perceptron,
especially in per-line accuracy, is somewhat noteworthy. Normally, we would expect the SVM, which
finds a maximum-margin classification boundary, to outperform the averaged Perceptron, but that is not
the case here in both the basic feature set experiment and the full feature set one.

Per syllable (%) Per line (%)
Baseline 86.78 26.21
Naive Bayes 78.08 10.64
Linear SVM 83.12 23.40
Perceptron 84.86 29.32

Table 1: Accuracies of different classifiers using just the basic features (10 features) presented in section
4 using 10-fold Cross-Validation.

Per syllable (%) Per line (%)
Baseline 86.78 26.21
Naive Bayes 80.44 13.88
Linear SVM 87.47 35.69
Perceptron 89.34 43.36

Table 2: Accuracies of different classifiers using all the features (64 features) presented in section 4 using
10-fold Cross-Validation.

From single prediction to structured prediction
As single predictors do not optimize the resulting sequence labeling, they can make simple errors that
propagate throughout the line—something that could be avoided by looking at the surrounding outputs.
This is the main weakness of not using structured prediction systems.

Hidden Markov Models are simple models that have been successfully used in tasks like POS-tagging,
reaching reasonably good results. Conditional Random Fields are often used as an alternative model for
POS-tagging and also for Named Entity Recognition and other NLP tasks (McCallum and Li, 2003).

In our experiments, although the per-syllable accuracies do not vary too much, the per-line scores
improve substantially by the use of structured predictors. In table 3 the per line and per syllable accuracy
of structured prediction systems can be seen (HMM and linear-chain CRF). The HMM has been trained
in the standard way, that is, using single syllables (emissions) and their corresponding classes (states).
The CRF model is trained analogously, i.e. using only syllables as the features, and the previous label.
As expected, training the CRFs using the richer feature configurations employed in the greedy sequence
predictors above yields a much higher accuracy, especially in the per line measure. These results are
shown in table 4.
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Per syllable (%) Per line (%)
Baseline 86.78 26.21
Scandroid 89.78 42.95
HMM 90.43 49.88
CRF 88.13 43.93

Table 3: Accuracy of sequential systems using just syllables.

CRFs
#Features Per syllable (%) Per line (%)

Basic features 10 89.66 50.16
All features 64 91.41 55.30

Table 4: Accuracies of CRFs using different (best) sets of features on 10-Fold Cross-Validation.

6 Discussion & Future work

After checking all the results of the systems, we extracted all the rhythmic pattern predictions of the
systems, sorted and grouped them. We can observe that the sorted results of the greedy predictors
are more scattered. This is obvious since the greedy predictors do not explicitly promote any holistic
coherence at the line level. In the following we show the most common patterns and their frequencies in
the same dataset (where roughly 900 lines were used for training and 100 lines were used for testing).

CRF
26 x / x / x / x / x /
13 / x x / x / x / x /

5 x / x / x / x / x / x
5 x / x / x / x /
5 x / x /

Linear SVM
12 x / x / x / x / x /

7 / x x / x / x / x /
6 x / x / x / x x x /
5 / / x / x / x / x /
4 x / x /

In this example it can be seen that given the same dataset, the variance in outputs can be quite different.
Both classifiers predict an iambic pentameter most frequently, but, in the case of the Linear Support Vec-
tor Machine there are approximately 50 analyses that only appear once (with slight differences between
them). On the contrary, the number of unique analyses in the CRF results is around 30. This implicit
bias toward regularity is probably helpful for highly regular poetry, but also detrimental for scansion of
poetry with often recurring outlier lines. This raises an interesting question that could be tackled in the
future: can we include the amount the variation of a single poet as a parameter in the model? Another
related question is the amount domain adaptation that can be captured—in this case scanning poetry in a
meter that has not been encountered previously.

In this work we have established a baseline for the analysis of rhythmic patterns in poetry using various
supervised learning methods. As seen above, there are many cases in which the assignment of stresses is
not straightforward which we plan to focus on in future work. We applied typical NLP tools directly and
future efforts should focus on the improvement of these techniques, especially in the analysis of lines
with syllable additions, removals, ambiguous stress assignments, etc. Additionally, we performed feature
selection so as to improve accuracy—this, however, yielded a minimal improvement, but one which was
not statistically significant.

The strongest results that we achieved were at around 91.4% per syllable accuracy, averaging 55.3%
correctly scanned poetry lines on 10-fold cross-validation (CRF). Comparing with previous approaches
to poetry scansion, we outperform rule-based systems such as Scandroid—which achieved a 89.78% per
syllable and 42.95% per line accuracy—and ZeuScansion—which reaches 86.78% per syllable and a
26.21% per line accuracy (Agirrezabal et al., 2016).

Comparing this work with recent results presented in Estes and Hench (2016) on Middle High German
poetry, the results that we get in 10-fold cross-validation are quite similar, as they achieve a F-score of
.894 on 10-fold cross-validated data and .904 on held-out testing data.
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In this article and mainly during our research, we treated the problem as a kind of binary classification
task, marking the syllable either as stressed or unstressed. This binarization creates conflicts in some
verses in which there is a slow increase of the stress level between syllables. In some works, e.g the
above-mentioned Hayes et al. (2012), a four-level stress marking system is used. We believe that doing
so can avoid some of the ambiguity problems in scansion. In this sense, the problem could be recast as
either a multi-class problem, or a regression problem, calculating a non-binary level of stress for each
syllable.

We also expect to improve these results using more advanced techniques. Our first intention is to use
current advances in Deep Learning for the analysis of poetry, mostly sequence-based learning paradigms,
such as the widely used Recurrent Neural Networks with Long Short Term Memory (LSTM). Our pre-
liminary results with such models show that these frameworks can reach comparable (and sometimes
even better) accuracies without extensive work on manual extraction of features.

We have mainly built analyzers for English poetry in this work, but our intention is to investigate if
the basic features presented in this work are applicable to poetry written in other languages, and perhaps
locate possible typological generalizations among different languages and poetic traditions.

As the corpus of annotated poetry we have used is not very large, we also want to explore the possibility
of unsupervised learning of rhythmic patterns in poetry (in a manner similar to Greene et al. (2010)). In
this context, the language-agnostic features we have developed should be especially useful. To this
end, we plan to learn rhythmic patterns by extracting first the basic, and (nearly) language-universal
features by performing basic syllabification according to general principles (Hayes, 2011) such as onset
maximization and sonority sequencing.
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