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Abstract
Identifying events of a specific type is a challenging task as events in texts are described in numer-
ous and diverse ways. Aiming to resolve high complexities of event descriptions, previous work
(Huang and Riloff, 2013) proposes multi-faceted event recognition and a bootstrapping method
to automatically acquire both event facet phrases and event expressions from unannotated texts.
However, to ensure high quality of learned phrases, this method is constrained to only learn
phrases that match certain syntactic structures. In this paper, we propose a bilingual structure
projection algorithm that explores linguistic divergences between two languages (Chinese and
English) and mines new phrases with new syntactic structures, which have been ignored in the
previous work. Experiments show that our approach can successfully find novel event phrases
and structures, e.g., phrases headed by nouns. Furthermore, the newly mined phrases are capable
of recognizing additional event descriptions and increasing the recall of event recognition.

1 Introduction

Event recognition aims to identify documents that describe a specific type of event. Accurate event
recognition is challenging due to ambiguities of event keywords. In the previous work, Huang and Riloff
(2013) (hereafter H&R) proposed multi-faceted event recognition method that uses event expressions as
well as event defining characteristics (aka “event facets”, such as “agents” and “purpose”) to achieve
high accuracy in identifying civil unrest events. They also presented a bootstrapping solution that can
learn event expressions and event facet phrases from unannotated texts. However, to achieve high quality
phrases, strict syntactic constraints have been enforced and their bootstrapping algorithm can only learn
two particular types of V-O (Verb-Object) Structure for both event expressions and facet phrases. Obvi-
ously, diverse forms of other verb phrases and non-verb phrases exist to describe events and are ignored
by the proposed algorithm. For instance, a verb phrase where two verbs are connected with a particular
dependency relation “xcomp”1, (e.g., “came out to demonstrate”) is one of these structures. Civil unrest
events can also be invoked by some noun structure phrases, such as just a noun word phrase (e.g., “sit-
ins”) or phrases starting with a noun (e.g., “disobedience of order”), even a passive form phrase structure
like “rallies held (in)”.
In order to address this issue, we propose a simple yet effective bilingual structure projection method

that explores syntactic divergences (Georgi et al., 2012) between two languages and mines new syntactic
structures for event expressions and event facet phrases effectively using parallel corpora. This is inspired
by many recent cross-lingual research that utilize the second language to provide a different view (Balcan
and Blum, 2005; Burkett et al., 2010; Ganchev et al., 2012) and complementary cues (Che et al., 2013;
Wang et al., 2013) in improving Natural language Processing (NLP) tasks for the target language, analo-
gous to co-training (Chen and Ji, 2009;Wan, 2009; Hajmohammadi et al., 2015) but between two different
languages. In order to learn new event phrases and their syntactic structures, we map phrases2 back and

∗Corresponding author
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:

http://creativecommons.org/licenses/by/4.0/
1“xcomp” is a dependency relation between a verb or an adjective and its open clausal complement in a dependency tree. In

sentence “Workers came out to demonstrate”, the relation between verb “came” and verb “demonstrate” is “xcomp”.
2We start with initial phrases learned by H&R, thanks to the authors for sharing the learned phrases and evaluation data.
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Figure 1: The bilingual structure mapping procedure

forth multiple times between two languages using parallel corpora to make full use of these divergence
information. We choose Chinese as the pivot language to learn English event phrases and event facet
phrases. On the one hand, both Chinese and English share a common sentence structure SVO (Subject-
Verb-Object) and other similar sentence composition. On the other hand, these two languages have many
significant differences, e.g., an uninflected language (Chinese) vs. an inflected language (English). The
commonalities enable bilingual projection while the language divergences stimulate occurrences of new
phrases and new phrase structures. The input to our bilingual structure projection system are two English
verb phrase lists, event phrases and purpose facet phrases which are learned byH&R’smulti-faceted event
recognition method. After each mapping step, new syntactic structures and new phrases are learned.
Figure 1 illustrates one iteration of bilingual structure mapping with examples. Given the English

phrase “staged demonstrations” with the structure of “VBD<dobj>NN”, English sentences containing
this phrase in the parallel corpora are identified. Then various Chinese phrases (Figure 1(b)) are generated
when mapping the English phrase to its Chinese correspondence based on word alignments of the parallel
sentences. Interestingly, a multi-word verb phrase in English can be expressed with only one noun (e.g.,
“示威”/demonstration) or a verb (e.g., “游行”/parade) in Chinese. Furthermore, we have observed that
Chinese tends to use a conjunction of two verbs that have roughly the samemeaning when referring to one
single event, e.g., “示威游行” in Figure 1(b). More examples are given in Figure 1. When we map these
already diversified Chinese phrases back to English, new phrases with richer syntactic structures (Figure
1(c)) are generated, including some interesting noun structure phrases and one single-word phrase. To
fully exploit language divergences, the bilingual structure projection run back and forth between the two
languages and continues for several iterations.
Experiment results show that our approach can successfully find hundreds of new English phrasal

structures, e.g., structures headed by nouns, and learn thousands of new event expression and event facet
phrases. Furthermore, using the same evaluation data and evaluation method as in H&R, the newly mined
phrases are capable of recognizing additional event descriptions, and significantly increasing the recall
of event recognition by 8.2 points and the overall F1-score by 3.5 points.
This paper is structured as follows: Section 2 describes the H&R’s multi-faceted event recognition

approach. Section 3 details our bilingual structure projection method and some heuristic rules used in
our method. Section 4 describes our experimental design and evaluation results. Then section 5 discusses
a variety of new phrases and structures generated by our approach. Section 6 introduces the related work
of bilingual methods for various NLP tasks. Last, section 7 summarizes the bilingual structure method
and expounds our future work.

2 Background

Accurately identifying documents that describe a specific type of event is a challenging task because
events can be mentioned in various complex contexts. Using event keywords alone are barely reliable.
For example, while the words “strike”, “rally” and “riot” are commonly used to describe civil unrest
events, they frequently refer to other events that are dramatically different from civil unrest events in-
cluding “bowling strike”, “rally car” and “imagination riot”. In the previous work, Huang and Riloff
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Figure 2: Syntactic constraints in H&R’s method. (a) shows two pre-defined phrase structures, (b) is the
sentence pattern in H&R’s bootstrapping system

(2013) proposed the multi-faceted event recognition approach that uses both event expressions and event
defining characteristics (called event facets) to accurately identify event occurrences. As described in
the paper, agents and purpose are two types of event facets that are essential to distinguish many types
of events. For instance, both natural disasters and military incidents can mention injuries and deaths as
consequences, however, their agents are distinct. The agents of natural disasters have to be natural force
while the agents of military incidents have to include military personnel. Similarly, purposes describe
motivations of events and are extremely helpful to distinguish various types of events.
H&R also proposed a bootstrapping framework to learn event expressions and event facet dictionaries

from the unannotated texts automatically requiring only minimal supervision with a few event keywords
and a few seed phrases for each event facet. They observed that event facet phrases and event expressions
tend to co-occur in event introductory sentences. Therefore, the bootstrapping system first learns event
expressions from the sentences that contain both types of event facets and then learns more event facet
phrases from the sentences that contain an event expression and a different type of event facet, in an iter-
ative manner. Their multi-faceted event recognition with bootstrapped event dictionaries achieved high
precision (88%) with a reasonable recall (71%) on identifying civil unrest events. However, to ensure
high quality of learned phrases, strict syntactic constraints were enforced at both the phrasal and sen-
tential level. Specifically, they only considered event expressions and purpose phrases as verb phrases
in two types (Figure 2(a)), the first phrasal type is a verb followed by the head noun of its direct ob-
ject and the second phrasal type is a verb with an attached prepositional phrase, while reasonably both
event expressions and purpose phrases can exist in many other syntactic structures. Furthermore, within
a sentence, specific dependency relations are required between both facet phrases and the main event
expression (Figure 2(b)), the agent term has to be the syntactic subject of the event expression and the
purpose phrase has to be a clausal complement of the event expression. Obviously, these harsh syntactic
constraints pose limitations to the types of event phrases and event facet phrases that can be learned using
this framework. Our research is committed to mine new phrases and phrase structures that go beyond
these constraints leveraging divergences across two languages.

3 Learning Event Expressions via Bilingual Structure Projection

Our algorithm can iterate multiple times to learn new phrases in new syntactic structures automatically.
In our experiments, we expand two types of phrases: event phrases (EP) and purpose phrases (PP) learned
by H&R’s method.

3.1 One Iteration of Bilingual Structure Projection
In our bilingual projection, we use structured phrases for mapping. Structured phrases3 comprise both
lexical and structural information. One iteration of the projection consists of two stages: mapping English
event phrases to Chinese and projecting Chinese equivalents back to English. Next, we use an example
as shown in Figure 2 to illustrate the projection process from English to Chinese.

3A structured phrase is defined as “start_node <relation1> in_node1 <relation2> in_node2 <realation3> ... <realtionN>
end_node”, where each node is a word, and the relation between two nodes is their dependency relation. Structured phrases
capture both lexical and structural information for event expressions. Each structured phrase is essentially a path between two
nodes in a dependency parse tree.
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Figure 3: The illustration of projection from English to Chinese

Figure 4: One verb with two coordinate objects

First, we identify an English event phrase on the source side of our parallel corpora, e.g., “organized a
demonstration” in Figure 3, and extract the corresponding structured phrase “organized <dobj> demon-
stration” according to the dependency tree. Second, we detect phrase span of the translation equivalent
for the extracted structured phrase by computing the aligned span on the target side via word alignments.
In Figure 3, the equivalent span on the Chinese side is [3, 7]. In the third step, we take the leftmost
and rightmost word of the translation equivalent span as the start_node and end_node. Then we further
generate the structured phrase on the target side by finding the shortest path from the start_node to the
end_node in the dependency tree, e.g., “组织 <dobj>示威”. For the in-depth analysis in Section 5, we
use part-of-speech (PoS) tags to replace words in the found structured phrase to obtain a generalized struc-
ture, e.g., VV<dobj>NN in Figure 3. Then, mapping the new generated Chinese structured phrases (“组
织 <dobj>示威” in Figure 3 for example) back to English in the second stage of the bilingual projection
following the similar procedure as described above. After the two-stages mapping, we obtain diversified
English event phrases.

3.2 Phrase Decomposition
From our training data, we have learned many phrases with a conjunction. We find that most of them
follow two structure patterns. The first is that one verb has two coordinate objects that express two re-
lated events. For example, the Chinese equivalent of English phrase “staged demonstrations” in Figure
4 is “进行示威”. However, there is not a direct dependency relation between “进行” and “示威” in the
dependency tree. Instead, they are connected by a word “静坐” (sit-ins). Apparently, “ staged demon-
strations” (进行示威) and “staged sit-ins” (进行静坐) are two related events. The other pattern is an
interesting phenomenon we have observed in our structure projection experiments. Chinese language
tends to use a conjunction of two words that have roughly the same meaning when referring to an event
while in English only one of the two coordinates is used to refer to the same event. For example, “捍
卫 <dobj> 人权 <conj> 民主” (defend human rights and democracy) is a common expression in Chi-
nese. However, in English, “defend human rights” is used to express the same meaning. To exploit this
conjunction structure and linguistic divergence, we split such phrases into two separate phrases and keep
both original phrases and decomposed phrases in the bilingual projection. For example, “进行示威、静
坐” is separated into two phrases “进行示威” and “进行静坐”.

3.3 Phrase Filtering
In order to alleviate error propagation from word alignments and dependency trees, we apply phrase
filtering. Particularly, we adopt three strategies to filter out inappropriate phrases.
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Filtering by phrase frequencies: We keep phrases that occur at least t times and discard phrases
occurring less than t times to minimize the impact of word alignment and dependency parse errors. Pa-
rameter t is tuned on the development set as we harvest new phrases.
Structural filtering: We use syntactic structure information to rule out incomplete phrases. For in-

stance, Chinese phrase “进行了” (carry on sth.) with a phrase structure “VV<asp>AS” is not a complete
phrase since it does not have an object. Similarly, we filter out phrases ending with “AS”, “P”, “DEC”,
“LC”, “PU”, “CD”, “MSP” 4.
Filtering by phrase specificity: We keep phrases that are closely related to our topic. Some phrases

occur many times during the learning procedure for two reasons. The first reason is that they are closely
related to our topic. The second is because they are high-frequency phrases in our corpora. We have
observed that some highly frequent and general phrases in our corpora often occur in the learning process,
mainly due to word alignment errors or dependency parsing errors. Aiming to learn phrases that are
specific event expressions, we define a metric called phrase specificity to avoid bringing in corpora-wide
frequent phrases. The metric for phrase p is defined as follows:

phrase_specificity(p) =
Nl

Nc
∗ 100 (1)

where Nl denotes the number of occurrences of phrase p in our projection procedure, Nc denotes the
number of occurrences in our entire corpora. This metric measures how close a new phrase is related
to the topic of events that we want to detect. If Nls of two phrases are close to each other, but Nc of
one phrase is bigger than that of the other, we deem the phrase with bigger Nc more likely to be a high-
frequency phrase. In our experiments, we only consider phrases that have this metric over a certain
threshold. We use a development set (section 4.1) to determine the threshold.

3.4 Iterative Projection
We further extend the projection process described in Section 3.1 with phrase decomposition (Section 3.2)
and phrase filtering (Section 3.3) to an automatic iterative system. This allows us to use newly learned
phrases to learn more new phrases. The most straightforward idea is executing the projection procedure
in Section 3.1 many times. However in practice, the growth rate of the number of newly learned phrases
is far beyond our imagination. During the iterative projection between the two languages, thousands of
incomplete or incorrect phrases are generated. In order to control the growth rate of new phrases and
to avoid generating bad phrases, we only keep new phrases that are found at least twice by the iterative
system. We deem phrases learned repeatedly more reliable than those occasionally learned. For example,
we can learn five different phrases: “举行 <dobj>示威”(4)、“示威”(2)、“举行 <dobj>游行”(2)、“举
行 <dobj>活动”(1)、“示威者”(1) when phrase “held<dobj>demonstrations” is mapped to Chinese. The
numbers in brackets show the times of phrase learned. According to the strategy, the last two phrases
are removed. This is different from filtering by phrase frequencies strategy in Section 3.3. The phrase
frequency in section 3.3 means the total times of a new phrase learned by all original phrases. But in
the iterative projection, we talk about the frequency of different new phrases learned by one particular
original phrase.

4 Experiments

After each structure projection iteration, we appended the newly learned phrases to their corresponding
phrase list (EP or PP) and ran the same event recognition evaluation procedure as in H&R’s but with the
appended longer phrase lists.

4.1 Data
Our experiment bilingual data consists of 3.57M bilingual sentences from LDC corpora LDC2004E12,
LDC2004T08, LDC2005T10, LDC2003E14, LDC2002E18, LDC2005T06, LDC2003E07,

4AS: aspect markers, P: prepositions, DEC: Chinese “的” for relative clauses, LC: localizers, PU: punctuations, CD: cardinal
numbers, MSP: some particles.
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Method Phrases Recall Precision F1
H&R’s Iter #4 EP:623 71 88 79PP:569

Iteration 1 EP:1096 76.2 86.5 81.1PP:2219

Iteration 2 EP:4273 79.2 86.0 82.5PP:4597

Iteration 3 EP:8041 79.2 86.0 82.5PP:9169

Iteration 4 EP:9868 79.2 86.0 82.5PP:11705

Table 1: Results of the projection method using
H&R’s phrase lists as seed phrases for expansion
and projection

Figure 5: F1-score curve against the number of
iterations

LDC2004T07. We ran Giza++ (Och, 2003) and Stanford dependency parser (De Marneffe et al.,
2006; Chang et al., 2009) on the parallel sentence pairs to obtain word alignments and dependency trees.
In addition, we used the same evaluation method and data as H&R’s. The evaluation data contains 400
news articles that were randomly sampled from the English Gigaword Fifth Edition corpora (Parker et
al., 2011). Each article contains one of six commonly used civil unrest keywords or their morphological
variations. The development set contains 100 documents and the rest 300 documents are used as the test
set.

4.2 Event Recognition with Expanded Phrases

We examine the effectiveness of our bilingual structure projection algorithm on the task of event recog-
nition. We choose H&R’s best result as our baseline. H&R’s multi-faceted event recognition approach
achieves the best result after four iterations of bootstrapping.
Our first experiment was designed to expand the EP and PP lists learned by H&R’s method at the 4th

iteration with our bilingual structure projection system. Our system ran for multiple iterations. According
to the development data, the best F1-score was achieved after the first two iterations. Table 1 shows the
event recognition performance of our bilingual structure projection method. The original multi-faceted
event recognition approach at the 4th iteration has achieved a high accuracy (88%) with a relatively low
recall (71%). After the first iteration of projection, we obtained an improvement of 5.2 points on recall and
2.1 points on F1-score over the baseline. With the newly learned phrases in the first iteration projection,
the event recognition recall can be further improved by another 3 points after the second iteration. Overall,
with a little loss in precision, the recall has increased by 8.2 points and the F1-score 3.5 points. We further
observed that results cannot be elevated further after the 2nd iteration even with more phrases, as shown
in Figure 5. We conjecture that the reasons are twofold. First, the limited original phrases may not supply
more useful phrases after two iterations, which results in a saturated useful phrase list. Second, we do
get more useful phrases. However the test data is not large enough so that all newly learned phrases can
be found in the test data. Therefore, we cannot see further changes in performance. From the results, we
can see the bilingual structure projection algorithm can mine thousands of new phrases. With the newly
learned phrases, we can successfully identify additional civil unrest events in the test data.
Due to the noise in H&R’s phrase lists (the precision is 88%, indicating 12% noisy phrases) and the

features of bootstrap system, phrases learned in previous iterations often have a high precision, but the
quality of phrases normally decrease in the succeeding iterations. We further conducted experiments
with the phrase lists (EP and PP) learned from the first to the third iteration by H&R’s method, which
have a high quality. The results are shown in Table 2. In these three iterations, our bilingual structure
projection algorithm can improve the recall with almost no loss in precision. This illustrates that our
method can recall more phrases and patterns still with a high precision. Note that our method has already
outperformedH&R’s best result at the third iteration (73.3% in recall and 79.6% in F1-score) while H&R’s
method achieved this performance after the 4th iteration. Therefore, with bilingual structure projection,
the number of iterations of the original bootstrapping learning process can be decreased.
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phrase iteration Method EP numbers PP numbers Recall Precision F1
Iter #1 H&R’s Method 145 124 50 88 63

Bilingual Projection 279 888 53.5 90.0 67.1(+4.1)

Iter #2 H&R’s Method 410 356 63 89 74
Bilingual Projection 790 1387 68.3 88.5 77.1(+3.1)

Iter #3 H&R’s Method 504 402 68 88 77
Bilingual Projection 968 1501 73.3 87.1 79.6(+2.6)

Table 2: Results at the first three iterations

phrase iteration Method Recall Precision F1
TermLex H&R’s Method 66 85 74

Bilingual Projection 61 81 70

PairLex H&R’s Method 10 91 18
Bilingual Projection 12 100 21

TermSets H&R’s Method 59 83 69
Bilingual Projection 57 73 64

PairSets H&R’s Method 68 84 75
Bilingual Projection 79 78 79

ALLSets H&R’s Method 70 84 76
Bilingual Projection 78 78 78

Average of Five H&R’s Method 54.6 85.4 62.4
Bilingual Projection 57.4 82.0 62.4

Table 3: Results of SVM with the bilingual projection method

4.3 SVM Classifiers with Bilingual Structure Projection

H&R also experimented with a suite of supervised classifiers by engineering features based on their
learned event dictionaries. In their presented results, supervised classifiers yielded worse event recogni-
tion performance than the multi-faceted approach that simply relies on exact match with learned event
dictionaries. One guess for this inferior comparison is that their learned phrases are still not diverse and
rich enough and their induced feature vectors are too sparse. We have learned many more phrase for both
event expressions and the purpose facet through our bilingual structure projection method. We rebuilt
the same set of supervised classifiers with the same features. But the features are induced based on the
augmented EP lists and PP lists using our bilingual structure projection algorithm. Agent phrase lists
(AP) keep the same as H&R’s. We ran experiments on five SVM classifiers as shown in Table 3 and
performed ten-fold cross validation on the test set, the same as H&R’s. All features are binary. We use a
vector of 0 and 1 to represent a document. TermLex encodes a binary feature for every phrase in all three
phrase lists. PairLex encodes a binary feature for each pair combination from two different lists and re-
quires them to occur in one same sentence. TermSets encodes three binary features for each list, a feature
gets 1 when at least one phrase occurs in the document from the corresponding list. PairSets encodes
three binary features and each feature represents a combination of two different lists (EP+PP, PP+AG,
EP+AG). If any pair occurs in the same sentence, the value gets 1 otherwise 0. Last, the ALLSets en-
codes 7 binary features, the previous six features plus another binary feature of a sentence containing at
least an entry combination from all three lists. Table 3 shows the comparison of our projection method
and H&R’s method. Although our expanded phrases do not work well on TermLex and TermSets, they
still can improve other three classifiers in different degrees. The last row in Table 3 shows the average
performance of two methods. Generally, compared to multi-faceted based phrases, our expanded phrases
increase the recall, but lower the precision, overall F is the same. Our experiments reconfirm that multi-
faceted event dictionary match based event recognition approach, while simple, is more effective than
trained supervised classifiers that use dictionary matches as features.

5 Analysis: New Phrases and Structures

We further analyze syntactic structures of the newly learned phrases by bilingual structure projection.
Due to linguistic divergences between English and Chinese, various novel new structures are observed
in learned Chinese phrases and English phrases.
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New Chinese Structures and Examples
NN:静坐 (stage sit-ins),怠工 (stop work),罢工 (went
on strike)
VV:纵火 (set fire),泄愤 (vent their anger)
VV<rcomp>VV: 纵火 焚烧 (set fire), 进行 绝食 (go
on hunger strike)
VV<dobj>NN<conj>NN: 举行 游行 示威 (stage
demonstrations), 加入 抗议 罢工 (join the strike and
protest)
VV<dobj>NN<relcl>VV: 放火 焚烧 车辆 (set fire to
vehicles),表达反对呼声 (express opposition)

Table 4: Examples of new Chinese structures
learned

New English Structures and Examples
NN: self-immolation, demonstrations, sit-ins
NN<prep>NN: overuse of force, boycott of elections,
disobedience of order
NN<vmod>VBN: rallies held (in), objections expressed
(by), rocks thrown (at), disturbances caused (by)
VV: demonstrated, parade
VB<xcomp>VB: cease (to) function, came (out to)
demonstrate, pledged (to) support, urge (them to) resign
VB<dobj>NN<conj>NN: held rallies and demonstra-
tions, staged sit-ins and hunger strikes
VB<dobj>NN<prep_of>NN: prevent acts of discrimi-
nation, condemned acts of terrorism

Table 5: Examples of new English structures
learned

Table 4 shows examples of several new Chinese phrase structures. Interestingly, a multi-word verb
phrase in English can be expressed with only one noun or verb word in Chinese, e.g., “went on strike” vs.
“罢工” (a noun in Chinese), “vent their anger” vs. “泄愤” (a verb in Chinese). Even more interestingly,
we have observed that Chinese tends to put together two coordinate words with roughly the samemeaning
when referring to one single event, e.g., “staged demonstrations” aligned to “举行游行示威” (“游行”
and “示威” both mean demonstrations). The reason for putting two words with similar meanings together
is to emphasize on the occurrence of the event. More examples are given in Table 4.
Table 5 shows a few examples of new English phrase structures. Dramatically different from the

two pre-defined types of verb phrases as specified in H&R’s research, many new phrases are headed by
nouns, including individual nouns “sit-ins”, nouns with a prepositional attachment “boycott of elections”
and nouns modified by a passive voiced verb phrase “rallies held in”. In addition, we have seen some
new verb structures in English phrases that consist of a single verb or a verb with complex objects as
shown in Table 5.

6 Related Work

Recent years have witnessed increasing interests in leveraging bilingual corpora or resources to improve
performance of monolingual NLP tasks. Generally, The introduction of bilingual corpora or resources
serves two purposes. The first purpose is to alleviate the problem that we have few labeled instances in
some resource-impoverished languages by a resource-rich language (Hwa et al., 2005; Ganchev et al.,
2009; Das and Petrov, 2011; He et al., 2015). The second purpose is to leverage divergences found in
different languages to obtain complementary cues (Li et al., 2012; Wang et al., 2013; Che et al., 2013)
or extra information (Snyder et al., 2009; Burkett et al., 2010) from another language. Our projection
method follows the latter.
In the first purpose, Das and Petrov (2011) explored existing abundant English labeled resources as

features to assist building tools for eight European languages. Different to projecting labels as feature,
Wang and Manning (2014) proposed a method that projected model expectations as feature for training.
He et al. (2015) transferred the sentiment information of a resource-rich language to replenish the lost
information of the target language.
In the second purpose, Chen and Ji (2009) proposed a bootstrap framework of co-training among two

languages, which uses Chinese event extraction as a case study and bilingual texts as a new source of
information. Burkett et al. (2010) attached a bilingual model as a second view (Balcan and Blum, 2005;
Ganchev et al., 2012) onto original monolingual models, and used rich features from unannotated bitext
to train parameters in bilingual models, which can help to reproduce training data of monolingual model.
Che et al. (2013) exploited the complementary cues between two languages as bilingual constraints to
help detect errors in a mono-lingual tagger task, which can improve the annotation quality of named
entities. Zhu et al. (2013) translated English sentences into Chinese sentences (with the same topic) in
ACE 2005 evaluation data with google machine translation system as a second text representation feature
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so as to alleviate the data sparseness problem effectively.
Our method is also related to paraphrase learning (Bannard and Callison-Burch, 2005; Callison-Burch,

2008; Zhao et al., 2008; Snover et al., 2009; Ganitkevitch et al., 2013). However, there are two significant
differences. First, paraphrase learning translates phrases strictly via word alignments while we use word
alignments to find phrase spans on the target language. Second, our purpose is to obtain structured phrases
(with syntactic constraints) rather than plain phrases as structured phrases can help us find new phrase
structures as shown in Section 3.

7 Conclusion and Future Work

We have presented a bilingual structure projection algorithm that explores structural divergences between
languages and can effectively dig up new phrase with various new structures bymapping phrases back and
forth across two languages. We combine syntactic information with machine translation technology, not
only can reduce the effect of word alignment errors, but also diversify the original two pre-defined event
phrase structures. Our experiments show that the newly learned event phrases are capable of recognizing
additional event descriptions and considerably increasing the recall of event recognition with minimal
loss on precision. Bilingual structural divergences between human languages are common, the proposed
bilingual structure projection algorithm is general and can be applied to any pair of languages, and easily
extended to the scenario with multiple languages. In addition to event recognition, the proposed structure
projection algorithm across languages is potentially useful to many other NLP tasks that utilize extraction
patterns by automatically generating novel and diverse phrasal patterns. In our future work, we will
attempt to explore the possibility and effect of expanding phrases among other language pairs and other
NLP tasks using our bilingual structure projection method.
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