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Abstract

Aspect phrase grouping is an important task in aspect-level sentiment analysis. It is a challenging
problem due to polysemy and context dependency. We propose an Attention-based Deep Dis-
tance Metric Learning (ADDML) method, by considering aspect phrase representation as well as
context representation. First, leveraging the characteristics of the review text, we automatically
generate aspect phrase sample pairs for distant supervision. Second, we feed word embeddings
of aspect phrases and their contexts into an attention-based neural network to learn feature repre-
sentation of contexts. Both aspect phrase embedding and context embedding are used to learn a
deep feature subspace for measure the distances between aspect phrases for K-means clustering.
Experiments on four review datasets show that the proposed method outperforms state-of-the-art
strong baseline methods.

1 Introduction

For aspect-level sentiment analysis (Hu and Liu, 2004; Pang and Lee, 2008), aspect identification from
the corpus is a necessary step. Here aspect is the name of a feature of the product, while an aspect phrase
is a word or phrase that actually appears in a sentence to indicate the aspect. Different aspect phrases
can be used to describe the same aspect. For example, “picture quality” could be referred to “photo”,
“image” and “picture”. All aspect phrases in the same group indicate the same aspect. In this paper, we
assume that all aspect phrases have been identified by using existing methods (Jin et al., 2009; Kobayashi
et al., 2007; Kim and Hovy, 2006), and focus on grouping domain synonymous aspect phrases.

Most existing work employed unsupervised methods, exploiting lexical similarity from semantic dic-
tionary as well as context environments (Zhao et al., 2014; Zhai et al., 2011a; Guo et al., 2009). The
context for an aspect phrase is formed by aggregating related sentences that mention the same aspect
phrase. Thereafter, aspect phrase and context environment are represented using bag-of-word (BoW)
models separately, and integrated into a unified learning framework.

One limitation of the existing methods is that they do not model the interaction between aspect phrases
and their contexts explicitly. For example, in the review “the picture is clear, bright and sharp and the
sound is good”, the words “clear”, “bright” and “sharp” are related to the aspect phrase “picture”, while
the word “good” is related to the aspect phrase “sound”. By the traditional model, these words are not
differentiated when they are taken for the context, thereby causing noise in the grouping of the two aspect
phrases.

To address this issue, we propose a novel neural network structure that automatically learns the relative
importance of each context word with respect to a target/aspect phrase, by leveraging an attention model
(Luong et al., 2015; Rush et al., 2015; Ling et al., 2015). As shown in Figure 1, given a sentence that
contains an aspect phrase, we use a neural network to find a vector representation of the aspect phrase and
its context. For the grouping of a certain aspect phrase, we concatenate all the occurrences of the aspect
phrase in a corpus to find its vector form. Thus, the problem of aspect phrase grouping is transformed into
a clustering problem in the resulting vector space. Different from traditional methods, which leverage
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Figure 1: Architecture of the proposed method. For a given pair of aspect phrases p1 and p2, with
their contexts c1 and c2 respectively, two vectors x1 and x2 are obtained via attention-based semantic
combination, and then mapped into the same feature subspace as h

(2)
1 and h

(2)
2 .

a bag-of-word feature space, our vector space considers not only words, but also semantic similarities
between aspect phrases and contexts (Xu et al., 2015).

One challenge to the success of our method is the finding of a proper training algorithm for the neural
network model. Inspired by word embedding training methods (Collobert et al., 2011; Mikolov et al.,
2013), we take a negative sampling approach. In particular, we take pairs of sentences that contain
the same aspect phrase as positive training examples, and pairs of sentences that contain incompatible
aspect phrase as negative training examples, maximizing a score margin between positive and negative
examples. Here two aspect phrases are incompatible if the distance based on a semantic lexicon is large
(Faruqui et al., 2015; Yu and Dredze, 2014).

To find a better vector space representation, we add two nonlinear transformation layers, as shown in
h(1) and h(2) in Figure 1. This method is similar to the Mahalanobis distance metric learning for face
verification (Hu et al., 2014). Model training is performed by back-propagation over all neural nodes.
With such vector space being learned, direct K-means clustering can be used to group aspect phrases.

Results on a standard benchmark show that our neural network significantly outperforms traditional
models. The average results on 4 domains reached 0.51 (Purity) and 1.74 (Entropy), better than the
previous best result (0.43 in Purity and 2.02 in Entropy).

2 Method

Our proposed model addresses two main problems: (1) to express fine-grained semantic information with
a fixed length vector, which can naturally combine aspect phrases and their contexts, and (2) to provide
nonlinear transformations to learn a feature subspace, under which the distance between each intra-group
aspect phrase pair is smaller than that between each inter-group pair. We discuss an attention-based
semantic composition model in Section 2.1, and then describe a Multi-Layer Perceptron (MLP)-based
nonlinear transformation model in Section 2.2, which are designed for (1) and (2), respectively.

2.1 Attention-Based Semantic Composition

The goal of the model is to learn the semantic representation of the context of each aspect phrase. For
our task, the same context is frequently shared by more than one aspect phrases. For example, in the
sentence: “the picture is clear and sharp and the sound is good.”, two different aspect phrases “picture”
and “sound” are mentioned. We use an attention-based neural semantic composition model to consider

2493



the picture is clear , bright and sharp and the sound is good

the picture is clear , bright and sharp and the sound is good

but overall this is a good camera with a really good picture clarity

but overall this is a good camera with a really good picture clarity

Figure 2: Visualization of weighted context by our attention model. There is a context which contains
two aspect phrases (white background), where the weight of each word is taken from the developing
dataset. For different aspect phrases, the words in the same context have different weights. Different
background represent different weights, bigger weights corresponding to deeper background.

contextual words based on their weight scores with respect to each aspect phrase. In particular, given each
word vector ei, which is projected into a word embedding matrix Lw ∈ Rd×|V |, where d is the dimension
of word vector and |V | is the size of word vocabulary. All of ei can be randomly initialized from
a uniform distribution, and then updated during the back propagation training procedure. Alternatively,
another way is using pre-trained vectors as initialization, which is learnt from text corpus with embedding
learning algorithms. In our experiment, we adopt the latter strategy. Let c = {ei|ei ∈ Rl×1}i=1,2,...,n

denote the set of n input words in context, where l is the dimension of the original context segment. We
employ a linear layer to combine the original context vector c and attentional weight a to produce an
attentional context representation as:

c̃ = fw(c, a), (1)

where fw is a weighted average function. The idea is to give different weights for different words in the
context when deriving the context vector c̃. The weight a ∈ Rn×1 is a variable-length attention vector,
whose size is equal to the number of words in the context. Its value is computed as follows:

a(ei) =
exp(score(ei, p))∑
i′ exp(score(ei′ , p))

, (2)

where score(ei, p) = W T
a [ei; p] and Wa ∈ R(2∗d)×1 is a model parameter to learn. Although the length

of context is variable, our model uses a fixed-length Wa parameter to weight the importance of each
word ei for its corresponding aspect phrase p. This results in a fixed length vector form for each aspect
phrase in a variable-size context.

2.2 MLP-Based Nonlinear Transformation

After obtaining the attention-based context c̃, we employ a MLP-based nonlinear transformation to learn
a feature subspace for final aspect phrase grouping. Although c̃ is a weighted context according to the
aspect phrase, the aspect phrase p itself is still a necessary source of information for grouping. Therefore,
we concatenate c̃ and p to produce a vector x as the input to MLP.

Our model is based on a variant of the Mahalanobis distance metric learning method (Hu et al., 2014).
The problem is formulated as follows. Given a training set X = {xi|xi ∈ R(2∗d)×1}i=1,2,...,m, where xi

is the ith training sample and m is the size of training set. The method aims to seek a linear transformation
W , under which the distance between any two samples xi and xj can be computed as:

dw(xi, xj) = ‖Wxi −Wxj‖2 (3)

where W is an alternative of the covariance matrix M in Mahalanobis distance. ‖A‖2 represents the L2
norm of the matrix A. M can be decomposed by:

M = W T W, (4)
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Further, Equation (3) can be rewritten as

dw(xi, xj) = ‖Wxi −Wxj‖2

=
√

(xi − xj)T W T W (xi − xj)

=
√

(xi − xj)T M(xi − xj)

(5)

Equation (5) is the typical form of Mahalanobis distance between xi and xj . Therefore, Equation (3) is
both the Euclidean distance of two samples in the linear transformed space, and the Mahalanobis distance
in the original space. The transformation Wx can be replaced with a generalized function g. When g is
a nonlinear function, we obtain the nonlinear transformation form of Mahalanobis distance. Following
Hu et al. (2014), we use the squared Euclidean distance in our model:

d2
g(xi, xj) = ‖g(xi)− g(xj)‖2

2 (6)

As shown in Figure 1, we use hierarchical nonlinear mappings to project the samples to a feature
subspace. Assume that there are M layers in the designed network, and k(m) units in the mth layer,
where m = 1, 2, ...,M . For a given aspect phrase sample x, the output of the first layer is computed as

h(1) = fa(W (1)x + b(1)) ∈ Rk(2)
, (7)

where the weight matrix W (1) ∈ Rk(2)×k(1)
can be seen as a linear projection transformation, b(1) ∈ Rk(2)

is a bias vector, and fa : R 7→ R is a nonlinear activation function.
Subsequently, the output of the first layer h(1) is used as the input of the second layer. In the same

way, the output of the second layer is

h(2) = fa(W (2)h(1) + b(2)) ∈ Rk(3)
, (8)

where W (2) ∈ Rk(3)×k(2)
, b(2) ∈ Rk(3)

and fa are the projection matrix, a bias and a nonlinear activation
function of the second layer, respectively.

Finally, the output of the topmost layer is calculated as follows:

h(M) = fa(W (M)h(M−1) + b(M)) ∈ RL, (9)

where L is the dimension of the output vector.
Given a pair of aspect phrase samples xi and xj , let g(xi) = h

(M)
i and g(xj) = h

(M)
j . The function

g represents a hierarchical nonlinear transformation, in which the aspect phrase sample pair is passed
through the M -layer deep network and mapped into a feature subspace. By using Equation (6), we can
measure the distance between the sample pair in the new feature subspace.

2.3 K-means Clustering

With a given corpus, we first employ the parallel deep neural network to learn the semantic representation
h(M), and then utilize the K-means algorithm to perform clustering of h(M). During training, we sample
aspect phrase pairs using the sentence as context. During testing, we concatenate all the sentences that
mention the aspect phrase for clustering the aspect phrase.

2.4 Model Training

The ultimate goal of our model is to make the distance metric effective for grouping aspect phrase
samples. To achieve this, we use a large-margin framework to restrict the distance, as proposed by
Mignon and Jurie (2012). In particular, sample pairs containing the same aspect phrase are used as
positive instances and sample pairs with incompatible aspect phrase are used as negative instances.
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We exploit lexical similarity to obtain incompatible aspect phrases, which have low similarity in se-
mantic lexicon. In particular, we choose WordNet as the semantic lexicon. Two aspect phrase are in-
compatible when the WordNet similarity between them is smaller than a threshold η. And the WordNet
similarity is calculated by Equation (12)

Res(w1, w2) = IC(LCS(w1, w2)) (10)

IC(w) = −logP (w) (11)

Jcn(w1, w2) =
1

IC(w1) + IC(w2)− 2×Res(w1, w2)
(12)

where LCS (lease common subsumer) is the most specific concept that is a shared ancestor of the two
concepts represented by the words (Pedersen, 2010). P (w) is the probability of the concept word w. In
our experiments, the threshold is set to 0.85.

Traditional methods (Zhai et al., 2010; Zhai et al., 2011b) exploit lexical knowledge to provide soft
constraint for clustering aspect phrases. They assume that the aspect phrases that have high similarity
in semantic lexicon, are likely to belong to the same group. In this cause, our method uses a similar
assumption.

For obtaining the training data, we apply an extra sample pair generation process. The generated sam-
ple aspect phrase pairs are fed into left and right sub neural network of Figure 1, respectively. Specifically,
each training sentence is utilized with its labelled aspect phrase as a gold sample. Then, we combine each
aspect phrase and its related sentences to form training sample set. For example, given an aspect phrase
p1 and a sentence set S1 = {s1

1, s
1
2, ..., s

1
m}, in which there are m sentences that mention p1, we can

construct m samples {p1 ∪ s1
1, p1 ∪ s1

2, ..., p1 ∪ s1
m}. The group label of the sample is the same as its

original aspect phrase, e.g. when p1 belongs to group 1, then all of p1 ∪ s1
i have the group label 1.

Assuming that there are n selected aspect phrases, the number of positive sample pairs candidates
is

(n
2

)
. A negative sample pair is formed by randomly selecting incompatible aspect phrases and their

contexts. For balancing the training set, we obtain the same number of negative sample pairs.
In the training objective, the distance d2

g(xi, xj) of positive instances (lij = 1) is less than a small
threshold t1 and that of negative instance (lij = −1) is higher than a large threshold t2, where the label
lij denotes the similarity or dissimilarity between a sample pair xi and xj , and t2 > t1. Let t > 1,
t1 = t− 1 and t2 = t + 1. This constraint can be formulated as follows:

lij(t− d2
g(xi, xj)) > 1, (13)

Equation (13) enforces the margin between d2
g(xi, xj).

During the training phase, each aspect phrase pair must satisfy the constraint in Equation (13). Let
ω = 1− lij(t− d2

g(xi, xj)), we minimize the objective function:

J =
1
2

∑
i,j

σ(ω) +
λ

2

M∑
m=1

(
∥∥∥W (m)

∥∥∥2

F
+

∥∥∥b(m)
∥∥∥2

2
) (14)

where σ(ω) = 1
β log(1 + exp(βω)) is the generalized logistic loss function (Mignon and Jurie, 2012),

which is a smooth approximation of the hinge loss E(z) = max(0, z). β is the sharpness parameter, λ
is a regularization parameter and ‖W‖2

F represents the Frobenius norm of matrix W .
The minimization problem in Equation (14) is solved using a stochastic sub-gradient descent scheme.

We train the network using back-propagation. We set the dimension of word vectors as 200, the output
length of MLP as 50. The parameters of the linear layer are initialized using normalized initialization
(Glorot and Yoshua, 2010). We train a three-layer MLP and employ dropout with 50% rate to the hidden
layer. We choose tanh as the activation function. The threshold t, the regularization parameter λ and
learning rate µ are empirical set as 3, 0.002 and 0.03 for all experiments, respectively.
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3 Experiments

3.1 Data Preparation

We employ the datasets of Xiong and Ji (2015) to evaluate our proposed approach. The datasets are based
on Customer Review Datasets (CRD) (Hu and Liu, 2004), including four different domains: digital
camera (DC), DVD player, MP3 player (MP3) and cell phone (PHONE). We take 3 different random
splits of datasets (30% train, 50% test, and 20% development). The statistics are described in Table 1.

DC DVD MP3 PHONE

#Sentences 330 247 581 231
#Aspect Phrases 141 109 183 102
#Aspects 14 10 10 12
#Pairs 19163 11211 64945 8855

Table 1: Statistics of the review corpus. # donotes the size

3.2 Pre-trained Word Vectors

We use Glove1 tools to train word embeddings, and the training parameters are set by following Pen-
nington et al. (2014). Because of the review corpus is too small for learning word embeddings, we use
Amazon Product Review Data (Jindal and Liu, 2008) as one auxiliary training corpus.

3.3 Evaluation Metrics

Since the problem of aspect phrase grouping is a clustering task, two common measures for clustering
are used to its evaluate performance (Zhai et al., 2010) : Purity and Entropy.

Purity is the percentage of correct clusters that contain only data from the gold-standard partition. A
large Purity reflects a better model.

Entropy looks at how various groups of data are distributed within each cluster. A smaller Entropy
reflects a better model.

3.4 Baseline Methods and Settings

The proposed ADDML method is compared with a number of methods, which include (1) the state-of-
the-art methods, (2) baseline neural methods.

In the first category2, all methods except Kmeans and CC-Kmeans exploit labelled data, which is
generated using sharing word constraint and lexical similarities based on WordNet3:

Kmeans. The most popular clustering algorithm based on distributional similarity with cosine as
similarity measure and BoW as feature representation.

DF-LDA. A combination of Dirichlet Forest Prior and LDA model, in which it can encode domain
knowledge (the label) into the prior on topic-word multinomials (Andrzejewski et al., 2009)4. The code
is available in author’s website5.

L-EM. A state-of-the-art semi-supervised method for clustering aspect phrases (Zhai et al., 2011a). It
employed lexical knowledge to provide a initialization for EM. We implemented this method ourselves.

CC-Kmeans. It is proposed by Xiong and Ji (2015), it encodes the capacity limitation as constraint
and proposes a capacity constrained K-means to cluster aspect phrases. We use the code from the author6.

1http://nlp.stanford.edu/projects/glove/
2Because we use sample pairs but not cluster label for training, it is not possible to train a supervised classifier for testing.
3The generation of labelled data follows Zhai et al. (2011a).
4There are other LDA based methods for this task, such Constrained LDA (Zhai et al., 2010). Although Constrained LDA

used two domains data form CRD dataset as core corpus, they actually crawled many other camera and phone reviews. So we
are unable to compare with them by directly using their published results. Since DF-LDA is more effectiveness and suitable for
our smaller datasets, we use DF-LDA as the representative of the LDA-based methods.

5http://pages.cs.wisc.edu/˜andrzeje/research/df lda.html
6https://github.com/pdsujnow/cc-kmeans
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The word embedding composite methods employ different composite strategies to form the sample
vector, respectively. The clustering method is Kmeans with cosine distance in which word embedding is
used as feature vector.

AVG/MIN/MAX+MLP use the average/minimum/maximum value of all the context word vectors in
each dimension as the context vector c̃, respectively, and then, concatenates aspect phrase p and c̃ to form
the sample vector.

AP only uses aspect phrase (AP) vector to cluster aspect phrases.
Since all the methods based on Kmeans depend on the random initiation, we use the average results of

10 runs as the final result. For L-EM, we use the same parameter settings with the original paper.

3.5 Results

Purity Entropy

DC DVD MP3 PHONE avg DC DVD MP3 PHONE avg

Kmeans 0.4079 0.3922 0.3509 0.3333 0.3711 2.2627 2.0056 2.2862 2.5894 2.2860
DF-LDA 0.4365 0.4362 0.3467 0.4329 0.4132 2.1355 1.9705 2.2054 2.3875 2.1747
L-EM 0.4605 0.4706 0.3333 0.4561 0.4301 2.0451 1.9145 2.2427 1.8952 2.0244
CC-Kmeans 0.4554 0.4483 0.3333 0.4353 0.4181 1.9604 1.9841 2.2897 1.8794 2.0284

AVG 0.5089 0.4483 0.3667 0.4941 0.4545 1.7203 2.1759 2.2030 1.7039 1.9508
MIN 0.4554 0.3218 0.3600 0.4118 0.3872 2.1055 2.5479 2.6598 2.2158 2.3822
MAX 0.4554 0.3563 0.3667 0.4353 0.4034 2.1230 2.4440 2.6036 2.1744 2.3363
AP 0.4196 0.4253 0.3600 0.4588 0.4159 2.1816 2.2074 2.3087 1.9946 2.1731

ADDML 0.5658 0.5098 0.3684 0.6143 0.5146 1.7119 1.8043 2.1274 1.3282 1.7429

Table 2: Comparison of Purity and Entropy with baselines. Our model is ADDML.

We present and compare the results of ADDML and the 8 baseline methods based on 4 domains. The
results are shown in Table 2, where avg represents the average result of the 4 domains. The results are
separated into two groups according to categories of the baseline methods. Our approach outperforms
baseline methods on the average result of all domains. In addition, we make the following observations:

• From the first group, we can see that L-EM and CC-Kmeans perform better than the other methods.
The methods that exploit external knowledge and constraint can achieve better performance. How-
ever, the proposed ADDML method outperforms all baselines by using weighted contexts as well
as distance metric learning.

• From the second group, all methods employ word embeddings to represent word semantic and
text composition semantic. Yet these methods achieve uneven results due to different semantic
composition strategies. The neural bag-of-word AVG method performs better than the others in the
overall result, in which it averages the semantics of each word in the context. The average operation
is a commonly used approach in many neural methods, such as CNN (Convolution Neural Network),
and achieves better performance. However, it still falls behind our ADDML method according to
its task-independent characteristic.

3.6 Discussion
Case study We manually examined a number of samples, which can be successfully grouped by AD-
DML but not the baselines. For example, two aspect phrases ”photo quality” and ”quality” belong to
group ”picture” and ”build quality”, respectively. Most of the baselines incorrectly clustered them into
the same group, while ADDML correctly grouped them. There are two main reasons: (1) the two aspect
phrase themselves have similar semantics characteristic and share words, (2) reviewers commonly used
similar words to express their opinion. ADDML can learn an exact vector representation that are context
sensitive, while the baseline methods can not distinguish similar contexts. Figure 2 shows some example
results of attention values.
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Purity Entropy

DC DVD MP3 PHONE avg ↑ DC DVD MP3 PHONE avg ↑
AP 0.4196 0.4253 0.3600 0.4588 0.4159 2.1816 2.2074 2.3087 1.9946 2.1731

cnn + ml 0.4673 0.4609 0.3003 0.4947 0.4308 3.6% 1.8984 1.9515 2.2908 1.6294 1.9433 10.6%
atn + ml 0.4605 0.4706 0.3070 0.5088 0.4367 5.0% 1.8477 1.8158 2.2662 1.5179 1.8619 14.3%
cnn + mlp + ml 0.5526 0.4118 0.3246 0.6140 0.4757 14.4% 1.8494 1.8980 2.1626 1.3336 1.8109 16.7%
atn + mlp + ml(ADDML) 0.5658 0.5098 0.3684 0.6143 0.5146 23.7% 1.7119 1.8043 2.1274 1.3282 1.7429 19.8%

Table 3: The result of different module combinations.

Module Analysis ADDML has three modules: attention-based semantic composition module (atn),
MLP-based nonlinear transformation module (mlp) and metric learning (ml). For studying the contri-
bution of each module, we introduce a general convolution neural network (cnn) as an alternative to
atn. cnn is a state-of-the-art neural network method for modelling semantic representation of sentence
(Kalchbrenner et al., 2014; Tang et al., 2015), which extracts N-gram features by convolution operations.

Table 3 reports the results of different module combinations. We use AP, which only uses aspect
phrase vector for clustering, as a reference. The symbol ↑ denotes average percentage improvement than
AP in 4 domains. By considering context, cnn+ml and atn+ml achieved better results than AP, which
only uses aspect phrase embeddings. After adding nonlinear transformation module, cnn + mlp + ml
and atn + mlp + ml further improve the performance. Under the same condition, atn is superior to cnn
for our task.

Naturally, aspect phrases in some domains, such as MP3, may have fixed meanings. As a result, an
aspect phrase and its context have less correlation under the grouping task in these domains. Therefore,
AP achieves a little better result than the other methods except for ADDML. Overall, atn solves the
context representation and mlp + ml provides a better metric learning ability for our model.

Similarity Threshold Different similarity thresholds η results in different negative sample pairs, and
have a certain impact on performance of our model. For obtaining a better threshold, we performed ex-
periments on developing data with different similarity value. Figure 3 presents the result on DC dataset.
The performance slowly decrease with the growth of threshold, which is in line with intuitively under-
standing. For obtaining enough negative samples, we chosen 0.3 as the similarity threshold.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.46

0.48

0.50

0.52

0.54

0.56

 Purity     Entropy

1.86

1.87

1.88

1.89

1.90

 

Figure 3: Influence of the similarity threshold η

4 Related Work

Our work is related to aspect-level sentiment analysis, metric learning, and deep learning.
For aspect-level sentiment analysis, there are many methods on clustering aspect phrases. Some

topic-model-based approaches jointly extract aspect phrases and group them at the same time (Chen
et al., 2013; Moghaddam and Ester, 2012; Lu et al., 2011; Jo and Oh, 2011; Zhao et al., 2010; Lin
and He, 2009). Those methods tend to discover coarse-grained and grouped aspect phrases, but not
specific opinionated aspect phrase themselves. In addition, Zhai et al. (2011a) showed that they did not
perform well even considering pre-existing knowledge. Some other work focuses on grouping aspect
phrases. Guo et al. (2009) grouped aspect phrases using multi-level LaSA, which exploits the virtual
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context documents and semantic structure of aspect phrase. Zhai et al. (2010) used an EM-based semi-
supervised learning method for clustering aspect phrases, in which the lexical knowledge is used to
provide better initialization for EM. Zhao et al. (2014) proposed a framework of Posterior Regularization
to cluster aspect phrases, which formalizes sentiment distribution consistency as a soft constraint. This
method requests special semi-structured reviews to estimate the sentiment distribution. In contrast to
these methods, we provide a Siamese neural network to learning feature representation through distance
supervising.

Metric learning algorithms have been successfully applied to address the problem of face verification
(Ding et al., 2015; Yi et al., 2014; Cai et al., 2012; Hu et al., 2014). A common objective of these
methods is to learn a better distance metric so that the distance between a positive pair is smaller than the
distance between a negative pair. However, these methods not perform nonlinear transformation. Hu et
al. (2014) employed a MLP-based nonlinear transformation, but its input is the given image descriptor,
which can be directly concatenated to form feature vectors. In this paper, we adapt this method to the
aspect phrase grouping task, and provide an extra attention-based semantic composite model to obtain
feature vectors based on word vectors of aspect phrase and its context.

Our work is related to word embedding and deep learning. Prior research (Collobert and Weston,
2008; Mnih and Hinton, 2007; Mikolov et al., 2013; Tang et al., 2014; Ren et al., 2016b) presented
different models to improve the performance of word embedding training, and our training is inspried by
negative sampling. Deep learning methods (Kalchbrenner et al., 2014; Kim, 2014; Socher et al., 2013;
Vo and Zhang, 2015; Zhang et al., 2015; Zhang et al., 2016; Ren et al., 2016a) have been applied to many
tasks related to sentiment analysis. In this paper, we explore attention (Luong et al., 2015; Rush et al.,
2015; Ling et al., 2015) with a MLP network to tackle the aspect phrase grouping problem.

5 Conclusion

We studied distance metric learning for aspect phrase grouping, exploring a novel deep neural network
framework. By leveraging semantic relations between aspect phrase and their contexts, our approach
give better performance to strong baselines which achieve the best results in standard benchmark. Our
method can be applied to other NLP applications, such as short text clustering and sentence similarity
measures.
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