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Abstract

An important difference between traditional AI systems and human intelligence is the human
ability to harness commonsense knowledge gleaned from a lifetime of learning and experience to
make informed decisions. This allows humans to adapt easily to novel situations where AI fails
catastrophically due to a lack of situation-specific rules and generalization capabilities. Com-
monsense knowledge also provides background information that enables humans to successfully
operate in social situations where such knowledge is typically assumed. Since commonsense
consists of information that humans take for granted, gathering it is an extremely difficult task.
Previous versions of SenticNet were focused on collecting this kind of knowledge for sentiment
analysis but they were heavily limited by their inability to generalize. SenticNet 4 overcomes
such limitations by leveraging on conceptual primitives automatically generated by means of
hierarchical clustering and dimensionality reduction.

1 Introduction

The opportunity to capture the opinion of the general public has raised growing interest within both
the scientific community as well as the business world, due to the remarkable benefits to be had from
marketing and financial prediction, which has led to many exciting open challenges (Pang and Lee, 2008;
Liu, 2012). Mining opinions and sentiments from natural language, however, is an extremely difficult
task as it requires a deep understanding of most of the explicit and implicit, regular and irregular, syntactic
and semantic rules of a language. Existing approaches to sentiment analysis mainly rely on parts of text
in which opinions are explicitly expressed such as polarity terms, affect words, and their co-occurrence
frequencies. However, opinions and sentiments are often conveyed implicitly through latent semantics,
which make purely syntactic approaches ineffective.

SenticNet (Cambria et al., 2014) captures such latent information in terms of semantics and sentics,
i.e., the denotative and connotative information commonly associated with real-world objects, actions,
events, and people. SenticNet steps away from blindly using keywords and word co-occurrence counts,
and instead relies on the implicit meaning associated with commonsense concepts. Superior to purely
syntactic techniques, SenticNet can detect subtly expressed sentiments by enabling the analysis of mul-
tiword expressions that do not explicitly convey emotion, but are instead related to concepts that do so.
The main limitation of SenticNet is that it is unable to generalize instances of concepts, e.g., eat pasta
or slurp noodles: unless there is an exact match, SenticNet 3 raises a not-found error.

In SenticNet 4, however, both verb and noun concepts are linked to primitives so that, for example,
concepts such as eat pasta or slurp noodles are generalized as INGEST FOOD. In this way,
most concept inflections can be captured by the knowledge base: verb concepts like eat, slurp,
munch are all represented by their conceptual primitive INGEST while noun concepts like pasta,
noodles, steak are replaced with their ontological parent FOOD.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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The idea behind this generalization is that there is a finite set of mental primitives for affect-bearing
concepts and a finite set of principles of mental combination governing their interaction. Conceptual
primitives are automatically discovered in SenticNet through the ensemble application of hierarchical
clustering and dimensionality reduction.

The rest of the paper is organized as follows: Section 2 presents related work in the field of sentiment
analysis; Section 3 proposes an excursus on conceptual primitives; Sections 4 and 5 describe in detail
how noun concepts and verb concepts are generalized, respectively; Section 6 proposes experimental
results on two different state-of-the-art datasets; finally, Section 7 provides concluding remarks.

2 Related Work

Sentiment analysis systems can be broadly categorized into knowledge-based or statistics-based systems
(Cambria, 2016). While the use of knowledge bases was initially more popular for the identification of
sentiment polarity in text, recently sentiment analysis researchers have been increasingly using statistics-
based approaches, with a special focus on supervised statistical methods. Pang et al. (Pang et al., 2002)
pioneered this trend by comparing the performance of different machine learning algorithms on a movie
review dataset and obtained a 82% accuracy for polarity detection. A recent approach by Socher et
al. (Socher et al., 2013) obtained a 85% accuracy on the same dataset using a recursive neural tensor
network. Yu and Hatzivassiloglou (Yu and Hatzivassiloglou, 2003) used semantic orientation of words
to identify polarity at sentence level. Melville et al. (Melville et al., 2009) developed a framework that
exploits word-class association information for domain-dependent sentiment analysis.

More recent studies exploit microblogging text or Twitter-specific features such as emoticons, hash-
tags, URLs, @symbols, capitalizations, and elongations to enhance sentiment analysis of tweets. Tang et
al. (Tang et al., 2014a) used a convolutional neural network (CNN) to obtain word embeddings for words
frequently used in tweets. Dos Santos et al. (dos Santos and Gatti, 2014) also focused on deep CNN for
sentiment detection in short texts. Recent approaches also focus on developing word embeddings based
on sentiment corpora (Tang et al., 2014b). Such word vectors include more affective clues than regular
word vectors and produce better results for tasks such as emotion recognition (Poria et al., 2016b) and
aspect extraction (Poria et al., 2016a).

Statistical methods, however, are generally semantically weak (Cambria and White, 2014). This means
that, with the exception of obvious affect keywords, other lexical or co-occurrence elements in a statisti-
cal model have little predictive value individually. As a result, statistical text classifiers only work with
acceptable accuracy when given a sufficiently large text input. Hence, while these methods may be able
to affectively classify user’s text on the page or paragraph level, they do not work well on smaller text
units such as sentences. Concept-level sentiment analysis, instead, focuses on a semantic analysis of
text through the use of web ontologies or semantic networks, which allows for the aggregation of the
conceptual and affective information associated with natural language opinions (Cambria and Hussain,
2015; Gezici et al., 2013; Araújo et al., 2014; Bravo-Marquez et al., 2014; Recupero et al., 2014).

By relying on large semantic knowledge bases, such approaches step away from the blind use of
keywords and word co-occurrence counts, relying instead on the implicit features associated with natural
language concepts. Unlike purely syntactic techniques, concept-based approaches are also able to detect
sentiments expressed in a subtle manner; e.g., through the analysis of concepts that do not explicitly
convey any emotion, but which are implicitly linked to other concepts that do so. The bag-of-concepts
model can represent semantics associated with natural language much better than bag-of-words. In the
latter, in fact, concepts like pretty ugly or sad smile would be split into two separate words,
disrupting both semantics and sentics of the input sentence.

3 Conceptual Primitives

It is inherent to human nature to try to categorize things, events and people, finding patterns and forms
they have in common. One of the most intuitive ways to relate two entities is through their similarity.
According to Gestalt theory (Smith, 1988), similarity is one of six principles that guide human perception
of the world.
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Similarity is a quality that makes one thing or person like another and ‘similar’ means having charac-
teristics in common. There are many ways in which objects can be perceived as similar, based on things
like color, shape, size and texture. If we move away from mere visual stimuli, we can apply the same
principles to define similarity between concepts based on shared semantic features. Previous versions of
SenticNet exploited this principle to cluster natural language concepts sharing similar affective proper-
ties. Finding groups of similar concepts, however, does not ensure full coverage of all possible semantic
inflections of multiword expressions.

In this work, we leverage on such similarities to deduce conceptual primitives that can better generalize
SenticNet’s commonsense knowledge. This generalization is inspired by different theories on conceptual
primitives, including Roger Schank’s conceptual dependency theory (Schank, 1972), Ray Jackendoff’s
work on explanatory semantic representation (Jackendoff, 1976), and Anna Wierzbicka’s book on primes
and universals (Wierzbicka, 1996), but also theoretical studies on knowledge representation (Minsky,
1975; Rumelhart and Ortony, 1977). All such theories claim that a decompositional method is necessary
to explore conceptualization. In the same manner a physical scientist understands matter by breaking it
down into progressively smaller parts, a scientific study of conceptualization proceeds by decomposing
meaning into smaller parts. Clearly, this decomposition cannot go on forever: at some point we must
find semantic atoms that cannot be further decomposed. This is the level of conceptual structure; mental
representation that encodes basic understanding and commonsense by means of primitive conceptual
elements out of which meanings are built.

In SenticNet, this ‘decomposition’ translates into the generalization of multiword expressions that
convey a specific set of emotions and, hence, carry a particular polarity. The motivation behind this
process of generalization is that there are countless ways to express the same concept in natural language
and having a comprehensive list of all the possible concept inflections is almost impossible. While lexical
inflections such as conjugation and declension can be solved with lemmatization, semantic inflections
such as the use of synonyms or semantically-related concepts need to be tackled by analogical reasoning.

If multiword expressions like attain knowledge and acquire know-how are encountered in
text, SenticNet 3 is unable to process them because there is no entry for such concepts in the knowl-
edge base. SenticNet 3, however, does contain a multiword expression that is highly semantically re-
lated to those two concepts, that is, acquire knowledge. By working at the primitive level, Sen-
ticNet 4 is able to bridge this semantic gap, as attain knowledge, acquire know-how, and
acquire knowledge are all represented by the same conceptual primitive: GET INFORMATION.

By automatically inferring conceptual primitives for SenticNet concepts, we aim to broadly extend
the coverage of the commonsense knowledge base and better perform sentiment analysis tasks such as
polarity detection and emotion recognition from text. As shown in the next two sections, this is done
via generalizing noun concepts by means of hierarchical clustering as well as discovering conceptual
primitives for verb concepts by means of dimensionality reduction.

Figure 1: A sketch of the AffectNet graph showing part of the semantic network for the concept cake.
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4 Noun Concept Generalization

The first step towards generalizing multiword expressions in SenticNet is to build a hierarchical classifi-
cation of its noun concepts (or object concepts) so that nouns such as cat, dog or pet can be identified
as ANIMAL. Such classification is implemented by applying hierarchical clustering on a semantic net-
work of commonsense knowledge. It is important to note that each generalization inherits the emotional
information and the polarity of its instance concepts. In the case of cat and dog, for example, the prim-
itive is actually ANIMAL+ since cat and dog are associated with positive emotions. Conversely, for
animals that are associated with negative emotions such as fear (e.g., white shark) or disgust (e.g.,
cockroach), the corresponding primitive is ANIMAL-.

4.1 AffectNet

AffectNet (Cambria and Hussain, 2015) is an affective commonsense knowledge base built upon Con-
ceptNet (Speer and Havasi, 2012), the graph representation of the Open Mind corpus, and WordNet-
Affect (Strapparava and Valitutti, 2004), a linguistic resource for the lexical representation of affect
(Fig. 1). The resource is represented as a semantic network where nodes are multiword expressions of
commonsense knowledge and the links between these are relations that interconnect them. The knowl-
edge encoded by AffectNet is constantly expanding as new versions of ConceptNet are continuously
released and new affective commonsense knowledge is crowdsourced through games. AffectNet is first
converted into a matrix by dividing each assertion into two parts: a concept and a feature, where a feature
is simply the assertion with the first or the second concept left unspecified such as ‘a wheel is part of’ or
‘is a kind of liquid’.

The entries in the resulting matrix are positive or negative numbers, assigned according to the reliabil-
ity of the assertions, with their magnitude increasing logarithmically with the confidence score. Because
the AffectNet graph is made of triples based on the format <concept-relationship-concept>, the entire
knowledge repository can be visualized as a large matrix, with every known concept of some statement
being a row and every known semantic feature (relationship+concept) being a column. Such a represen-
tation has several advantages including the possibility to perform cumulative analogy (Tversky, 1977),
executed by first selecting a set of nearest neighbors (in terms of similarity) of the input concept and then
by projecting known properties of this set onto unknown properties of the concept (Table 1).

4.2 Group Average Agglomerative Clustering

Direct objects in verb+noun concepts, such as buy cake or eat burger, exhibit semantic coherence
in that they tend to generate lexical items and phrases with related semantics. Most words related to the
same verb tend to share some semantic characteristics. Our commonsense-based approach is similar to
the process undertaken by humans when finding similar items – we look at what the meanings of the
items have in common. In AffectNet, concepts inter-define one another, with directed edges indicating
semantic dependencies between concepts.

Concepts Semantic Features
(relationship+concept)

.. Causes
joy

IsA
event

UsedFor
housekeeping

LocatedAt
party venue

PartOf
celebration

MotivatedByGoal
clean room

..

...
...

...
...

...
...

...
wedding .. 0.94 0.86 0 0.79 0.88 0 ..
broom .. 0 0 0.83 0 0 0.87 ..

buy cake .. ? 0.78 0 0.80 0.91 0 ..
birthday .. 0.97 0.85 0 0.99 0.98 0 ..

sweep floor .. 0 0 0.79 0 0 0.91 ..
...

...
...

...
...

...
...

Table 1: Cumulative analogy allows for the inference of new pieces of knowledge by comparing similar
concepts, e.g., buy cake causes joy because wedding and birthday (which are similar) do so.
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The traditional way to define features for any particular concept c in a semantic network is to consider
the set of concepts reachable via outbound edges from c. The proposed algorithm exploits hierarchical
clustering to generate from such features conceptual primitives, which represent the core semantics of
each concept. Based on experiments with various clustering algorithms, e.g., k-means and expectation-
maximization clustering, we determined that group average agglomerative clustering (GAAC) provides
the highest accuracy. GAAC partitions data into trees (Berkhin, 2006) containing child and sibling
clusters. It generates dendrograms specifying nested groupings of data at various levels (Jain and Dubes,
1988). During clustering, concepts are represented as vectors of commonsense features extracted from
AffectNet. The proximity matrix is constructed with concepts as rows and features as columns. If a
feature is an outbound link of a concept, the corresponding entry in the matrix is 1 and it is 0 in other
situations. Cosine distance is used as the distance metric. Agglomerative algorithms are bottom-up in
nature. GAAC, in particular, consists of the following steps:

1. Compute proximity matrix. Each data item is an initial cluster.

2. From the proximity matrix, form pair of clusters by merging. Update proximity matrix to reflect
merges.

3. Repeat until all clusters are merged.

The resulting dendrogram is pruned at a height depending on the number of desired clusters. The group
average between the clusters is given by the average similarity distance between the groups. Distances
between two clusters and similarity measures are given by the equations below:

Xsum =
∑

cm∈ωi∪ωi

∑
cn∈ωi∪ωj ,cn 6=cm

−→cn.−→cm (1)

sim (ωi, ωj) =
1

(Ni +Nj) (Ni +Nj − 1)
Xsum (2)

where −→c is the vector of the concept of length c, vector entries are boolean (1 if the feature is present,
0 otherwise), andNi, Nj is the number of features in ωi and ωj , respectively (which denote clusters). The
main drawback of the hierarchical clustering algorithm is its running complexity (Berkhin, 2006), which
averages θ(N2log N). We chose to utilize average link clustering as our clustering is connectivity-based.
The concept proximity matrix consists of features from AffectNet and ‘good’ connections are deemed to
occur when two concepts share multiple features. After clustering, the number of clusters is determined
and the dendrogram is pruned accordingly.

Each cluster is later split into a positive and a negative sub-cluster. Cluster instances are assigned to
either the positive or the negative sub-cluster depending on their polarity in SenticNet 3. For example,
cobra and cat end up being in the same cluster (ANIMAL) after applying GAAC but, since they
have opposite polarity in SenticNet 3, they are later assigned to different sub-clusters (ANIMAL- and
ANIMAL+, respectively). Noun concepts for which no specific categorization is discovered are grouped
under one of three most general noun primitives, namely: SOMETHING, SOMEONE, and SOMEWHERE
(also divided into positive and negative sub-clusters). Table 2 provides an example of the results of
polarity-driven feature-based clustering for 24 noun concepts.

SOMETHING- SOMETHING+ SOMEONE- SOMEONE+ SOMEWHERE- SOMEWHERE+

ANIMAL- ANIMAL+ PROFESSIONAL- PROFESSIONAL+ NATURE- NATURE+

cockroach horse gravedigger doctor dry steppe oasis

rat cat coroner scientist desert sandy beach

cobra puppy executioner teacher wild forest natural park

termite pet mortician sea captain polar desert seaside

Table 2: Example of feature-based clustering for polarity-driven conceptual primitive inference.
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5 Verb Concept Generalization

The second step in generalizing SenticNet concepts is to define conceptual primitives for verb concepts
(or action concepts) so that, for example, verbs like acquire, attain or collect can be identified
as GET. Such classification is implemented by applying dimensionality reduction techniques on the vec-
tor space representation of AffectNet. As with noun concepts, verb concepts are also associated with a
polarity but, in this case, polarity is more relevant to the opposite meanings (or outcomes) these action
concepts represent, as in INCREASE versus DECREASE. This allows for reasoning about verb+noun
combinations to be as per algebraic multiplication, where negative multiplied by positive (or vice versa)
results in a negative, e.g., DECREASE GAIN (or INCREASE LOSS), multiplying two positives produces
a positive, e.g., INCREASE PLEASURE, and negative multiplied by negative results in a positive, e.g.,
DECREASE PAIN.

5.1 AffectiveSpace
The human mind constructs intelligible meanings by continuously compressing over vital relations (Fau-
connier and Turner, 2003). The compression principles aim to transform diffuse and distended conceptual
structures into more focused versions so they can become more congenial for human understanding. In
order to emulate such a process, we use simple but powerful meta-algorithms which underlie neuronal
learning (Lee et al., 2011). These meta-algorithms should be fast, scalable, effective, with few-to-no spe-
cific assumptions and biologically plausible. Optimizing all the ≈1015connections formed through the
last few million years of evolution is very unlikely. Objectively speaking, however, nature probably only
optimizes the global connectivity (mainly the white matter) but leaves the other details to randomness
(Balduzzi, 2013).

In this work, we use random projections (Bingham and Mannila, 2001) on the matrix representation of
AffectNet in order to compress the semantic features associated with commonsense concepts and, hence,
better perform analogical reasoning on these. Random projections are a data-oblivious method to map an
original high-dimensional dataset into a much lower-dimensional subspace by using a Gaussian N(0, 1)
matrix, while at the same time, preserving pair-wise distances with high probability. This theoretically-
solid and empirically-verified statement follows Johnson and Lindenstrauss’s Lemma (Balduzzi, 2013),
which states that, with high probability, for all pairs of points x, y ∈ X simultaneously:√

m

d
‖ x− y ‖2 (1− ε) ≤‖ Φx− Φy ‖2≤

√
m

d
‖ x− y ‖2 (1 + ε) (3)

whereX is a set of vectors in Euclidean space, d is the original dimension of this Euclidean space,m is
the dimension of the space we wish to reduce the data points to, ε is a tolerance parameter measuring the
maximum allowed distortion extent rate of the metric space, and Φ is a random matrix. Structured ran-
dom projections for making matrix multiplication much faster was introduced in (Sarlos, 2006). When
the number of features is much larger than the number of training samples (d� n), subsampled random-
ized Hadamard transform (SRHT) is preferred, as it behaves very much like Gaussian random matrices
but accelerates the process from O(nd) to O(n log d) time (Lu et al., 2013). Following (Tropp, 2011;
Lu et al., 2013), for d = 2p (where p is any positive integer), a SRHT can be defined as:

Φ =

√
d

m
RHD (4)

where •m is the number we want to subsample from d features randomly;
• R is a random m× d matrix. The rows of R are m uniform samples (without replacement) from the

standard basis of Rd;
• H∈ Rd×d is a normalized Walsh-Hadamard matrix, which is defined recursively:

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
with H2 =

[
+1 +1
+1 −1

]
;

• D is a d× d diagonal matrix and the diagonal elements are i.i.d. Rademacher random variables.
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Figure 2: In AffectiveSpace, commonsense concepts gravitate around positive and negative emotions.

Our subsequent analysis only relies on the distances and angles between pairs of vectors (i.e., the
Euclidean geometry information) and it is sufficient to set the projected space to be logarithmic in the size
of the data (Ailon and Chazelle, 2010) and, hence, apply SRHT. The result is AffectiveSpace (Cambria et
al., 2015), a vector space model where commonsense concepts and emotions are represented by vectors
of m coordinates (Fig. 2).

By exploiting the information sharing property of random projections, concepts with the same se-
mantic and affective valence are likely to have similar features – that is, concepts conveying the same
meaning and emotion tend to fall near each other in AffectiveSpace. Similarity does not depend on
concepts’ absolute position in the vector space, but rather on the angle these make with the origin. For
example, concepts such as birthday party, celebrate, and buy cake are found very closely
positioned in the vector space, while concepts like lose faith, depressed, and shed tear are
found in a completely different direction (nearly opposite with respect to the centre of the space).

5.2 Semi-Supervised Verb Propagation

AffectiveSpace allows for analogical reasoning about multiword expressions so that concepts such as
buy groceries and go shopping will be detected as being semantically similar. In order to gener-
alize verb concepts, however, we need to discriminate such reasoning according to actions, so that a con-
cept like buy groceries would be associated with concepts related to the verb buy, e.g., buy milk
or purchase vegetable.

To this end, we leverage on VerbNet (Schuler, 2005), the largest English verb lexicon currently avail-
able, and Sentic LDA (Poria et al., 2016c), a classification framework that integrates commonsense in the
calculation of word distributions in the linear discriminant analysis (LDA) algorithm. In particular, we
use a semi-supervised version of Sentic LDA in order to incorporate both supervised (VerbNet-labeled)
and unsupervised information in such a way that a proper semantic space which reflects the desired in-
formation (verb concepts) is obtained. Given a set of verbs and a large amount of unlabeled instances
in AffectiveSpace, the between-class scatter is to be maximized and the within-class scatter of VerbNet
instances is to be minimized, keeping the semantic relatedness of all the other instances simultaneously.
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Each instance is denoted as vi ∈ Am, which is the m-dimensional vector after being processed by
random projections. For each verb instance, there is a label yi ∈ {1, . . . , q}, where q is the number of
verb classes. Then, the between-class scatter and the within-class scatter matrices are defined as follows:

Sw =
q∑

j=1

lj∑
i=1

(vi − µj)(vi − µj)T (5)

Sb =
q∑

j=1

lj(µj − µ)(µj − µ)T (6)

where µj = 1
lj

∑lj
i=1 vi (j = 1, 2, ..., q) is the mean of the samples in class j, lj is the number of verb

instances in class j and µ = 1
l

∑l
i=1 vi is the mean of all the labeled samples. A total scatter matrix on

all the instances in AffectiveSpace is also defined:

St =
k∑

i=1

(vi − µk)(vi − µk)T (7)

where k is the total number of instances in AffectiveSpace and µk is the mean of all the instances.
Our objective is then to find a projection matrix W to project the semantic space to a lower-dimensional
space, which is more discriminative towards verb concepts:

W ∗ = arg max
W∈Am×m′

|W TSbW |
|W T (Sw + λ1St + λ2I)W | (8)

where I is identity matrix, and λ1 and λ2 are control parameters, obtained through a grid search, for
balancing the trade-off between verb discriminant and semantic regularizations. The optimal solution is
given by:

(Sw + λ1St + λ2I)w∗j = ηjSbw
∗
j j = 1, ...,m′ (9)

where w∗j (j = 1, ...,m′) are the eigenvectors corresponding to the m′ largest eigenvalues of (Sw +
λ1St + λ2I)−1Sb. Here, m′ = q − 1 is selected, where q is the total verb primitive number. After the
projection, the new space preserves both semantic relatedness and action concept grouping based on the
information coming from AffectNet and VerbNet, respectively.

6 Evaluation

In order to perform a qualitative evaluation of SenticNet 4 (available both as a standalone XML repos-
itory1 and as an API2), we asked five annotators to judge the plausibility of inferred conceptual primi-
tives. We obtained an overall accuracy of 91% with Cohen’s kappa score of 0.84. As for the quantita-
tive evaluation, we tested SenticNet 4 against two well-known sentiment resources, namely: the Blitzer
Dataset (Blitzer et al., 2007) and the Movie Review Dataset (Pang and Lee, 2005).

6.1 Performing Polarity Detection with SenticNet
While SenticNet can be used as any other sentiment lexicon, e.g., concept matching or bag-of-concepts
model, the right way to use the knowledge base for the task of polarity detection is in conjunction with
sentic patterns (Poria et al., 2015). Sentic patterns are sentiment-specific linguistic patterns that infer
polarity by allowing affective information to flow from concept to concept based on the dependency
relation between clauses. The main idea behind such patterns can be best illustrated by analogy with an
electronic circuit, in which few ‘elements’ are ‘sources’ of the charge or signal, while many elements
operate on the signal by transforming it or combining different signals. This implements a rudimentary
type of semantic processing, where the ‘meaning’ of a sentence is reduced to only one value: its polarity.

1http://sentic.net/senticnet-4.0.zip
2http://sentic.net/api
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Figure 3: In sentic patterns, the structure of a sentence is like an electronic circuit where logical operators
channel sentiment data-flows to output an overall polarity.

Sentic patterns are applied to the dependency syntactic tree of a sentence, as shown in Figure 3(a). The
only two words that have intrinsic polarity are shown in yellow color; the words that modify the meaning
of other words in the manner similar to contextual valence shifters (Polanyi and Zaenen, 2006) are shown
in blue. A baseline that completely ignores sentence structure, as well as words that have no intrinsic
polarity, is shown in Figure 3(b): the only two words left are negative and, hence, the total polarity is
negative. However, the syntactic tree can be re-interpreted in the form of a ‘circuit’ where the ‘signal’
flows from one element (or subtree) to another, as shown in Figure 3(c). After removing the words not
used for polarity calculation (in white), a circuit with elements resembling electronic amplifiers, logical
complements, and resistors is obtained, as shown in Figure 3(d),

Figure 3(e) illustrates the idea at work: the sentiment flows from polarity words through shifters and
combining words. The two polarity-bearing words in this example are negative. The negative effect of
the word ‘old’ is amplified by the intensifier ‘very’. However, the negative effect of the word ‘expensive’
is inverted by the negation, and the resulting positive value is decreased by the ‘resistor’. Finally, the
values of the two phrases are combined by the conjunction ‘but’, so that the overall polarity has the same
sign as that of the second component (positive).

2674



6.2 SenticNet 4 vs. SenticNet 3

The Blitzer Dataset consists of product reviews in seven different domains. For each domain there are
1,000 positive and 1,000 negative reviews. In evaluating SenticNet 4, we only used reviews under the
electronics category. From these, we randomly extracted 7,210 non-neutral sentences: 3,800 of which
were marked as positive and 3,410 as negative. We then compared the performance of SenticNet 4 with
its predecessor SenticNet 3 for the task of sentence-level polarity detection, using sentic patterns. The
results are shown in Table 3.

Table 3: Comparison on the Blitzer Dataset
Framework Accuracy

Sentic Patterns and SenticNet 3 87.0%
Sentic Patterns and SenticNet 4 91.3%

6.3 SenticNet 4 vs. Statistical Methods

The Movie Review Dataset includes 1,000 positive and 1,000 negative movie reviews collected from
Rotten Tomatoes3. Originally, Pang and Lee manually labeled each review as positive or negative. Later,
Socher et al. (Socher et al., 2012; Socher et al., 2013) annotated this dataset at sentence level. They
extracted 11,855 sentences from the reviews and manually labeled them using a fine-grained inventory
of five sentiment labels: strong positive, positive, neutral, negative, and strong negative. Since in this
work we consider only binary classification, we removed neutral sentences from the dataset and merged
germane labels. Thus, the final dataset contained 4,800 positive sentences and 4,813 negative ones. The
results of the classification with SenticNet 3 and SenticNet 4 are shown in Table 4.

Table 4: Comparison on the Movie Review Dataset
Framework Accuracy
Socher et al., 2012 80.0%
Socher et al., 2013 85.4%
Sentic Patterns and SenticNet 3 86.2%
Sentic Patterns and SenticNet 4 90.1%

7 Conclusion

The distillation of knowledge from the huge amount of unstructured information on the Web is a key
factor for tasks such as social media marketing, brand positioning, and financial prediction. Common-
sense reasoning is a good solution for sentiment analysis but the scalability of commonsense knowledge
bases is a major factor that jeopardizises the efficiency of concept extraction and polarity detection. A
first possible step in solving this problem is to generalize pieces of commonsense knowledge in terms of
conceptual primitives that could catch most semantic inflections of natural language concepts.

In this work, we used an ensemble of hierarchical clustering and dimensionality reduction for auto-
matically discovering the primitives for both noun and verb concepts in SenticNet. This generalization
process allowed us to largely extend the coverage of the commonsense knowledge base and, hence, to
boost the accuracy of SenticNet for sentence-level polarity detection in comparison with both the previ-
ous version of the resource and with state-of-the-art statistical sentiment analysis research.

In the future, we plan to discover new conceptual primitives in a more automatic and scalable way
by means of dependency-based word embeddings. In particular, we will exploit the internally-learned
context embeddings of the skip-gram model in conjunction with the standard target word embeddings,
to weigh context compatibility together with word similarity.

3http://rottentomatoes.com
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