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Abstract

Compositional distributional semantic models (CDSMs) have successfully been applied to the
task of predicting the meaning of a range of linguistic constructions. Their performance on semi-
compositional word formation process of (morphological) derivation, however, has been extremely
variable, with no large-scale empirical investigation to date. This paper fills that gap, performing
an analysis of CDSM predictions on a large dataset (over 30,000 German derivationally related
word pairs). We use linear regression models to analyze CDSM performance and obtain insights
into the linguistic factors that influence how predictable the distributional context of a derived
word is going to be. We identify various such factors, notably part of speech, argument structure,
and semantic regularity.

1 Introduction

Compositional models of distributional semantics, or CDSMs (Mitchell and Lapata, 2010; Erk and
Padó, 2008; Baroni et al., 2014; Coecke et al., 2010), have established themselves as a standard tool in
computational semantics. Building on traditional distributional semantic models for individual words
(Turney and Pantel, 2010), they are generally applied to compositionally compute phrase meaning by
defining combination operations on the meaning of the phrase’s constituents. CDSMs have also been
co-opted by the deep learning community for tasks including sentiment analysis (Socher et al., 2013) and
machine translation (Hermann and Blunsom, 2014). A more recent development is the use of CDSMs to
model meaning-related phenomena above and below syntactic structure; here, the term “composition”
is used more generally to apply to processes of meaning combination from multiple linguistic units,
e.g., above and below syntactic structure. Above the sentence level, such models attempt to predict the
unfolding of discourse (Kiros et al., 2015). Below the word level, CDSMs have been applied to model
word formation processes like compounding (church + tower → church tower) and (morphological)
derivation (Lazaridou et al., 2013) (favor + able → favorable). More concretely, given a distributional
representation of a basis and a derivation pattern (typically an affix), the task of the CDSM is to predict a
distributional representation of the derived word, without being provided with any additional information.
Interest in the use of CDSMs in this context comes from the observation that derived words are often
less frequent than their bases (Hay, 2003), and in the extreme case even completely novel; consequently,
distributional evidence is often unreliable and sometimes unavailable. This is confirmed by Luong et al.
(2013) who compare the performance of different types of word embeddings on a word similarity task and
achieve poorer performance on data sets containing rarer and more complex words. Due to the Zipfian
distribution there are many more rare than frequent word types in a corpus, which increases the need for
methods being able to model derived words.

In this paper, we ask to what extent the application of CDSMs to model derivation is a success story.
The record is unclear on this point: Lazaridou et al. (2013), after applying a range of CDSMs to an English
derivation dataset, report success, while Kisselew et al. (2015) found very mixed results on German
derivation and generally high variance across words and derivation patterns. The analyses in both studies
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POS + ID Pattern Sample word pair English translation

A→ N 16 +ität produktiv → Produktivität productive → productivity
A→ V 04 (umlaut) kurz → kürzen short → to shorten
N→ A 26 -ung +end Einigung → einigend agreement → agreeing
N→ V 07 be+ +ig Ende → beendigen end → to end
V→ N 09 (null) aufatmen → Aufatmen to breathe → sigh of relief
V→ V 14 auf+ holen → aufholen to fetch → to catch up

Table 1: Examples of derivation patterns from DErivBase

were also limited in scope (cf. Section 2.2). Furthermore, from a linguistic point of view, it is not at
all obvious that it is reasonable to model derivation as a fully compositional process, as CDSMs do.
Indeed, the classic linguistic definition of derivation distinguishes it from inflection by appealing to its
semantic irregularity: the meaning changes that accompany derivation are not supposed to be completely
predictable (Plank, 1981; Laca, 2001; Plag, 2003; Dressler, 2005).

More specifically, our goal is to gain a more precise understanding of the linguistic factors that govern
the success or failure of CDSMs to predict distributional vectors for derived words. To this end, we conduct
a broad-coverage analysis of the performance of CDSMs on more than 30,000 German derivationally
related word pairs instantiating 74 derivation patterns. As a first step, we build CDSM prediction models
for each of these patterns. The second step is a linear regression analysis with linguistic properties of
patterns and word pairs as predictors and the models’ performances as dependent variables. We formulate
and test a number of hypotheses about the linguistic properties and establish that, notably, derivations
that create new argument structure are generally hard to predict – although the difficulty is mediated by
the regularity of the semantic shift involved. Subsequently, we exploit the regression results to combine
several state-of-the-art CDSMs into an ensemble. Unfortunately, we do not see improvements over the
individual models, which we trace back to a lack of complementarity among the CDSMs.

2 Background: Modeling Morphological Derivation

2.1 Derivational Lexicons

Morphological derivation is a word formation process that produces new words and which, at the word
surface-level, can be described by means of an orthographic pattern applied to basis words. Table 1 shows
that in the simplest case (row 1) this means attaching an affix (+ität). The other rows show that the pattern
can be more complex, involving stem alternation (row 2; note that the infinitive suffix +en is inflectional),
deletion of previous affixes (row 3), circumfixation (row 4), or no overt changes, i.e., conversion (row 5).1

Derivation can take place both within parts of speech (row 6) and across parts of speech.
Derivation is a very productive process in many languages, notably Slavic languages. Thus, natural

language processing (NLP) for these languages can profit from knowledge about derivational relationships
(Green et al., 2004; Szpektor and Dagan, 2008; Padó et al., 2013). Nevertheless, derivation is a relatively
understudied phenomenon in NLP, and few lexicons contain derivational information. For English, there
are two main resources. CatVar (Habash and Dorr, 2003) is a database that groups 100K words of all parts
of speech into 60K derivational families, i.e., derivationally related sets of words. The other is CELEX
(Baayen et al., 1996), a multi-level lexical database for English, German, and Dutch, which covers about
50K English words and contains derivational information in its morphological annotation. For German,
DErivBase (Zeller et al., 2013) is a resource focused on derivation that groups 280K lemmas into 17K
derivational families. As opposed to CatVar and CELEX, it also provides explicit information about the
applicable derivation pattern at the level of word pairs. The examples in Table 1 are from DErivBase.

1We write patterns as sequences of orthographic operations, using ‘+’ for addition and ‘-’ for deletion, and place the operator
before or after the affix to distinguish prefixation and suffixation.
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2.2 Modeling the Semantics of Derivation with CDSMs
Lazaridou et al. (2013) were the first to predict distributional vectors for derived words using CDSMs and
experimented with a range of established CDSMs. In their paper, all models are supervised, i.e., some
word pairs for each pattern are used as training instances, and others serve for evaluation. Also, all models
assume that the base word (input) b and derived word (output) d are represented as vectors in some
underlying distributional space. The simple additive model predicts the derived word from the base word
as d = b + p where p is a vector representing the semantic shift accompanying the derivation pattern.
The simple multiplicative model, d = b � p is very similar, but uses component-wise multiplication
(�) instead of addition to combine the base and pattern vectors (Mitchell and Lapata, 2010). The third
model, the weighted additive model, enables a simple reweighting of the contributions of basis and pattern
(d = αb + βp). Finally, the lexical function model (Baroni and Zamparelli, 2010) represents the pattern
as a matrix P that is multiplied with the basis vector: d = Pb, essentially modelling derivation as linear
mapping. This model is considerably more powerful than the others, however its number of parameters is
quadratic in the number of dimensions of the underlying space, whereas the additive and multiplicative
models only use a linear number of parameters.

For their empirical evaluation, Lazaridou et al. (2013) considered a dataset of 18 English patterns
defined as simple affixes – 4 within-POS (such as un-) and 14 across-POS (such as +ment) – and found
that the lexical function model is among the top performers, followed by the weighted additive and
multiplicative models, all substantially better than baseline. From our perspective, their evaluation has
a number of limitations, though: they only included “high-quality” vectors (using human judgments
of nearest neighbors to determine quality), thereby focusing on a relatively well-behaved subset of the
vocabulary and potentially missing out on highly polysemous words. Furthermore, they evaluated mainly
by computing mean cosine similarities between predicted and corpus-observed (“gold”) vectors for the
derived words – this is not highly informative, as the closeness of the prediction to the actual vector is
also dependent on the density of the target’s neighborhood.2 A follow-up study on German (Kisselew
et al., 2015) attempted to address these limitations by including all word pairs without prefiltering, and
introducing a new evaluation metric that measured how often the predicted vector d was among the five
nearest neighbors of the corpus-observed (“gold”) vector d. Kisselew et al.’s evaluation obtained fairly
different results: the lexical function model performed worse than the simple additive model, and both
CDSMs often had problems outperforming the baseline. This study had its own limitations, though,
since it considered only 6 derivation patterns, all within-POS. Thus, it remains unclear to what extent the
differences between the two studies are due to (a) the language difference, (b) prefiltering word pairs, or
(c) the choice of derivation patterns under consideration.

3 Analyzing Models of Morphological Derivation

Given these conflicting results, we propose to empirically investigate the factors that influence how
well CDSMs can predict the semantics of derived words. Note that when we talk about ‘predictability’
of a derived form, we refer to the ability to model an otherwise already established term, for which a
distributional analysis can be performed. That is, we investigate to which extent a one-off compositional
procedure can capture the meaning of a word, as in a situation where a speaker encounters an existing
term for the first time. Further, we assume that the individual items in the observed data will naturally
have different frequencies (from rare to highly frequent) and that this will affect both the learning process
and the certainty we can have about the meaning of a test vector. We believe this is a realistic setup in
terms of modelling first encounters with established derivations, and we therefore make no attempt to
control for the frequency of individual word vectors, either at training or test time.

3.1 Overall Workflow
We follow a two-step workflow depicted on the left-hand side of Figure 1. The workflow involves
prediction models (cf. Section 3.2), i.e., CDSMs that predict a vector for the derived word given the vector
for the base word, as well as analysis models (cf. Section 3.3), i.e., linear regression models that predict

2They also performed a manual judgment study, but only as an additional experiment on “low-quality” word pairs.
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Train (50%) Devel (30%) Test (20%)

Regression
Model: Study 1

Ensemble
Prediction

Analysis
Model: Study 2

Prediction
Models

Linguistic
Analysis

Simple Add
Model

(soft, softness)   0.2 
(hard, hardness)   0.5 
(hard, hardship)   0.1

Prediction Evaluation (Reciprocal Rank), Features

base   deriv  pattern  logf …  RR
soft  softness  AN13      3  …  0.2
hard  hardness  AN13      4  …  0.5
hard  hardship  AN34      4  …  0.1

Regression Analysis

model:
 RR ~ pattern + logf + …

feature         coeff
 freq            +0.3
 pattern=AN34    -0.4

Figure 1: Top: Overall workflow. Below: Toy example

the performance of the CDSMs based on a rich set of linguistic predictors. We build two analysis models,
one for linguistic analysis (Experiment 1, Section 4) and one for NLP (Experiment 2, Section 5).

The workflow uses a large set of derivationally related word pairs split into training, development, and
test sets (50%, 30%, and 20%, respectively). The splits are stratified by derivation pattern, i.e., each
pattern occurs in approximately these ratios in each split. This is a reasonable strategy, assuming that our
set of patterns is fairly complete (Zeller et al., 2013) and we can disregard the problem of unseen patterns.

The three sets play different roles. The training set is used to train prediction models. The development
set is then used to measure the performance of prediction models on unseen data. These performance
numbers are those that the regression model is then trained to predict. Finally, the analysis model itself is
evaluated on the test set, that is, on another previously unseen dataset. In this manner, we guarantee that
all results we obtain are measured on unseen data and generalize well to novel instances.

We note that the task of the prediction models (constructing the vector for the derived word) incorporates
our general assumption that we do not have any information about the derived word. While this is not a
reasonable assumption from an NLP point of view, where we would know at least the frequency of the
derived word, and may also have a (typically less reliable) distributional vector for it, this “no-knowledge”
setup represents, in our opinion, the cleanest setup for an analysis of linguistic factors.

3.2 Prediction (CDSM) Models

Derivationally Related Word Pairs. We draw our derivationally related word pairs from DErivBase3

(Zeller et al., 2013). As stated above, each word pair is labeled with a derivation pattern, representing the
orthographic transformation of the basis word. Since our predictive models are trained for each pattern
separately, we ensure that each model will have enough training instances by discarding all patterns with
less than 80 word pairs. Out of the 158 patterns in DErivBase, we retain 74 patterns, of which 49 are
cross-POS patterns. The 74 patterns cover 30,757 word pairs. Patterns have a median of 194.5 word pairs
(min. 83, max. 3028).

Corpus. We derive the frequency counts and the distributional vectors for our analysis from the German
web corpus SdeWaC (Faaß and Eckart, 2013), POS-tagged and lemmatized using TreeTagger (Schmid,
1994). Following Kisselew et al. (2015), to mitigate sparsity, for out-of-vocabulary words we back off to
the lemmas produced by MATE Tools (Bohnet, 2010), which have higher recall but lower precision than
TreeTagger. We also use the MATE dependency analysis to reconstruct lemmas for separated prefix verbs.

3http://goo.gl/tiRJy0
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Prediction Models. To obtain the vector representations on which we can train our prediction models,
we use CBOW, a state-of-the-art predictive distributional semantics space which been shown particularly
effective for modelling word similarity and relational knowledge (Mikolov et al., 2013).4 (Considering
the type of semantic space as a parameter is outside the scope of our study.)

As both target and context elements, we use all 280K unique POS-disambiguated lemmas (nouns,
adjectives, and verbs) from DErivBase. We use a within-sentence context window of size±2 to either side
of the target word, 300 context dimensions, negative sampling set to 15, and no hierarchical softmax. On
these vector representations, we train four prediction models (cf. Section 2): the simple additive model,
the simple multiplicative model, the weighted additive model, and the lexical function model. Each
model is trained on each of the 74 patterns separately by minimizing the expected square loss between
the predicted and the observed derived vector.5 For additive models, the shift vector p is computed as
the average of the shift vectors across all word pairs from a single pattern, while the weighted additive
model additionally optimizes α and β in a subsequent step. Since the lexical function model is more
prone to overfitting due to its many parameters, we train it using ridge regression, employing generalized
cross-validation to tune the regularization parameter on the training set. As a fifth, baseline model, we
use the identity mapping, which simply predicts the basis vector as the vector of the derived word. Our
implementation is based on the DISSECT toolkit (Dinu et al., 2013).

Evaluation. The performance of the CDSMs is measured by how well the predicted vector aligns with
the corpus-observed vector for the derived word. More concretely, we quantify the performance on
each word pair by Reciprocal rank (RR), that is, 1 divided by the position of the predicted vector in the
similarity-ranked list of the observed vector’s neighbors. Besides being a well-established evaluation
measure in Information Retrieval, RR is also more sensitive than the “Recall out of n” measure used
previously (Kisselew et al., 2015), which measures the 0–1 loss and also requires fixing a threshold n. RR
also has the advantage of being easily interpretable: a mean reciprocal rank (MRR) of 0.33, e.g., indicates
that the correct predicted vector is on average the third-nearest neighbor of the observed vector. The
neighbor list for each derived word is POS-specific, that is, it consists of all words in the space that match
its part of speech.

3.3 Analysis (Linear Regression) Models

The task of our analysis models is to predict the performance of the CDSM models (measured as reciprocal
rank, cf. Section 3.2) at the word pair level, i.e., individual pairs of base and derived words. The goal
is to assess which factors have a substantial influence on the prediction of the semantics of derived
words. To this end, we use linear regression, which is a well-established analysis method in linguistics
and psycholinguistics (Baayen, 2008). Linear regression predicts a dependent variable v as a linear
combination of weighted predictors pi, i.e., v = α1p1 + · · ·+ αnpn. A coefficient αi can be interpreted
as the change in v resulting from a change in the predictor pi. We use the R statistical environment.

The right-hand side of Figure 1 shows a toy example for a single prediction model (simple additive).
We first run the prediction model, then evaluate its reciprocal ranks at the word pair level, then compute
features (such as the pattern and the logarithmized frequency of the base). Finally, we perform a regression
analysis. It yields the information that higher frequency has a positive impact on performance, while the
pattern AN34 has a negative impact.

Our complete set of predictors comprises three classes:

• Base word level predictors describe properties of the base word. They include base product-

ivity, the number of derived words known for the base, base polysemy, the number of WordNet
synsets, and base freq, its lemma frequency in the SDeWaC corpus.6 Predictor base typicality

is the cosine similarity between the base and the centroid of all bases for the present pattern, as a
measure of how semantically typical the base is for the pattern;

4https://code.google.com/p/word2vec/
5For the simple additive and multiplicative models, there are analytical solutions.
6All numeric variables (predictors and dependent variable) are z-scaled; frequency variables are logarithmized.
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Baseline Simple Add Weighted Add Mult LexFun

Mean Reciprocal Rank 0.271 0.309 0.316 0.272 0.150

# Predictions used by Oracle
(Experiment 2)

2139 954 1613 532 913

# Predictions used by Regression-
based Ensemble (Experiment 2)

51 2306 3528 190 76

Table 2: Results for individual prediction models on test set

• Prediction level predictors describe properties of the vector that the CDSM outputs. Following
work on assessing the plausibility of compositionally constructed vectors by Vecchi et al. (2011), we
compute the length of the vector (deriv norm) and the similarity of the vector to its nearest neighbors
(deriv density), and the similarity between base vector and derived vector (base deriv sim);

• Pattern level predictors. We represent the identity of the pattern, which is admissible since we can
assume that the DErivBase patterns cover the (vast) majority of German derivation patterns (Clark,
1973). Unfortunately, this excludes a range of other predictors, such as the parts of speech of the
base and derived words, due to their perfect collinearity with the pattern predictor.

The rest of the paper is concerned with performing a regression analysis based on these features. We
perform two separate analyses to satisfy two fairly different motivations. The first one is linguistic, namely
to understand which properties of the base and the pattern make the prediction easy or difficult. This
analysis concentrates on one single CDSM, namely the best individual one: if it included multiple CDSMs,
the regression model would spend part of its power on predicting the behavior of the (arguably irrelevant)
worse CDSMs. Further, this regression model should include only pattern-level and base-level features,
since prediction-level features are arguably not linguistic properties. For this approach, see Section 4.

The second motivation comes from NLP and concerns the possibility to define an ensemble over several
CDSMs that works better than individual CDSMs by employing a regression model to select the best
CDSM at the word pair level. This analysis must by definition include the output of multiple prediction
models. Furthermore, it should also include the features at the prediction level since they may help
distinguish reasonable from unreasonable predictions. We will pursue this approach in Section 5.

4 Experiment 1: Linguistic Analysis

As outlined above, the first task in the linguistic analysis is to select the best individual prediction model
for evaluation. The test set evaluation results are shown in the first row of Table 2. As the numbers show,
the weighted additive model is the best model, and our analysis will focus on it. We estimate the following
linear regression model to predict reciprocal rank (RR) on the development set:

RR ∼ pattern + base_productivity + base_typicality + base_polysemy + base_freq

Applied to the test set, the model achieves a highly significant fit with the data (F=58.32, p<10−12,
R2=0.324). Performance is highly variable across patterns and words pairs: results for word pairs span
almost the full range of reciprocal ranks between 0 and 1, and the pattern level results range between 0.03
(pattern VV01, zucken→ zuckeln / twitch→ saunter), i.e., predictions are no good, and 0.69 (pattern AN10,
präsent→Präsenz / present→ presence), i.e., most predictions are ranked first or second. Predicted
values are not correlated with the residuals (r < 10−6). Our further discussion of this regression model
is structured along a set of hypotheses we made regarding the influence of particular factors, or more
specifically how they translate into distributional behavior.

Training Data and Polysemy. We start by considering the “usual suspects” in data-driven computational
linguistics regarding performance, which leads us to three hypotheses. First, low-frequency bases are
hard due to the limited reliability of the distributional evidence. Second, atypical bases are hard, that is,
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Predictor Estimate LMG score

pattern (see Table 4) 87.2%
base productivity −0.13*** 7.6%
base freq 0.21*** 4.1%
base polysemy −0.03** 0.8%
base typicality 0.04*** 0.2%

Table 3: Experiment 1: Coefficients, significances, and effect sizes for the predictors

derivations of instances unlike those seen in the training data are difficult to predict. Third, derivation
models must account for the selection of individual word senses in derivation: e.g., the verbal base
absetzen variously means depose (an official), drop (a load), deduct (an amount), but the derived adjective
absetzbar is only used in the meaning of deductable. Since typical distributional models, including ours,
do not disambiguate bases by sense, highly polysemous bases are hard.

Consider now Table 3, which lists coefficients, significance, and effect sizes for these predictors.
Recall that we predict reciprocal rank (RR), that is, positive coefficients indicate better whereas negative
coefficients indicate worse performance.7 The data bears out our hypotheses fairly well: we find positive
effects of frequency and of typicality, and negative effects of base productivity and polysemy. The relative
importances of these effects is however only weakly indicated by the sizes of the coefficients. Thus, the
column LMG provides normalized Lindeman-Merenda-Gold (LMG) scores (Lindeman et al., 1980), a
measure of effect size (Grömping, 2012), applied, e.g., by Marelli et al. (2015) in a similar context. These
scores indicate what percentage of the variance explained by the model is due to the individual predictor
groups. As we see, most variance is accounted for by the pattern predictor. Productivity and
frequency account for respectable amounts of variance, while polysemy and typicality contribute
surprisingly little. This finding needs however to be interpreted taking into account that the pattern
predictor is categorical, and as such “soaks up” all properties at the level of individual patterns, including
polysemy. As a matter of fact, the correlation between RR and polysemy at the level of individual word
pairs is only weak (ρ=−0.03), while MRR and average polysemy are strongly correlated at the level of
derivational patterns (ρ=−0.30).

Since the bulk of the variance is accounted for by the pattern predictor, we now turn to formulating
hypotheses about derivation patterns.

Within-POS Derivations. We first start out by considering within-POS derivations. While cross-POS
derivations are at least partially motivated by the need to change the base’s syntactic category, within-POS
derivations primarily reflect proper semantic processes, such as polarity and gradation prefixes (un+,
über+ for adjectives) or prefix verbs (hören→ aufhören / hear→ stop), which are particularly prominent
in German. Such affixes are known to be highly polysemous and hard to characterize both linguistically
and computationally (Lechler and Roßdeutscher, 2009; Lehrer, 2009). Thus, we expect that within-POS
derivation is hard to model.

Table 4 lists all levels of the factor pattern that are statistically significant from the grand mean (using
contrast coding in the regression model), adopting a threshold of α=0.01. The columns correspond to
the parts of speech of the base word, and the rows to the parts of speech of the derived word. Recall
that negative coefficients indicate worse performance than average, and positive coefficients better-than-
average performance.

The table strongly confirms our hypothesis: all five significant adjective→ adjective and all seven
verb→ verb derivation patterns come with large negative coefficients.

Argument Structure. For cross-POS derivation, we hypothesize that argument structure (Grimshaw,
1990) is a major factor, connected to the largest difference to existing applications of CDSMs for phrase
meaning: while in phrasal composition the resulting phrase usually shows the same semantic behavior as

7We use standard notation for significance (*: p < 0.05, **:p < 0.01, ***:p < 0.001).
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Base POS
A N V

D
er

iv
ed

PO
S

AA03 anti+ −0.39 *** NA02 +isch 0.52 *** VA02 +end 0.48 ***
AA07 ab+ −0.41 *** NA05 -e/en +ig −0.19 ** VA03 +ig −0.26 **

A AA13 nach+ −0.41 *** NA25 -ung +t 0.67 *** VA11 +lich −0.36 ***
AA15 über+ −0.43 *** NA26 -ung +end 0.40 ** VA12 +end 0.85 ***
AA17 vor+ −0.42 *** NA27 +lich 0.46 *** VA13 +t 1.02 ***

NA29 +los −0.42 ***
NA31 ge+ −0.33 ***

AN01 +e −0.39 *** VN03 +er −0.24 ***
AN02 +heit 0.45 *** VN07 +ung 1.14 ***
AN03 +keit 0.78 *** VN09 +en 0.45 ***
AN04 +igkeit 0.64 ***

N AN10 -t +z 0.75 ***
AN11 +ie 0.95 ***
AN12 -isch -ik 0.71 ***
AN16 +ität 0.64 ***
AN17 (null) −0.38 ***
AV01 +isieren 0.69 *** NV09 (null) 0.36 *** VV01 -en +eln −0.45 **
AV04 (null) 0.28 ** NV15 an+ −0.31 *** VV05 ver+ −0.26 ***

V NV17 aus+ −0.35 *** VV12 (stem) −0.36 **
NV20 ein+ −0.36 *** VV13 an+ −0.26 ***
NV22 ab+ −0.34 *** VV22 ein+ −0.21 **

VV27 vor+ −0.41 ***
VV30 um+ −0.28 **

Table 4: Experiment 1: Derivation patterns with significant regression model coefficients (α=0.01), cross-
classified by base and derived part of speech (null: morphologically null derivation; stem: anticausative
stem change, as in legen→ liegen, put→ lie)

its head component (an adjective-noun phrase behaves largely like a noun), this is not always the case
in derivation. For example, the agentive nominalization pattern -er (laufen→Läufer / run→ runner)
incorporates the agent noun of the verb, which therefore drops out of the context of the derived word. We
hypothesize that argument structure changes are difficult to learn for the CDSMs we consider.

Looking at Table 4, we see a mixed picture, with easy and difficult patterns. Adjective→ noun
derivations, which predominantly generate abstract nouns without argument structure (like AN02,
taub→Taubheit / deaf→ deafness), are overwhelmingly easy to generate. We hypothesize that the
deletion of the adjective’s argument is not problematic to learn. For verb→ noun patterns, the default
event nominalization suffix +ung (umleiten→Umleitung / redirect→ redirection) and stem nominaliza-
tions (fahren→Fahren / drive→ driving), both of which preserve argument structure, are easy to model.
So are the verb→ adjective patterns that form present participles (+end) and past participles (+t). In
contrast, the agentive/instrumental nominalization pattern +er (fahren→Fahrer / drive→ driver), where
argument structure changes, is associated with a loss in performance.

We noted that those verb→ adjective patterns that form property adjectives (beachten→ beachtlich
/ notice→ noticeable) are more challenging to model. This made us aware that difficulties associated
with argument structure are mediated by an another important factor, namely semantic regularity. The
difficulty of such patterns is related to how uniform the semantic shift is among the instances of the
pattern, and how well it can be picked up by distributional analysis. As an example of semantically regular
shifts, consider the significant adjective→ verb patterns (AV01, AV04) which can be paraphrased as “to
cause to have property X” (anonym→ anonymisieren / anonymous→ anonymize). Since there is a direct
mapping from the modified head noun of the adjective onto the direct object of the verb, the distributional
mapping is relatively easy, even though the shift even involves the creation of new argument structure.
In contrast, some verb→ adjective patterns like VA11 (+lich) involve the introduction of modality, a
complex semantic change whose distributional consequences are hard to grasp and which is similar in
nature to within-POS derivations (see above).

At the far end of the difficulty scale, we find bad performance for the noun→ verb derivations, because
these patterns face challenges on both the argument structure and regularity fronts: they generate verbs
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from nouns that are only loosely semantically related (Clark and Clark, 1979). An example is NV22
with instances like Zweig→ abzweigen / (tree) branch→ branch off. The only easy noun→ verb pattern,
NV09, comes with a particularly regular semantic shift, paraphrasable as “to use X as instrument”
(Hammer→ hämmern / (a) hammer→ (to) hammer).

Argument structure being a complex phenomenon, we would require additional work to exactly identify
which factors play a role in derivational processes, and how those factors interact with distributional
models. For instance, certain types of argument deletion/addition can result in shifting lexical items to
other sentence constituents (e.g., X developed Y over ten years vs. Y underwent ten years of development).
This kind of effect can, at least in principle, be captured using variable window sizes in a CDSM. Whilst
we leave such questions for further research, the present results seem to support the idea that argument
structure is a worthwhile aspect to investigate.

5 Experiment 2: Ensemble Prediction

In our second study, we investigate the use of linear regression models to construct an ensemble of CDSMs
for derivation prediction. Ensemble learning is well established in NLP to capture phenomena that exceed
the power of individual models (Dietterich, 2000). In our case, we want to select one vector from among
the predictions of multiple CDSMs. We consider two strategies to perform this selection: The oracle
model compares all prediction models, and simply picks the one with the highest RR. The oracle thus
establishes an upper bound that assesses the theoretical benefit of model combination. It achieves an MRR
of 0.362 – a modest, but substantial improvement of four and a half points over the best individual model
(weighted additive, MRR=0.316, cf. Table 2).

The second strategy is the regression model which predicts the CDSMs’ expected performances at the
word pair level with a linear regression model trained on the development set (cf. Figure 1). As discussed
in Section 3.3, our regression model for this purpose differs in two respects from the first study: it includes
features for the prediction, and it is trained on the evaluations of all five CDSMs. The provenance of
each evaluation result is coded in a new predictor, cdsm, with the values baseline, simple add,

weighted add, mult, lexfun. We introduce interactions between cdsm and all base-level features
to enable the regression model to learn, e.g., that some CDSMs can deal better with low-frequency bases.
We estimate the following model on the development set:

RR ∼ deriv_density + base_deriv_sim + deriv_norm + pattern +

(base_productivity + base_typicality + base_freq + base_polysemy) * cdsm

On the test set, the model achieves a highly significant fit with the data (F=193.5, p< 10−12, R2=0.305),
that is, it achieves a similar model fit to the first study.

Unfortunately, the use of this regression model to define an ensemble does not work particularly well:
the ensemble yields an MRR of just 0.321, only half a point above the best-performing individual model,
weighted additive, with an MRR of 0.316. This is a negative result: our regression models do not directly
translate into better predictions for derived word vectors. To understand the reasons for this failure, we
perform two analyses. The first one compares how many predictions of each CDSM the oracle and the
ensemble selected, as shown in the lower part of Table 2. The oracle selects substantially from all models,
while the regression-based ensemble chooses strictly in proportion to the CDSMs’ overall performance:
The best model (weighted additive) is selected for over 60% of all cases while the lexical function model
is almost ignored. This indicates that the regression model is overly dependent on the cdsm predictor,
while the base-level and pattern-level predictors are not powerful enough to reverse the bias towards
higher-MRR models.

Our second analysis follows Surdeanu and Manning (2010), who found that the complementarity
between participating models in an ensemble is more important than the exact combination method.
To test the amount of complementarity, we computed rank correlations (Spearman’s ρ) between the
CDSMs’ predictions at the word pair level. The results in Table 5 show that the baseline, additive, and
multiplicative models are highly correlated (all pairwise ρs larger than 0.84). Only the lexical function
model behaves substantially differently (pairwise ρ less than 0.34). This would make it a good candidate
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Baseline Simple add Weighted add Multiplicative

Simple add 0.923
Weighted add 0.840 0.930
Multiplicative 0.967 0.929 0.853
Lexical function 0.281 0.310 0.333 0.304

Table 5: Experiment 2: Correlations among CDSMs at the word level (Spearman’s ρ)

for complementary predictions (as its selection by the oracle also witnesses) – however, its overall bad
performance (MRR=0.150) drastically reduces its chance to be picked by the ensemble.

6 Conclusions

In this paper, we presented the first analysis of CDSMs on derivational phenomena that is both detailed
and broad-coverage. Our main premise was that the linguistic features of individual lexical items, as
well as the nature of the derivation pattern, would affect the extent to which the derived form could be
predicted. This led us to establish relationships between linguistic properties and distributional behavior
of words, a central topic in distributional semantics that seems to have received very little attention.

To quantify these relationships, we built a linear regression model with CDSM performance as depen-
dent variable and linguistic features as predictors. An effect size analysis showed that the base term’s
productivity and frequency influence difficulty, but that the derivation pattern has a much larger effect.
By analyzing patterns, we found that the three main factors for bad performance were: modifications of
argument structure, semantic irregularity, and within-POS derivations.

Regarding the apparent contradictions among previous studies, our analysis can resolve them to some
degree. We can attribute the overall bad CDSM results of Kisselew et al. (2015) to an unfortunate choice
of hard within-POS derivations. At the same time, we replicate their particularly disappointing results
for the lexical function, which contrasts with Lazaridou et al.’s reported performance for that model. To
test whether these differences are due to Lazaridou et al.’s prefiltering, we re-evaluated all CDSMs on
a “high-quality” subset of our data by throwing away the quartile with the lowest base word frequency
(corresponding to a threshold of 420). The results for all models improve by 1–2%, but the lexical function
model remains at 15% below the baseline. Obvious remaining differences are the language and the type
of the distributional model used. However, these factors were outside the scope of the current study, so we
leave them for future work.

We also built an ensemble model over the different CDSMs but did not substantially outperform the
best single CDSM. We draw two conclusions from this failure: (a), despite the array of available CDSMs,
it makes sense to continue developing new CDSMs to increase complementarity; and (b), the limiting
factor in difficult prediction is the idiosyncratic behaviour of base words that our current distributional
features capture only imperfectly.

To encourage further research, we make available our dataset with derivationally related word pairs and
CDSM performance predictors.8
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