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Abstract

Topic modeling and word embedding are two important techniques for deriving latent semantics
from data. General-purpose topic models typically work in coarse granularity by capturing word
co-occurrence at the document/sentence level. In contrast, word embedding models usually work
in fine granularity by modeling word co-occurrence within small sliding windows. With the aim
of deriving latent semantics by capturing word co-occurrence information at different levels of
granularity, we propose a novel model named Latent Topic Embedding (LTE), which seamlessly
integrates topic generation and embedding learning in one unified framework. We further propose
an efficient Monte Carlo EM algorithm to estimate the parameters of interest. By retaining the
individual advantages of topic modeling and word embedding, LTE results in better latent topics
and word embedding. Experimental results verify the superiority of LTE over the state-of-the-arts
in real-life applications.

1 Introduction

Topic modeling and word embedding are gaining significant momentum in the field of text mining.
General-purpose topic models such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and Sentence
LDA (Jo and Oh, 2011) usually utilize word co-occurrences at the document/sentence level to compose
the ”topics”, which capture the latent semantics between words. These models are plagued by the sim-
plistic bag-of-words assumption, which ignores the valuable sub-sequence information between words.
Some recent endeavors introduced n-gram information into topic models (Wallach, 2006), however, the
size of vocabulary is significantly enlarged and these techniques are hardly feasible for real-life applica-
tions. Therefore, the technique of topic modeling needs a remedy for solving the word sequence problem
with fairly low cost. Word embedding models such as Word2Vec (Mikolov et al., 2013a) map words into
distributed representations. Word embedding models primarily focus on the word co-occurrences within
small sliding windows, which enable word embedding to capture (at least partially) the information of
word sequences. One key problem of the existing word embedding models is that they are typically
short-sighted and are not aware of the themes of the document.

With their differences, the core of topic modeling and word embedding is based upon the assumption
that the words co-occurring frequently should have semantic commonality. In light of their individual
advantages and drawbacks, we see that the two techniques are essentially complimentary and can be inte-
grated to enhance each other. In this paper, we propose the Latent Topic Embedding (LTE) to seamlessly
integrate topic modeling and word embedding in one framework. In the generative process of LTE, we
assume that the observed words in document can be generated through two channels: one is through the
Multinomial distribution and the other is based upon topic embeddings as well as word embeddings. In
this way, the embedding information influences the result of topic modeling while the topic information
affects the training of word embeddings in return. LTE enables topic modeling to utilize word sequence
information and it equips word embeddings with the document-level vision. We propose a Monte Carlo
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EM algorithm to efficiently infer the parameters of interest in LTE. Extensive experiments on real-life
applications verify the superiority of LTE over several strong baselines.

The rest of this paper is organized as follows. In Section 2, we review the related work. In Section 3,
we discuss the technical details of LTE. In Section 4, we illustrate how to conduct parameter inference
for LTE. In Section 5, we present the experimental results. Finally, we conclude this paper in Section 6.

2 Related Work

The present work is related to previous research on topic modeling and word embedding. Latent Dirichlet
allocation (LDA) is a generative probabilistic model for collections of discrete data such as text corpora
(Blei et al., 2003)(Griffiths and Steyvers, 2004). LDA and its variants has been widely employed in
many texting mining scenarios (Wang and McCallum, 2006)(Krestel et al., 2009)(Xu et al., 2009)(Jiang
et al., 2013) and demonstrated promising performance. It is worth mentioning that some work such as
the bigram topic model (Wallach, 2006) aims to alleviate the negative effect of bag-of-words assumption
in LDA. However, considerable computational cost is involved since the bigram model creates a multi-
nomial distribution for each pair of the topics and the words, the amount of which is usually voluminous.
While topic modeling received intensive research in the field of Bayesian network research, word em-
bedding received much attention in the field of neural network. Word embedding (Bengio et al., 2003)
is proposed to fight the curse of dimensionality by learning a distributed representation for words which
allows each training sentence to inform the model about an exponential number of semantically neigh-
boring sentences. Mikolov presented several extensions of Skip-gram that improve both the quality of
the vectors and the training speed (Mikolov et al., 2013b) (Mikolov et al., 2013a). Paragraph vector that
is an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces
of texts was proposed in (Le and Mikolov, 2014). Word embedding is adapted for incorporating contex-
tual information in learning vector-space representations of situated language (Bamman et al., 2014). A
more relevant work is (Liu et al., 2015), which inputs the result of topic modeling into word embedding
models to learn the topical word embedding. The major difference between this work and ours is that
they did not aim to integrate topic modeling and word embedding and yet only utilizes the result of topic
modeling as the input of word embedding models. Recently, (Nguyen et al., 2015) extended two Dirich-
let multinomial topic models by incorporating word embeddings to improve the word-topic mapping. (Li
et al., 2016) proposed a generative model that replaces the Multinomial word generation assumption of
LDA with embedding based assumption.

Although topic modeling and word embedding receive intensive attention in recent years, to the best
of our knowledge, there is no previous endeavor on integrating them together as a joint learning task to
enhance each other. LTE paves the way for collectively modeling of word co-occurrence information
at different granularity levels while retaining the topic modeling result as well as the word embedding
result.

3 Generative Process of Latent Topic Embedding

Latent Topic Embedding (LTE) views each document as a bag of sentences and each sentence is com-
posed of words. The generative process of LTE is formally depicted in Algorithm 1. For each topic k, the
corresponding multinomial topic-word distribution φk is drawn from Dirichlet(β). When generating a
document, a multinomial document-topic distribution θd is drawn fromDirichlet(α). For each sentence
s in the document, we draw a latent topic zds based on the document-topic distribution. For each token
in the document, we drawn an indicator i from Bernoulli(τ ). If i is 0, the word w is generated according
to topic-word distribution φzds

. If i is 1, the word w is generated according to topic-word distribution
P (w|zds, Cw,M), which is defined as follows:

P (w|zds, Cw,M) = P (vw|xw) =
exw·vw∑
w′ e

xw·vw′
. (1)

In Eq. (1), Cw stands for the sliding window for w. Specifically, Cw contains several words that precedes
w. where M = {vw,vz} stands for the word embedding and the topic embedding, xw is the result
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Algorithm 1: Generative Process

for each topic k ∈ (1, 2, ...,K) do
draw a word distribution φk ∼ Dirichlet (β);

end
for each document d do

draw a topic distribution θd ∼ Dirichlet (α);
for each sentence s in d do

draw a topic zds ∼Multinomial (θd)
for each token in s do

draw an indicator i ∼ Bernoulli(τ )
if i = 0 then

generate word w ∼Multinomial (φzds
)

end
else

generate word w ∼ P (w|zds, Cw,M)
end

end
end

end

of element-wise addition of the word embeddings of Cw and the topic embedding indexed by zds (i.e.,
xw = vcw ⊕ vzds

) and vw is the embedding of w. The parameters of interest are φ, θ and M .

4 Training LTE

In Section 4.1, we describe how to sample the latent topics for sentences. In Section 4.2, we discuss how
to optimize the vectors via stochastic gradient descent. The parameter inference algorithm is formally
presented in Section 4.3.

4.1 Sampling Latent Variables
By translating the generative process of LTE into joint distribution, we aim to maximize the likelihood
of the observed words w: P (w|α, β, τ,M). Ideally, we would compute optimal M by maximizing
P (w|α, β, τ,M) directly. However, evaluating this likelihood is intractable and what can be computed
is the complete likelihood p(w, i, z|α, β, τ,M):

P (w, i, z|α, β, τ,M) = P (z|α)P (i|τ)P (w|z, i, β,M)

=
(Γ(

∑T
z=1 αz)∏T

z=1 Γ(αz)

)D
D∏

d=1

∏T
z=1 Γ(mdz + αz)

Γ(
∑T

z=1(mdz + αz))

(Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

)T
T∏

z=1

∏V
v=1 Γ(nzv + βv)

Γ(
∑V

v=1(nzv + βv))
D∏

d=1

∏
s∈d

∏
w∈s

P (vw|xw)I(iw=1) × (1− τ)AτB,

(2)

where mdz is the number of sentences that are assigned to topic z in document d. nzv is the number of
times that v is assigned to topic z through Multinominal distribution and Γ(·) indicates Gamma function,
A is the number of 0 that are generated by the Bernoulli distribution and B is the number of 1 that are
generated by the Bernoulli distribution. By applying Bayes rule, the full conditional of assigning topic k
to zds is obtained as follows:

P (zds = k, ids|w, z−ds, i−ds, α, β, τ,M) = (1− τ)AsτBs

mdk + αk∑K
k′=1(mdk′ + αk′)

Γ(
∑W

w=1(nkw + βw))

Γ(
∑W

w=1(nkw + βw +Niw))

∏
w∈W&iw=0

Γ(nkw + βw +Niw)

Γ(nkw + βw)

∏
w∈s&iw=1

P (vw|xw)
(3)
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The possible combinations of ids is exponential in the length of the sentence s. Similar to (Nguyen et al.,
2015), we conduct approximation of the above equation and integrate out ids,

P (zds = k|w, z−ds, i−ds, α, β, τ,M) ≈ mdk + αk∑K
k′=1(mdk′ + αk′)

∏
w∈s

(
(1− τ)

nkw + βw∑W
w=1(nkw + βw)

+ τP (vw|xw)
)

(4)

Exactly calculating P (vw|xw) is computational infeasible, since the normalization term involves all the
words in the vocabulary. Thus, we utilize noise contrastive estimation (NCE) to approximate it. The
advantage of NCE is that it allows us to fit models that are not explicitly normalized making the training
time effectively independent of the vocabulary size. Thus, we will be able to drop the normalization
factor from the above equation, and simply use exw·vw in place of P (xw|vw). Similar to the method
described in (Mnih and Teh, 2012)(Dyer, 2014), we fixing the normalized constants in P (xw|vw) to 1,
then we obtain the following approximation:

P (zds = k|w, z−ds, i−ds, α, β, τ,M) ∝ (mdk + αk)
∏
w∈s

(
(1− τ)

nkw + βw∑W
w=1(nkw + βw)

+ τexw·vw
)

(5)

For each word w in sentence s, its latent indicator iw is sampled as follows:

P (iw = 0|zds = k) ∝ (1− τ)
nkw + βw∑W

w=1(nkw + βw)
(6)

P (iw = 1|zds = k) ∝ τexw·vw (7)

The above sampling process repeats for a predefined number of iterations. It is worth mentioning that
there are works about scaling up Gibbs sampling or make it more efficient. Since the topic of designing
better Gibbs sampling algorithms is beyond the scope of this paper, interested readers may refer to
(Newman et al., 2009) and (Wang et al., 2009) for more detailed information.

4.2 Embedding Optimization
Now we convert the joint likelihood in Eq. (2) to its logarithm form, which is defined as follows:

L(w, i, z;α, β, τ,M) = D log
(Γ(

∑T
z=1 αz)∏T

z=1 Γ(αz)

)
+
∑

d

∑
z

log(Γ(mdz + αz))−

∑
d

log(Γ(
∑

z

(mdz + αz)))T log
(Γ(

∑V
v=1 βv)∏V

v=1 Γ(βv)

)
+
∑

z

∑
v

log(Γ(nzv + βv))−∑
z

log(Γ(
∑

v

(nzv + βv))) +
∑

d

∑
s∈d

∑
w∈s&iw=1

logP (vw|xw) +A log (1− τ) +B log τ.

(8)

Eq. (8) is a separable function. Each hyperparameter can be independently maximized. The hyperpa-
rameters α, β and τ can be straightforwardly optimized by Newton-Raphson algorithm like (Blei et al.,
2003). As we usually utilize fixed α and β, the focus now is to illustrate how to optimize the vectors in
M through maximizing

∑
d

∑
s∈d

∑
w∈s&iw=1 logP (vw|xw)whose corresponding NCE log-likelihood

is as follows:

∑
d

∑
s∈d

∑
u∈w∪NEG(w)

{
lcw
u · log[σ(xw · vu − log(

|NEG|
|V | ))]+

[1− lcw
u ] · log[1− σ(xw · vu − log(

|NEG|
|V | ))]

}
,

(9)

where σ(·) to denote the sigmoid function, |NEG| is the number of negative samples for each word and
|V | is the size of vocabulary. We use stochastic gradient descent to optimize the embedding, the update
formula for vu in Cw is as follows:

vu := vu + η
∑

u′∈w∪NEG(w)

[
lcw
u′ − σ(xw · vu′ − log(

|NEG|
|V | ))

]
· vu′ , (10)
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where NEG(w) stands for the negative samples of w. The update formula for the topic embedding vz

is as follows:

vz := vz + η
∑

u′∈w∪NEG(w)

[
lcw
u′ − σ(xw · vu′ − log(

|NEG|
|V | ))

]
· vu′ . (11)

4.3 Monte Carlo EM
Based on the above discussion, we now formally present the parameter inference of LTE in Algorithm 2.
After applying this algorithm, we obtain the quantities of interest such as Θ, Φ the topic embeddings
and the word embeddings. Note that LTE covers both the outputs of topic model and the output of word
embedding. Theoretically, it can be applied in any scenario where topic modeling or word embedding is
previously utilized. In the experiments, we will show that retaining both the outputs of topic model and
word embedding is critical for comprehensively capturing different kinds of latent semantics in text.

Algorithm 2: Monte Carlo EM

repeat
run Gibbs sampling according to Eq. (5)(6)(7) ;
optimize the corresponding parameters according to Eq. (10) and (11);

until a predefined number of iterations;

5 Experiments

In this section, we evaluate the performance of LTE. Unless otherwise stated, the experimental results
are obtained when the size of the embedding is set to 20 and the size of the sliding window is 5. Similar
insights are obtained when varying the two parameters and we skip them due to space limitation. In
Section 5.1, we present some topic examples. In Section 5.2, we show the result of perplexity evaluation.
In Section 5.3, we evaluate the the performance LTE through a task of topical word extraction.

Table 1: LTE Topic Examples (The number in brackets is the frequency of the word)
Multinomial Perspective Embedding Perspective

Topic1 Taiwan(2332), China(30904), issue(19080),
unity(2165), relationship(6052), princi-
ple(2256), Taiwan independence(20), peo-
ple(4172), mainland(1125), peace(699)

party(2), legislator(21), two states theory(1),
tamper(42), attentively(1), Frank Hsieh(2),
beautify(141), Taiwan independence(20), Tsai
Ing-wen(12)

Topic2 space(4507), satellite(244), technology(9673),
system(7348), country(10619), interna-
tional(5937), research(6571), data(3845),
utilize(4035), earth(1170)

battery(484), spacecraft(10), sun(1686), an-
tenna(156), circuit(259), airship(121), op-
tics(97), transducer(221), physics(120), satel-
lite(244)

Topic3 children(2950), woman(1053), violence(490),
committee(936), behavior(4218), family(3918),
society(10239), government(6141), measure
(1734), right(1565)

drugster(12), antenatal(35), cancer(676), di-
arrhea(310), teenager(617), girl(2160), sex-
ual abuse(4), patriarch(2431), nonage(63), Zhu
Lin(5)

Topic4 central government(1838), conference(2004),
work(18347) people(4172), the Commu-
nist Party of China(436), National People’s
Congress(408), member(3986), today(8322),
State Department(970), committee mem-
ber(493)

Hebei province(993), vice-governor(40),
Shenyang city(657), Public security bu-
reau(384), deputy mayor(118), deputy sec-
retary(106), deputy director general(191),
Hupei(585), accept bribes(125)

5.1 LTE Topics
An informal but important measure of the success of the proposed model is the plausibility of the discov-
ered search topics (Doyle and Elkan, 2009). Hence, we can qualitatively evaluate LTE through viewing
its latent topics. An import feature of LTE is that it discovers latent topics from two perspectives. The
first perspective is based on the Θ parameter, which corresponds to the Multinomial distributions over
the vocabulary. The second perspective is based on the topic embedding and word embedding, i.e., the
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Figure 1: Average Word Frequency of the Two Perspectives

words whose embeddings have the highest cosine similarity with the topic embedding can be considered
as the content of this topic. We utilize Web page dataset for the experiment. Some topic examples are
presented in Table 11. We observe that the words are semantically coherent in both of the two perspec-
tives. For example, Topic 1 is about political issues between mainland China and Taiwan, Topic 2 is
related to space technology, Topic 3 discusses the well-being of women and children and Topic 4 con-
tains words about the political system of China. For each topic, the words from the two perspectives are
semantically relevant and complimentary to each other.

An important insight is obtained from analyzing the frequencies of words in topics. The average word
frequencies of the two perspectives are presented in Figure 1. We can see that word frequency of the
second perspective is significantly smaller than that of the first perspective. For example, in Topic 1, the
average word frequency of the first perspective is 6880.5 while that of the second perspective is only 24.4.
This phenomenon shed light on an big advantage of LTE in text mining: bridging the semantic relevance
between words with different frequencies. LTE overcomes the inherent problem of topic models that the
topics are usually dominated by words of high frequency. By using the topic and word embeddings, we
can effectively discover the semantics of words of relatively low frequency.

5.2 Perplexity Evaluation

We proceed to quantitatively compare LTE with LDA and the state-of-the-arts (i.e., Topical Word Embed-
ding (TWE-1) (Liu et al., 2015) and Latent Feature-Dirichlet Multinomial Mixture (LFDMM) (Nguyen
et al., 2015) ) in terms of perplexity, which is a standard measure of evaluating the generalization perfor-
mance of a probabilistic model (Rosen-Zvi et al., 2004). A lower perplexity indicates better generaliza-
tion performance. A holdout dataset containing about ten thousand Web pages are utilized for perplexity
evaluation. The result of perplexity comparison is presented in Figure 2. Since TWE-1 reuses the result
of LDA, they have exactly the same performance in terms of perplexity. When varying the number of
topics from 10 to 100, LTE always achieves the lowest perplexity, showing that generative process of
LTE is a reasonable assumption for the data. An important observation is that LTE significantly outper-
forms LFDMM, showing that adding the sentence assumption and jointly utilizing word embedding and
topic embedding to generate words result in better fit for the latent data structure of natural language
documents. Perplexity is an indicator of the quality of the Multinomial topics. We observe that jointly

1The original Chinese words are translated into English to enhance readability.
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Figure 2: Perplexity on Holdout Data

training of multinomial topics and embeddings does not harm the quality of the Multinomial topics.
Rather, the joint training paradigm of LTE slightly improves the quality of the Multinomial topics. This
observation verifies our assumption that the collectively utilizing co-occurrence information of different
granularity has the potential of improving the performance of topic models.

5.3 Topical Word Extraction

We now evaluate the performance of LTE in the scenario of topical word extraction, which is critical
for natural language understanding in modern search engines. Given a document, the goal of topical
word extraction is to find some words that are highly relevant to the document theme. Conventionally,
LDA plays an important role in topical word extraction (Zhao et al., 2011)(Pasquier, 2010). The existing
methods based LDA are usually plagued by the weakness of capturing the semantics of words with low
frequency. In this section, we study whether the embeddings generated by LTE are able to alleviate this
problem. Ten thousands Web pages are utilized for this evaluation and the ground truth (i.e., the words
that are highly relevant to the document theme) is manually prepared by human experts.

To derive the topical words for a document d, we first calculate the score of each word w in d and the
score reflect the relevance between w and the themes of d. Then we sort all the words according to their
scores and select the top-k words as the topical words of d. For TWE-1, LFDMM and LTE, the score of
a word w is calculated based on embeddings by score(w) =

∑
z P (z|d) cos(vw, vz), where cos is the

cosine similarity between two embeddings. As for LDA, we rely on the multinomial topics and calculate
the score by score(w) =

∑
z P (z|d)P (w|z). We compare the performance of these models in terms of

F1 score, which is the harmonic mean of precision and recall.
The experimental result is shown in Figure 3. The models under-study tend to have higher F1 scores

when the number of topical words increases. We observe that LDA always demonstrates the worst
performance. The reason is that LDA is prone to select the frequent words and risks missing some words
highly relevant to the document theme. In contrast, embedding information is less sensitive to the effect
of word frequency. Therefore, TWE-1, LFDMM and LTE demonstrate better performance than LDA
when the number of topical words varies from 3 to 10. LTE always demonstrates the highest F1 score.
Comparing to TWE-1 and LFDMM which either reuse the output of LDA or Word2Vec, LTE jointly
trains the Multinomial parameters and the embeddings, which are complimentary to each other and is
effective to result in better topic modeling results and embeddings.
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(a) Topical Word Amount = 3 (b) Topical Word Amount = 5

(c) Topical Word Amount = 7 (d) Topical Word Amount = 10

Figure 3: Topical Word Extraction

6 Conclusion

In this paper, we propose LTE to seamlessly integrate topic model and word embedding into one joint
learning framework. We discuss a Monte Carlo EM algorithm for learning the parameter of LTE. LTE
does not only output topic-related distributions but also generates distributed representation for words and
latent topics. By applying LTE, we obtain coherent latent topics and the embedding generated by LTE
are effective for identifying topical words of documents. Extensive experiments verify our assumption
that topic modeling and word embedding are potentially complimentary for each other. While LTE is a
specific model for off-the-shelf usage, the technique discussed in this paper can be easily transfer to many
other scenarios where integrating other topic modeling and word embedding techniques are needed.

Acknowledgements

We would like to thank the anonymous reviewers for their insightful comments and suggestions. This
work is supported by National Basic Research Program of China (973 program No. 2014CB340505) .

References
David Bamman, Chris Dyer, and A. Noah Smith. 2014. Distributed representations of geographically situated

language. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 828–834. Association for Computational Linguistics.

2696
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