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Abstract

Most distributional lexico-semantic models derive their representations based on external lan-
guage resources such as text corpora. In this study, we propose that internal language models,
that are more closely aligned to the mental representations of words could provide important in-
sights into cognitive science, including linguistics. Doing so allows us to reflect upon theoretical
questions regarding the structure of the mental lexicon, and also puts into perspective a number
of assumptions underlying recently proposed distributional text-based models. In particular, we
focus on word-embedding models which have been proposed to learn aspects of word meaning
in a manner similar to humans. These are contrasted with internal language models derived from
a new extensive data set of word associations. Using relatedness and similarity judgments we
evaluate these models and find that the word-association-based internal language models consis-
tently outperform current state-of-the art text-based external language models, often with a large
margin. These results are not just a performance improvement; they also have implications for
our understanding of how distributional knowledge is used by people.

1 Introduction

How is semantic information encoded? How is similarity represented in the brain? And how can we
capture this information computationally? One answer to this question involves distributional lexico-
semantic models, which quantify the semantic similarity between lexical items based on their distri-
butional properties in large samples of data. Recent models like word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014), which rely on external corpora as the source of data, increasingly appear
to capture word meaning in ways that ever-more-closely resemble human representations. For instance,
these models show systematic improvements over previous work in key benchmarks such as human sim-
ilarity judgments of word pairs (Baroni et al., 2014). The strong performance of these models has also
suggested to cognitive scientists that the learning mechanisms they embody might resemble how humans
learn the meaning of some words (Mandera et al., in press).

In this study we show that using word-association data instead of corpus data improves performance
substantially above the current state-of-the-art. We suggest that this is because data-intensive distribu-
tional models like word2vec, formidable though they are, may not capture word representations the
way the average adult language speaker does. Their enormous, high-quality input data enables them to
mimic human behavior, but they do relatively poorly compared to performance based on data that more
accurately captures people’s true representations of meaning.

The distinction between using text corpora or word association data maps onto the distinction made
by Taylor (2012) between External language models (E-language) and Internal language models (I-
language). An E-language model, like word2vec, treats language as an “external” object consisting
of the all utterances made in a speech-community. An I-language model sees language as the body of
knowledge residing in the brains of its speakers. Largely due to the easy availability of high-quality
external corpora – for instance, there are over one trillion words in the Google n-gram corpus (Michel
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et al., 2011) – computational linguists have traditionally focused on E-language models (Bullinaria and
Levy, 2007; Baroni et al., 2014; Levy et al., 2015). Whether a similar distributional approach based on
I-language might also be useful has received relatively less attention. One explanation could be purely on
the basis of practical arguments, as it’s not clear whether appropriate I-language resources are available.
This paper fills that gap, by introducing an approximation of I-language using a new database of word
associations considerably larger than previous ones and conducting a direct comparison of how both
kinds of approaches predict human similarity judgments. It is valuable not just in demonstrating that
models based on I-language greatly improve their performance. It also suggests that when people judge
similarity, they may be relying more on networks of semantic associations than on statistics calculated
from the distributional patterns of the words they hear.

Why should we expect to see (and why do we see) such improvements when the models use word as-
sociations data rather than high-quality large-scale text corpora data? After all, word association models
generally incorporate far less data. Moreover, one might presume that word associations are themselves
simply derived from the distribution of words in the external language: in that case, one would expect
them to be an inferior and noisy measure.

However, several strands of research support the idea that word associations capture representations
that cannot be fully reduced to the distributional properties of the E-language environment. Previous
attempts to predict word associations from E-language have had limited success (Griffiths et al., 2007;
Michelbacher et al., 2007; Wettler et al., 2005). E-language typically only predicts the strongest associate
in the minority of cases and does even worse in predicting non-primary responses. Why is this? At least
part of it is that E-language has the structure it does because people are using it to communicate to each
other; it is not simply a reflection of their mental representations. For instance, the word “yellow” is a
very strong associate of “banana”, but the two words co-occur relatively infrequently since most bananas
are yellow. As a result, modifying the word banana with yellow is uninformative, so most people leave it
out when talking. Many of the divergences between the distributions of words in external language and
the strength of internal associations may occur because so much of E-language is shaped by pragmatic
and communicative considerations such as these. There is also evidence that meaning representations in
the brain, as reflected in word associations, are shaped by far more than the distributional properties of
the E-language. For instance, fMRI measures reveal that imagery-related areas like the precuneus are
activated during word association tasks (Simmons et al., 2008).

The structure of this paper is as follows. In Part 2 we describe the origin and nature of the data we
are using as the E-language source (text corpora) and I-language source (word association data). Part 3
describes the distributional models which we will apply to each data source, while Part 4 describes the
multiple human similarity and relatedness judgments that each model and data source will be used to pre-
dict. Part 5, the results, demonstrates that models based on I-language consistently perform substantially
better than the same model based on E-language.

2 Data sources

The central comparison in this paper is between model performance on E-language vs I-language data.
The increasing number of online resources from which text can be extracted means that obtaining a
representative E-language has become more straightforward. Furthermore, better balanced corpora that
easily surpass the knowledge of the average human are readily available. We derived our E-language
data based on four different kinds of existing text-based corpora, as described below.

Free word association data are used as the I-language data. Although there are certainly other possi-
bilities, word association data are advantageous as they appear to tap directly into mental representations
(Deese, 1965; McRae et al., 2012; Szalay and Deese, 1978). Moreover, we shall show that a new proce-
dure and larger data sets address important shortcomings from previous work that relied on a relatively
small number of cues words for which only a single association response was asked from the participant
(Kiss et al., 1973; Nelson et al., 2004).
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2.1 A text corpus to train E-language models
Our aim was to combine corpora that would provide us with a fairly balanced set of texts that is represen-
tative of the sort of language a person experiences during a lifetime – including both formal and informal
language as well as spoken and written language. Four different corpora were combined.

1. Subtitles for English movies between 1970 and 2016 extracted from the OpenSubtitle corpus as
described in Tiedemann (2012). Subtitle corpora have been frequently used in cognitive science
because they capture daily language better than extremely large written corpora like the Google
n-gram corpus (Brysbaert et al., 2011).

2. The Corpus of Contemporary English (COCA), as described in Davies (1990 present). It consists
of a balanced set of formal and informal language including fiction, newspaper articles and spoken
texts. We excluded the sub-corpus for academic texts.

3. The Global Web-Based English corpus (GlowBE), as described in Davies (2013). We included the
sub-corpora of British, American, Canadian and Australian texts.

4. SimpleWiki, which presents knowledge that is likely available to the average person (18 million
tokens in comparison to the 2.9 billion words in the full English Wikipedia).

Altogether, in compiling these corpora we aimed to be generous in terms of the quality and quantity of
items so that models incorporating it would perform similarly to the existing state-of-the-art. For similar
reasons, we used word-forms rather than lemmas: this matches previous work and provides the best
possible match with the stimuli in the human benchmarks. The resulting corpus consisted of 2.16 billion
tokens and 4.17 million types. Each sentence was uncased and stop words were removed. We further
excluded words that did not occur at least 300 times, retaining 65,632 unique word types. This cut-off
is larger than previous approaches using count models and word embedding models but allowed us to
reduce the memory requirements for the count model we introduce later and to make sure that words in
the evaluation sets were at least as frequent as the words in the association study for which we collected
300 responses. Moreover, we piloted different cut-offs and found it didn’t affect our findings.

2.2 A novel word association dataset for I-language models
One of the shortcomings with previous word association studies of considerable size like the Edinburgh
Association Thesaurus (Kiss et al., 1973) or the University of South Florida norms (Nelson et al., 2004)
is that they only include the strongest associations (Aitchison, 2012) because only a single response is
generated for each cue word. For example, in the case of umbrella, most participants would respond
rain, which prevents the inclusion of weaker links. A better way to include weaker associates as well
is by using a continued procedure where multiple responses for each cue word were collected (Szalay
and Deese, 1978). Extending the response set to include weaker responses and including enough cue
words to capture most words used in daily languages motivated us to set up a new large-scale study.
The current data are collected as part of the Small World of Words project, an ongoing effort to map the
mental lexicon in various languages 1. Each participant was given a short list of cue words (between 15
and 20 words) and asked to generate three different responses to each cue. To avoid chaining responses,
the instructions stressed to only give a response to the cue word. If a word was unknown or no secondary
or tertiary response could be given, the participants were able to indicate this. Additional details on the
procedure are available in (De Deyne et al., 2013).

The results reported here are based on 10,021 cue words for which at least 300 responses have been
collected (100 primary, 100 secondary and 100 tertiary) for every cue. The study was presented as an
online crowd sourced project in which fluent English speakers volunteered to participate. The responses
were based on over 85,496 participants of which 82% were native speakers. Responses indicated as

1The word association task and details of the project can be accessed at https://smallworldofwords.org/. A
paper describing an extension of these norms including over 12,000 cues is currently in preparation and the data will be made
available on the same website.
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unknown (1.17% of cue words) or missing, because a participant could not think of any secondary or
tertiary associations (4.15% of responses), were excluded. In line with previous work, we constructed
a semantic graph from these data. This graph closely resembles the bag-of-words count models but
represented as a graph makes it possible to consider the spreading activation discussed in the next section.
A graph G was constructed by only including responses that also occurred as a cue word. This converted
the bimodal cue × response graph to a unimodal cue × response graph. In this weighted graph G,
gij counts the number of times that word j is given as an associate of word i. We extracted the largest
strongly connected component by only keeping those cues that were also given at least once as a response.
This way all words can be reached by both in- and out-going links. The resulting graph consists of 10,014
nodes, which retains 84% of the original data consisting of all responses. The average number of tokens
per word is 267 and the number of different word types each word is connected to (i.e., its out-degree
of) is 92, ranging from 12 (for the word done) to 169 (for control). As expected, the graph is also very
sparse: only 0.92% of words are connected (i.e., G has 0.92% non-zero entries). Throughout the text we
will refer to this graph as G123, since it incorporates all three responses given by participants.

3 Models

We consider four different models in this paper, two E-language models estimated from the text corpora,
and two I-language models that use word association data. In both cases, one model is a simple count
based model and the other aims to exploit the structure of the input data.

3.1 Count based model for text corpora

Count models of text corpus data use a simple representation: they track how many times a pair of words
co-occur in a document or sentence. For our analyses, we applied a sliding window at the sentence level
similar to Pennington et al. (2014). Specifically, we used a symmetric dynamic window that linearly
weighted words as a function of the distance between them (Pennington et al., 2014). The resulting
co-occurrence frequencies were transformed using the positive point-wise mutual information (PMI+),
given the evidence that this measure performs well in count models (Bullinaria and Levy, 2007; Levy et
al., 2015). In particular, we follow Levy et al. (2015) in applying a discount factor in order to prevent
very rare words from biasing the results (see their Equation 3), and unless otherwise stated we used the
same discount factor (0.75) that they did.

3.2 Predicting structure from text corpora using word embeddings

An alternative approach to representing text corpora is to apply a lexico-semantic model that aims to
extract the latent semantic structure embedded in the text corpus by learning to predict words from
context. We focused on the word embeddings derived from the neural network approach in word2vec
(Mikolov et al., 2013; Levy et al., 2015), using a continuous bag of words (CBOW) architecture in which
the model is given the surrounding context for a word (i.e., the other words in a sliding window) and is
trained to predict that word.

For our analyses, we used the gensim implementation of word2vec (Řehůřek and Sojka, 2010). Based
on previous work (Baroni et al., 2014; Mandera et al., in press) the following settings were used: a
negative sampling value of 10, and a down-sampling rate of very frequent terms of 1e-5. Additionally, the
following hyper-parameters were manipulated, using the values reported by previous work (Levy et al.,
2015) as a starting point. We considered window sizes between 2 to 10, and fitted models with between
100 and 500 dimensions with steps of 100. We will focus on the best fitting hyper-parameter values,
but for the purposes of robustness we will also examine the performance of models using previously
published semantic vectors.

3.3 Count based model for word associations

In an E-language model, the goal is to characterize the linguistic contents of a text corpus, whereas
an I-language model aims to capture the mental representation that a human speaker might employ.
The difference between these two goals motivates a difference in the kinds of data that one might use
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(e.g., text corpora versus word associations) but there are commonalities between the two approaches.
For example, there is evidence that the relationship between (observed) word association frequency and
(latent) associative strength is nonlinear (Deese, 1965), an observation that suggests the PMI+ measure
might be reasonably successful as a simple count model for association strength. With that in mind our
first model is a simple PMI+ measure using the word association frequency as the input.2

3.4 A spreading activation approach to semantic structure
While the PMI+ model captures the semantic information in the raw word association data, it does not
attempt to capture any deeper semantic structure that these data encode. Inspired by classic work in
human semantic memory by Collins and Loftus (1975), we use word association data to construct a
network that connects associated words, and model semantic similarity using denser distributions derived
from a random walk defined over this network, similar to the Katz index (Katz, 1953). The intuitive idea
is that when a word is presented it activates the corresponding node in the graph, and starts a random
walk (or many such walks) through the graph, activating nodes that the walk passes through. If there are
many short paths that connect two nodes, then it is easy for a random walk through the graph to start at
one node and end at the other, and the words are deemed to be more similar as a consequence.

To implement this idea we first normalize the word association matrix such that each row sums to
1, thus converting it to a transition matrix P. Then, in order to construct an explicit model to derive
new direct paths between words, we consider the following iterative procedure (Newman, 2010). First
consider a walk of a maximum length r where I is the identity matrix and a “damping parameter” α < 1
governs the extent to which new paths are dominated by short paths or by longer paths. During each
iteration, indirect links reflecting paths of length r are added to the graphs, producing this sequence of
“augmented” graphs:

Grw
(r=0) = I

Grw
(r=1) = αP + I

Grw
(r=2) = α2P2 + αP + I

(1)

In these expressions, longer paths receive lower weights due to operation of the α parameter. The
probability of an associative chain surviving across r links is thus αr. The smaller the value of α, the
larger the contribution made by very short paths. This “decay” parameter serves an important role to
limit the spread of activation and avoid the entire network to become quickly activated. In the limit,
where we consider paths of arbitrarily long length (and accordingly, arbitrarily low weight) we obtain
the following expression:

Grw =
∑∞

r=0(αP)r = I− αP−1 (2)

At this point, the “random walk graph” Grw combines paths of various lengths obtained from the random
walk. However, these paths do not precisely match the associative strength measure proposed earlier,
and to address this we apply the exact same procedure that we have used for the other models, namely
the PMI+ transformation. Applying the PMI weighing function to Grw reduces the frequency bias
introduced by this type of walk (Newman, 2010) and also keeps the graph sparse.

To see how this spreading activation mechanism can be very powerful, consider the word tiger. Before
applying spreading activation its meaning vector consists of 92 different association responses. When we
apply the spreading activation measure we uncover nearly 559 new associations which ordered by their
weights included zebra, cheetah, claws, cougar and carnivore, all of which seem meaningfully related
to tiger but were not among the responses when tiger was presented as a cue word.

4 Comparing model predictions to human judgments

To assess how well each of these four models captures human semantic knowledge, we evaluate them
using several standard data sets that measure human judgments of similarity and relatedness, and addi-

2We did not apply a discount factor for the word association data due to the different characteristics of text corpora and
word associations: with smaller data sets the problem of rare words is less pronounced in word associations.
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tionally introduce a new data set based on the “remote triad task”. We used a variety of different data sets
in order to provide insight into why some models perform well on some kinds of task and not on others.

4.1 Similarity and relatedness judgments
The data sets used to evaluate the models broadly fall into one of two classes. Two of the studies asked
participants to judge the similarity between words, namely the WordSim-353 similarity data set (Agirre
et al., 2009)3 and the SimLex-999 data (Hill et al., 2016). In the remaining studies people were asked
to judge relatedness. These include the WordSim-353 relatedness data set (Agirre et al., 2009), the
MEN data (Bruni et al., 2012), the Radinsky2011 Amazon Mechanical Turk data (Radinsky et al., 2011),
the popular Rubenstein and Goodenough (RG1965) data (Rubenstein and Goodenough, 1965) and the
MTURK-771 data (Halawi et al., 2012).

4.2 Remote triads task
In addition to these data sets, we include data from a relatedness judgment task based on triadic com-
parisons using a procedure introduced in De Deyne et al. (2016). In this task, participants are asked to
select the most related pair out of a set of three English nouns. An advantage of this task is that the third
word acts as a context, which makes judgments less ambiguous. Critically, the triads were constructed
by choosing words largely at random from the English word association data set. The only constraints
were that the words in a triad had to be roughly matched on judged concreteness and word frequency.
This was done to avoid simple heuristics such as grouping abstract or common words together. The
consequence of this procedure is that the triads tended to consist of words that are only weakly related
to each other, such as BRANCH - ROCKET - SHEET or CLOUD - TENNIS - SURGEON, and it is for this
reason it is referred to as the “remote triads task”. A total set of 100 triads was constructed this way and
judgments were collected for 40 native English speakers 4.

4.3 Additional details
All four models represent word meanings as a semantic vector, and we used the cosine similarity measure
in all cases. Only word pairs that were present in the text corpus and the word association data were
included. As shown in Table 1 (columns 2 and 3), most words were retained. For the triads task model
predictions were obtained by normalizing the similarities between the three words in each triad and
correlating them with the frequencies of the choice preferences.

5 Results

The best performing parameters were a window size of 3 for the corpus count model, and a window size
of 7 and 400 dimensions for word2vec, although the findings for other window sizes and dimensions were
quite similar. The word association count model is based on G123 and has no free parameters, whereas
for the random walk model we used a parameter value of α = 0.75, similar to previous studies (De Deyne
et al., 2016). Table 1 shows the performance of all models, and it is clear that the I-language models
substantially outperform the E-language models in almost every case. It is also clear that extracting
structure helps: word2vec generally outperformed the corpus count model, and the random walk model
outperformed the word association count model. For the E-language models the magnitude of this effect
was slightly smaller than reported elsewhere (Baroni et al., 2014; Mandera et al., in press), and the count
model outperformed word2vec on the remote triads data.

5.1 Other versions of the I-language models
Given the superiority of the I-language models over E-language models in predicting human responses,
it is natural to ask why this occurs. Our word association data arise from a task that elicited multiple
judgments from each person. To estimate the effect of the multiple judgment procedure, we restricted
the training data to the first associate only (using G1 rather than G123). After doing so the average

3Note that the items were determined by post-hoc raters who split the original WordSim-353 data set in related and similar
items. As such, these judgments might not consist of “pure” similarity judgments.

4The data are available at http://simondedeyne.me/data
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Table 1: Spearman rank order correlations between human relatedness and similarity judgments, and the
predictions from all four models described earlier. Word association results presented here are based on
G123. Further details for G1 are available in the text.

Text Corpus Word Associations

Data set n n(overlap) Count word2vec Count Random Walk

WordSim-353 Related 252 207 .67 .70 .77 .82
WordSim-353 Similarity 203 175 .74 .79 .84 .87
MTURK-771 771 6788 .67 .71 .81 .83
SimLex-999 998 927 .37 .43 .70 .68
Radinsky2011 287 137 .75 .78 .74 .79
RG1965 65 52 .78 .83 .93 .95
MEN 3000 2611 .75 .79 .85 .87
Remote Triads 300 300 .65 .52 .62 .74

mean .67 .69 .78 .82

correlation for the count model fell from .78 to .67, with a much smaller decline (from .82 to .78) for the
random walk model. The difference is illuminating: G1 is much sparser than G123, allowing indirect
paths to have a larger impact, which is why the random walk model is more robust than the count model.

A different question to ask is whether our new data set encoded in G123 produces better results
than previous ones. There appears to be some modest evidence for this: when using the Edinburgh
Association Thesaurus (EAT) consisting of 8,400 words (Kiss et al., 1973), the count model produced an
average correlation of .65 to the test data, and the random walk model correlated at .74, both of which
are smaller than the values obtained (.78 and .81) using a matched G123 that contains the same words as
the EAT. A similar exercise using the USF association data (Nelson et al., 2004) produced correlations
of .65 and .77 for the count and random walk model compared to .78 and .82 for the matched G123.

5.2 Other versions of the E-language models
Previous papers have discussed the performance of the E-language models (Levy et al., 2015), but a
few additional comments are worth making. Analogous to the effect that the training data have on the
I-language models, one might wonder if the poorer performance of word2vec was due to the text corpus
we used to extract semantic vectors. To test this, we relied on recently published semantic vectors from
Mandera et al. (in press)5, Levy et al. (2015)6 and Pennington et al. (2014)7 including items part of
G123. For the GloVe vectors based on 6 billion tokens from Pennington et al. (2014), the best result
was found for 300 dimensions; the average correlation was .64. Using the GloVe vectors for a 64 billion
tokens corpus improved the correlation to .67 and using the GloVe vectors for an enormous corpus of
840 billion tokens to .70. Compared with the published results from Levy et al. (2015), the average
correlation was .65. Using the best-fitting vector spaces from Mandera et al. (in press), the correlation
was .69 for the published vectors derived from English subtitles using 300 dimensions. Given this, it
does not seem likely that the problem was our specific choice of corpus or hyperparameters.

6 Discussion

The goal of this study was to compare two kinds of semantic models: “I-language” models that encode
mental representations, and “E-language” models that encode lexical contingencies. In one respect the
superior performance of the I-language models is unsurprising: the training data directly reflect human
mental representations, and as such should be more strongly linked to human semantic judgments. On the
other hand, the I-language models were trained on a much smaller data set than the E-language models,

5http://zipf.ugent.be/snaut-downloads/spaces/english/predict/
6https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
7http://nlp.stanford.edu/projects/glove/
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with an average of 260 words contributing to the distributional representation of each word. Given this,
it is worth considering the broader implications of the findings.

6.1 Cognitive plausibility of E-language models
Previous work has argued that the word2vec model is more cognitively plausible than count models due
to its similarity to models of classical conditioning (Mandera et al., in press). This is contrasted with
more statistical approaches such as Latent Semantic Analysis (Landauer and Dumais, 1997) and topic
models (Griffiths et al., 2007). However, it is not clear that this holds up in light of the fact that we find
very little difference in performance between count models and word2vec, or previous work arguing that
word embedding models perform an implicit matrix factorization (Levy and Goldberg, 2014).

Perhaps more importantly, there is something strange about the claim that E-language models are
cognitively plausible when the data sets upon which they are trained are as large as they are. If purely
text based models are intended to stand as models for how humans acquire semantic structure, then
they should be trained on a corpus small enough that it plausibly represents the language exposure of
the young adults who participated in the benchmark tasks. If billions of tokens are required to produce
adequate predictions while still being unable to match the performance of simple I-language models, it
is not clear what claims can be made about human language acquisition.

6.1.1 Relation between relatedness and similarity
A final remaining question is how we can interpret the lower results for similarity judgments in one of
the tasks (SimLex-999) across all models. Does this indicate a fundamental shortcoming in the models?

In this case, the answer depends. Similarity might be important in a NLP setting, for example in
constructing thesauri, but the role of similarity in human semantic cognition is mostly an empirical
matter. If anything, a variety of studies support a prominent role for relatedness. This includes semantic
priming effects when processing a word proceeded by a related one (Hutchison, 2003), event-related
potentials in EEG that are triggered by related but not similar words (Kutas and Hillyard, 1984) and
fMRI studies that map the structure of the mental lexicon in a more thematic rather than taxonomic way
based on similarity (Huth et al., 2016). Add to this that similarity can only be derived for certain concept
combinations, and similarity ratings tend to be less reliable than relatedness ratings (Hill et al., 2016),
suggests that relatedness judgments have broader use in studies of human semantic cognition.

6.2 Future directions
One obvious way to improve E-language models is by including non-linguistic information as well.
As mentioned in the introduction, access to imagery contributes to the responses people give in a word
association task and this might explain the fact that I-language models perform very well on the basis of a
small number of words. While recent studies have shown some promising results by enhancing language
models with visual representations, there’s still room for improvement. For example, Bruni et al. (2012)
reported findings of a multimodal model that uses word embeddings combined with features extracted
from images. An evaluation using the MEN dataset resulted in a correlation of .78 for the best performing
model, which is considerably lower than current results for the E-language and especially the I-language
models.8 On the upside, if I-language models do considerably better because they have a privileged
access to imagery compared to E-language model, this would also suggest that further improvements
by constructing more elaborate multimodal representations are possible. More generally, because the
both I-language and E-language models use the same kind of symbolic language-based representations,
determining what kind of features (perceptual or other) make the I-language models so successful with
very little data might also provide us with valuable pointers towards further refining existing E-language
models and NLP applications build from them.

Going forward will also require us to increase the discriminatory power of existing benchmarks, by
including judgments that focus on finer perceptual distinctions, or by capitalizing on how humans infer
additional structure beyond what’s available in E-language. In this study, we have shown that the remote

8Unfortunately we did not have access to the semantic vectors from Bruni et al. (2012) so we could not verify whether this
is due to the fact that some items were excluded in our experiments.
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triad task might be ideally suited to test how well a model can generalize beyond the input and provide
a benchmark capable of differentiating competing models. Apart from more sophisticated and more
realistic approximating of the E-language environment, there’s also a need for better I-language models.
While the new word association data addresses some issues from previous studies, future work will aim
to include at least 20,000 different cues. Furthermore, improvements might be achieved by looking at
native speakers only, applying differential weights to the primary, secondary and tertiary responses, or
designing more elaborate spreading activating mechanisms. As such, further gains for association based
I-language models would not be a surprise and might help us bridge the external and internal language
world.
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