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Abstract

Estimating similarities at different levels of linguistic units, such as words, sub-phrases and
phrases, is helpful for measuring semantic similarity of an entire bilingual phrase. In this paper,
we propose a convolution-enhanced bilingual recursive neural network (ConvBRNN), which not
only exploits word alignments to guide the generation of phrase structures but also integrates
multiple-level information of the generated phrase structures into bilingual semantic modeling.
In order to accurately learn the semantic hierarchy of a bilingual phrase, we develop a recursive
neural network to constrain the learned bilingual phrase structures to be consistent with word
alignments. Upon the generated source and target phrase structures, we stack a convolutional
neural network to integrate vector representations of linguistic units on the structures into bilin-
gual phrase embeddings. After that, we fully incorporate information of different linguistic units
into a bilinear semantic similarity model. We introduce two max-margin losses to train the Con-
vBRNN model: one for the phrase structure inference and the other for the semantic similarity
model. Experiments on NIST Chinese-English translation tasks demonstrate the high quality of
the generated bilingual phrase structures with respect to word alignments and the effectiveness
of learned semantic similarities on machine translation.

1 Introduction

Recently, adapting deep neural networks to statistical machine translation (SMT) is of growing interest
due to their superior capacity against conventional lexical models in feature learning and representation
(Yang et al., 2013; Liu et al., 2013; Li et al., 2013; Devlin et al., 2014; Liu et al., 2014; Setiawan et al.,
2015). As phrases are the basic translation units in many SMT systems, one line of research among these
studies is to learn the semantic similarity of bilingual phrases for translation selection in SMT (Zhang et
al., 2014a; Gao et al., 2014; Cho et al., 2014; Su et al., 2015; Hu et al., 2015).

Typically, these bilingual semantic similarity models learn source and target phrase representations
with some bilingual constraints (Gao et al., 2014; Hu et al., 2015; Zhang et al., 2014a). In spite of their
success, they often suffer from two problems. Firstly, it is difficult for them to recover the semantic
hierarchy (binary tree structure) of a bilingual phrase. In this respect, Su et al. (2015) improve tree con-
struction by incorporating word alignments into their objective function. Unfortunately, they still employ
the recursive autoencoder (RAE) as the underlying model to build tree structures of phrases according
to the minimum reconstruction error. As a result, word alignments are not fully exploited for phrase
structure generation. Secondly, the previous bilingual semantic similarity models are incapable of lever-
aging representations at different levels of linguistic units, such as words, sub-phrases and phrases. They
usually represent a phrase (a sequence of words) with a single, fixed vector. However, as demonstrat-
ed in attention-based neural machine translation (Bahdanau et al., 2014), one vector is not semantically
sufficient to encode a sequence of words preserving representations at different levels of linguistic units
may be beneficial.
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To solve these problems, we propose a convolution enhanced bilingual recursive neural network (Con-
vBRNN), which exploits word alignments to guide the generation of phrase structures and then inte-
grates embeddings of different linguistic units on the phrase structures into bilingual semantic modeling.
Specifically, we develop a new recursive neural network, in which the composition criterion for tree
construction is the degree of consistency to word alignments rather than the reconstruction error. Fur-
thermore, we propose a variant of the tree-based convolutional neural network (Mou et al., 2015) to
fully access all embeddings on the phrase structures, which can be used to produce better phrase rep-
resentations (see Section 3.2). All these make ConvBRNN more suitable for the subsequent bilingual
semantic modeling, where a bilinear model is introduced to interact and compare the source and target
phrase representations in terms of the degree of semantic equivalence. To train our model, we introduce
two max-margin losses: one for the bilingual semantic structure inference and the other for the semantic
similarity model, both of which are derivable.

We conduct experiments on large-scale corpus to examine the effectiveness of ConvBRNN on bilin-
gual phrase structure learning and semantic similarity estimation. Experiment results on NIST MT06
and MT08 datasets show that our system achieves significant improvements over baseline methods. We
further analyze the generated bilingual phrase structures and semantic scores, both of which indicate that
ConvBRNN indeed learns information from word alignments that is beneficial for bilingual semantic
representations.

Our major contributions lie in the following three aspects:

• We develop a new recursive neural network with an alignment-based semantic composition metric
to generate word-alignment-consistent bilingual phrase structures.
• we develop a variant of tree-based convolutional neural model, which utilizes all embeddings on a

phrase structure rather than the embedding of the entire phrase to model bilingual semantics.
• We carry out a series of experiments and demonstrate that our model is superior to baselines in

terms of both the learned phrase structures and semantic similarities.

2 Related Work

A straightforward approach to learning bilingual phrase representations is to adapt monolingual phrase
models with bilingual supervisions. For example, Li et al. (2013) encode reordering orientations into
RAE-generated embeddings. To utilize the semantic equivalence constraint between source and target
phrases, Gao et al. (2014) use a feedforward neural network to model phrase embeddings and try to
maximize their semantic similarity, while Zhang et al. (2014a) introduce a bilingually-constrained RAE.
Furthermore, Hu et al. (2015) incorporate context information to disambiguate translation selection. Very
recently, neural machine translation trains a unified encoder-decoder (Sutskever et al., 2014; Bahdanau
et al., 2014) neural network for translation, where an encoder maps the input sentence into a fixed-length
vector, and a decoder generates a translation from the encoded vector.

Unlike the work mentioned above, our model mainly explore word alignments to guide the generation
of bilingual phrase structures. The most relevant work to ours is the model proposed by Su et al. (2015),
where they treat word alignments as a constraint to the RAE model. However, as discussed in Section 1,
the composition criterion in RAE (i.e. reconstruction errors) does not allow us to fully benefit from word
alignments. Therefore, we introduce a new composition criterion based on word alignment consistency.
The proposed recursive neural network works in a way similar to that in (Socher et al., 2011b) except
for our specific bilingual supervision. Zhang et al. (2014b) also propose a recursive neural network.
However, their model mainly focuses on the composition in machine translation process (namely, swap
or monotone), which is different from ours.

Additionally, our model also adapts convolutional neural network (Kalchbrenner et al., 2014; Kim,
2014) to extract semantic information encoded in phrase structures. Our model is related to the tree-
based convolution (Mou et al., 2015). The differences are 1) that we treat the whole tree structure as
the window for convolution; and 2) that the underlying phrase structure for a sentence is generated
automatically in our model, instead of taking from a given constituency or dependency tree. Besides,
the exploration of the semantic embeddings at different levels of granularity is firstly investigated in
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Figure 1: An illustration of the convolution-enhanced bilingual recursive neural network.
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Figure 2: An illustration of the proposed RecNN. We use a yellow/green circle to represent the prefer-
ence score of a node to be an SAC/non-SAC node.

(Socher et al., 2011a), where they compute an interaction matrix from which discriminative features are
dynamically extracted for paraphrase identification. He et al. (2015) and Yin et al. (2015b) further
extend this idea to convolutional neural network. Although our method is partially inspired by them, we
implement it in a completely different manner.

3 Convolution-Enhanced Bilingual Recursive Neural Network

This section elaborates the proposed ConvBRNN model, of which network structure is shown in Figure
1. We begin with the generation of phrase structures via a recursive neural network. We then elaborate
how to perform convolution upon the generated phrase structures. After that, we describe our bilingual
semantic similarity model. Finally, we provide a detailed illustration on the training of ConvBRNN.

3.1 Recursive Neural Network for Generating Phrase Structures

To generate phrase structures, the conventional RAE usually composes neighboring nodes based on
their reconstruction errors, which we argue are insufficient to model bilingual semantics. In SMT, one
important auxiliary for a bilingual phrase is its word alignments, which contain some useful guidance
signals for the bilingual structure construction, as discussed in Section 1. To make better use of these
signals, we introduce the following recursive neural network (RecNN).

As shown in Figure 2, the input to our RecNN is a list of ordered d-dimensional vectors x=(x1, x2, x3),
each of which can be retrieved from a word embedding matrix L ∈ Rd×|V | via its corresponding word
index. Here |V | is the size of the vocabulary. Given two neighboring children c1 and c2, we compose
them into a parent node n (For example, in Figure 2, if we set c1=x1 and c2=x2, then n=y1) and produce
its semantic vector pn through a non-linear transformation:

pn = f(W (rec)[c1; c2] + b(rec)) (1)

where [c1; c2]∈R2d is the concatenation of c1 and c2, W (rec)∈Rd×2d and b(rec)∈Rd is the parameter
matrix and bias term respectively, and f(·) is an element-wise activation function such as tanh(·), which
is used throughout our experiments. As discussed in Section 1, the previous RAE-style models (Zhang
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et al., 2014a; Su et al., 2015) adopt reconstruction error to measure how well pn represents its children
c1 and c2, which, however, is not a good solution to directly fully exploit word alignments for bilingual
semantic modeling. To fully exploit different levels of bilingual semantic constraints within phrase pairs,
we design a new semantic composition metric based on word alignments. As word alignments are shared
across the source and target language, they are suitable to act as a desirable bridge for modeling bilingual
semantics.

To achieve this goal, we first use the structural alignment consistency (SAC) (Su et al., 2015) that is the
basis of our model to classify resultant nodes of semantic compositions into two categories. Specifically,
if the node n covers a sub-phrase, and there exists a sub-phrase in the other language such that these two
sub-phrases are consistent with word alignments (Och and Ney, 2003), we say n satisfies the structural
alignment consistency, and it is referred to as an SAC node, otherwise, it is a non-SAC node.

Then, we introduce two functions Scorecon(n) and Scoreinc(n) to measure the preference strength
of node n to be an SAC or a non-SAC node, respectively

Scorecon(n) = W (sac)
con pn, Scoreinc(n) = W

(sac)
inc pn (2)

where W (sac)
con ∈R1×d and W

(sac)
inc ∈R1×d are parameter matrices. Furthermore, we calculate the final

semantic composition score of node n as follows

Scoresc(n) =
exp(Scorecon(n))
exp(Scoreinc(n))

(3)

Obviously, the larger Scorecon(n) is than Scoreinc(n), the larger Scoresc(n) should be.
We traverse each possible semantic composition of neighboring children and calculate its semantic

composition score, and finally select the composition with the largest score. This combination process
on neighboring children repeats at each node until the structure and embedding of the entire bilingual
phrase are generated. To obtain the optimal binary tree and phrase representation for x, we minimize the
following objective function formulated as follows:

Ealign(x) =
∑

n∈Tcon(x)

max{0, 1− Scorecon(n) + Scoreinc(n)}

+
∑

n∈Tinc(x)

max{0, 1− Scoreinc(n) + Scorecon(n)}
(4)

where Tcon(x) and Tinc(x) denote the SAC and non-SAC node sets in the binary tree of x, respectively.
It should be noted especially that we use different max-margin loss functions for different types of nodes.
On the one hand, we simultaneously maximize the Scorecon(∗) and minimize the Scoreinc(∗) of SAC
nodes. On the other hand, we take an opposite approach to deal with non-SAC nodes. In this way, the
node type (SAC/non-SAC) with word alignment information performs as a guidance signal to encourage
the generation of word-alignment-consistent phrase structures.

3.2 Convolutional Neural Network for Learning Phrase Representations

Given a generated phrase structure, a straightforward way to obtain phrase representation is to extract the
embedding of the root node of the phrase structure, as implemented in the conventional RAE. However, a
major limitation of this method is the neglect of lower-level linguistic units, e.g. words and sub-phrases.
To alleviate this problem, we stack a variant of tree-based convolutional neural network (TreeCNN) to
incorporate all the embeddings inside the phrase structure.

Upon the generated structure T (x) of an input phrase x, we first perform postorder traversal to extract
embeddings of all nodes, and then concatenate them column-wisely into a matrix M∈Rd×|n|, where |n|
is the number of nodes in T (x). Note that the node number varies with different phrases. In this way,
the representations at different levels are interlaced along the rows of M , which facilitates the upcoming
window-based convolution. To construct our TreeCNN, we take the matrix M as the input layer. Figure
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Figure 3: Illustration of the proposed TreeCNN with window size 3, pooling size 2 and filter number 2.
We use a light blue, orange and purple color to indicate the convolution, folding and pooling operation,
respectively. The nodes with dashed circles represent zero-padded embeddings for wide convolution.

3 shows the architecture of our TreeCNN, which consists of three different layers: convolution, folding
and k-max pooling.

Convolution Layer This layer iteratively convolves an h-sized sliding window on M , and uses a
filter F to summarize the information inside the window. Since the length of phrases in the translation
model is usually not long, we pad the matrix M with h-1 zero embeddings on both sides and adopt the
wide convolution (Kalchbrenner et al., 2014) (see the dashed circles in Figure 3). To discover semantic
information at a finer granularity, we further construct per-dimension filters F [r] (1 ≤ r ≤ d) (He et al.,
2015) to convolve the embeddings in the r-th row of M .

Formally, applying the per-dimension filter F [r] onM produces an output vectorC [r]∈R|n|+h−1 where
the i-th entry (1 ≤ i ≤ |n|+ h− 1) is computed as follows:

C
[r]
i = (WF [r])

TM
[r]
i:i+h−1 (5)

where WF [r] ∈ Rh is the parameter vector of F [r]. This procedure is illustrated in Figure 3 with a light
blue color. By applying all per-dimension filters to traverse all windows of matrix M , we can obtain a
feature map C ∈ Rd×(|n|+h−1). It encodes complex dependencies across different levels of linguistic
units and contains linguistic properties implied in each dimension, which, nevertheless, makes different
dimensions independent of each other. Next we will introduce a folding layer to exploit these dimensions
simultaneously.

Folding Layer This layer bridges the gap across different dimensions through averaging each nonover-
lapping neighboring rows in the convoluted feature map C. Specifically, for each row index r (1 ≤ r ≤
bd2c), the output can be computed as follows (shown in the orange color in Figure 3):

A[r] = (C [2r−1] + C [2r])/2 (6)

where A[r] ∈ R|n|+h−1 is the r-th row of A ∈ Rd
d
2
e×(|n|+h−1). Different from previous work, we allow

dimension size d to be odd. In this case, we simply append the last row of C onto A.
After the above operation, each element of A captures complex dependencies across both rows and

columns of M . To mingle these dependencies, we further perform a non-linear transformation following
Yin et al. (2015a):

U = f(A+ b[:]) (7)

where b ∈ Rd
d
2
e is the bias term that is shared across different columns, and the subscript [:] indicates a

column-wise broadcasting operation. It should be noted that the column dimension of U (i.e. |n|+h−1)
differs for different phrases. This raises a key problem: how can we transform the variable-length matrix
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U into a fixed-length vector. In order to deal with this problem, we further stack a K-max Pooling layer
(Kalchbrenner et al., 2014).

K-max Pooling Layer This layer extracts the top-k values over each row of U so as to: 1) preserve rich
semantic information of a sentence; and 2) eliminate the variance in the column dimension of U (shown
in the purple color in Figure 3). In doing so, we obtain a phrase vector representation with the dimension
size dd2e · k. Notice that k in this layer is predefined. Although we can use the dynamic version of k-max
pooling to stack more convolution, folding and pooling layers (Kalchbrenner et al., 2014), we do not
take this strategy due to the trade-off between performance and cost. Theoretically, more layers should
capture much deeper semantic information. We leave this for our future research.

So far we have described how we apply the wide convolution, folding layer and k-max pooling layer
onto an input phrase matrix to obtain a fixed-length phrase representation. Inspired by studies on convo-
lutional networks for object recognition, we introduce L filters to produce multiple feature maps, which
are used to capture semantics of input phrases. Finally, we concatenate the vector representations derived
from L filters to obtain the final phrase representation p ∈ Rd

d
2
e·k·L.

3.3 Bilingual Semantic Supervision
Through the above procedures, we obtain the semantic representations of bilingual phrase (f, e), denoted
by pf and pe. To measure the semantic similarity of f and e, we introduce two transformation matrixes

W
(sem)
f ∈Rdsem×(d ds

2
e·k·L) andW (sem)

e ∈Rdsem×(d dt
2
e·k·L) to project their semantic representations pf and

pe into a common semantic space:

p′f = f(W (sem)
f pf + b(sem)), p′e = f(W (sem)

e pe + b(sem)) (8)

where p′f and p′e are transformed representations of f and e, ds/dt is the dimension size of phrase repre-
sentation in the source/target semantic space, dsem is the that of the common semantic space. Although
we distinguish the transformation matrices for the source and target language, we share the same bias
term b(sem) for both languages. The advantage of this is that our model will learn to encode bilingual
semantics into these transformation matrices, rather than biases.

Then, we further stack a bilinear model over the transformed representations to compute the semantic
similarity score Sim(f, e):

Sim(f, e) = p′f
T
W

(sem)
bi p′e (9)

where W (sem)
bi ∈Rdsem×dsem is a squared matrix of parameters to be learned. Intuitively, each element in

W
(sem)
bi represents an interaction between p′f and p′e, which is used to capture the semantic correspon-

dence within f and e.
To make the semantic scores of translation equivalents as large as possible while scores of non-

translation pairs as small as possible, we introduce the following max-margin loss for (f, e):

Esem(f, e) = max{0, 1− Sim(f, e) + Sim(f, e−)}
+max{0, 1− Sim(f, e) + Sim(f−, e)} (10)

where f−/e− is a bad translation that replaces the words in f/e with randomly chosen source/target
language words.

3.4 Model Training
As described above, there are two types of errors involved for the phrase pair (f, e): (1) structural align-
ment error Ealign(f, e) that estimates how well the generated structures of f and e comply with word
alignments, and (2) semantic error Esem(f, e) that measures how well the learned phrase embeddings of
f and e are semantically equivalent.

Given a training corpus D = {(f, e)}, the final objective of ConvBRNN is formulated as follows:

JConvBRNN (θ) =
1
|D|

∑
(f,e)∈D

{αEalign(f, e) + (1− α)Esem(f, e)}+R(θ) (11)
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where Ealign(f, e) is the sum of Ealign(f) and Ealign(e), the hyper-parameter α is used to balance the
effects of Ealign(f, e) and Esem(f, e), and R(θ) is a regularization term.

Parameters θ are divided into four sets1: (1) θL: the word embedding matrix (Section 3.1); (2) θRT :
the structure parameters of RecNN (Section 3.1) and TreeCNN (Section 3.2); (3) θwa: the parameters for
structural alignment consistency (Section 3.1); (4) θsem: the parameters for semantic similarity (Section
3.3). Following previous work (Zhang et al., 2014a; Su et al., 2015), we assign each parameter set a
unique weight for regularization:

R(θ) =
λL

2
‖θL‖2 +

λRT

2
‖θRT ‖2 +

λwa

2
‖θwa‖2 +

λsem

2
‖θsem‖2 (12)

We apply L-BFGS to tune parameters based on gradients over the joint error, as implemented in
(Socher et al., 2011c). Word vector embeddings θL are initialized with the toolkit Word2Vec2 on a large
scale unlabeled data. Other parameters are randomly initialized according to a normal distribution (µ
= 0,σ = 0.01). With the trained model parameters, we can easily obtain the dense semantic vectors
for bilingual phrases. During translation, we incorporate the derived phrasal similarity feature into the
standard log-linear framework (Och and Ney, 2002) of SMT for translation selection.

4 Experiment

We conducted experiments on NIST Chinese-English translation task to validate the effectiveness of
ConvBRNN.

System Overview Our baseline decoder is a state-of-the-art phrase-based translation system equipped
with a maximum entropy based reordering model, which adopts three bracketing transduction grammar
rules (Wu, 1997; Xiong et al., 2006). We compared the proposed model with two models: (1) the
bilingual correspondence model (BCorrRAE) proposed by Su et al. (2015); (2) the proposed model
without the convolutional neural network (ConvBRNN-CNN), which simply treats the embedding of root
node of the phrase structure as the semantic representation of the whole phrase, instead of the convoluted
one. Other components of ConvBRNN-CNN are the same as those in the ConvBRNN model.

All translation systems used the log-linear framework. The adopted sub-models include: (1) rule
translation probabilities in two directions, (2) lexical weights in two directions, (3) targets-side word
number, (4) phrase number, (5) language model score, (6) the score of maximal entropy based reordering
model, (7) the semantic similarities of phrase pairs. We performed minimum error rate training to tune
the optimal feature weights on the development set (Och and Ney, 2003).

Experiment Setup Our training corpus contains 1.0M sentence pairs (25.2M Chinese words and 29M
English words) that are from the FBIS corpus and Handsards part of LDC2004T07 corpus. We ran
GIZA++3 on the training data in two directions and applied the “grow-diag-final-and” heuristic rule to
obtain word alignments. We trained a 5-gram language model on the Xinhua portion of the GIGAWORD
corpus using SRILM Toolkit4 with modified Kneser-Ney Smoothing. We chose the 2005 NIST MT
evaluation test data as the development set, and the 2006, 2008 NIST MT evaluation test data as the test
sets. We used case-insensitive BLEU-4 metric (Papineni et al., 2002) to evaluate translation quality, and
conducted paired bootstrap sampling (Koehn, 2004) for significance test.

Network Training To train ConvBRNN, we applied forced decoding (Wuebker et al., 2010) on the
training corpus to extract high-quality bilingual phrases for model training. We tuned the optimal hyper-
parameters via random search method (Bergstra and Bengio, 2012) to minimize the joint error on a small
portion of our training data. Finally, we set ds = dt = dsem = 50, h = 5, L = 10, k = 3, α = 0.116, λL =
2.14e−7, λRT = 2.43e−5, λwa = 7.33e−5 and λsem = 4.03e−6, the L-BFGS iteration number Niter=100.
To train BCorrRAE, we used the same training data and method for hyper-parameter optimization.

1Note that the source and target languages have different four sets of parameters.
2https://code.google.com/p/word2vec/
3http://www.statmt.org/moses/giza/GIZA++.html
4http://www.speech.sri.com/projects/srilm/download.html
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Method MT06 MT08 AVG
Baseline 29.66 21.52 25.59

BCorrRAE 30.94 23.33 27.14
ConvBRNN-CNN 31.16+ 23.39+ 27.28

ConvBRNN 31.48+∗ 23.89+∗ 27.69

Table 1: Experiment results on the MT 06/08 test sets, where we highlight the best result in bold. AVG
= average BLEU scores on test sets; “+”: significantly better than Baseline (p < 0.01); “∗”: significantly
better than BCorrRAE (p < 0.05);
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Figure 4: The ratio of SAC node specific to the length of covered source phrase. We limit the maximal
length of source and target phrase to be 7, and the results when length is 1 and 7 are not shown because
they are the same for both models.

4.1 Translation Results

The first experiment checks whether the learned bilingual semantic similarity is able to improve the
translation quality. Table 1 summarizes the detailed results. We can observe that our ConvBRNN model
significantly improves translation quality in terms of BLEU score on all test sets. Overall, ConvBRNN
obtains a gain of up to 2.1 BLEU points on average over the Baseline. Particularly, on the MT08 data
set, the improvements over the Baseline can be up to 2.37 BLEU points.

The integration of bilingual correspondence helps BCorrRAE gain 1.55 BLEU points on average over
the Baseline. With the recursive neural network for phrase structure generation, ConvBRNN-CNN per-
forms slightly better than BCorrRAE. By integrating the tree-based convolution network for phrase repre-
sentation learning, our ConvBRNN achieves further improvements over BCorrRAE, which is significant
at p<0.05. For this result, the reasons may be the following two points: 1) bilingual phrase structures
generated by ConvBRNN are more close to the actual semantic structures of phrases; 2) the ConvBRNN
model encodes different levels of linguistic units inside phrase structures into final phrase representation-
s. These two points are not adequately considered in BCorrRAE.

4.2 Result Analyses

In order to know how the ConvBRNN model improves the performance of the SMT system, we study
the bilingual phrases of our model from the following two respects:

First, we investigate the ability of our model in generating word-alignment-consistent bilingual phrase
structures. For this, we extracted phrase pairs from our translation model filtered by NIST test sets and
computed the percentage of SAC nodes (Section 3.1) specific to the length of covered source phrase.
Following the previous work (Su et al., 2015), we define this percentage as the ratio of the number of
SAC nodes to that of all nodes.

Figure 4 reports the ratio values. The ConvBRNN model consistently outperforms the BCorrRAE
model. Additionally, as the length grows, the ratio gap between two models becomes larger, with a
gain of up to absolute 6%. This indicates that word alignments are more efficiently exploited by our
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Source Phrase BCorrRAE ConvBRNN

wǒ rènwéi zhè zhǒng
((((i think) this) is) a) ((i think) ((this type) of ))
(((i think) that) was) ((i think) ((this kind) of ))

((i regard) this) ((i find) ((that kind) of ))

biǎoshı̀ qiángliè bùmǎn
(strong ((opposition against) the)) ((strongly (dissatisfied with)) the)

((((expressed strong) opposition) to) the) (((voice (my (strong opposition))) against) the)
(voice (my (strong (opposition against)))) ((express (strong dissatisfaction)) at)

jiānjué zhīchı́ zhèngfǔ
((resolutely (support the)) government) ((staunchly support) ((the Chinese) government))
((firm (supporter (of our))) government) ((resolutely support) (the government))

((staunchly (support (the Chinese))) government) ((firm supporter) (of (our government)))

Table 2: Semantically similar target phrases in the training set for example source phrases. The brackets
indicate the learned binary tree structure.

ConvBRNN model to generate word-alignment-consistent bilingual phrase structures.
Second, we study whether ConvBRNN can extract meaningful information for semantic similarity

from the learned phrase structures. We show some source phrases in Table 2 with their most semantically
similar translations learned by BCorrRAE and ConvBRNN in the training corpus. We find that both
models are able to distinguish semantic equivalents from non-translation pairs. However, in contrast
to BCorrRAE, ConvBRNN prefers diverse expressions. For example, “zhǒng” can be translated into
“type” or “kind”, and “bùmǎn” also has two candidate translations “opposition” and “dissatisfaction”.
Therefore, during translation, the decoder has many candidate translations for the same source phrase,
which we argue is one of the reasons for our success.

We also provide phrase structures in Table 2. We observe that the semantic compositions in BCor-
rRAE are relatively meaningless because they often do not respect the linguistic phenomena. For ex-
ample, BCorrRAE prefers branching structures in the same composition direction, such as “(voice (my
(strong (opposition against))))”. Besides, BCorrRAE is more likely to produce undesirable nodes cover-
ing high-frequency sub-phrases. For instance, the target phrase “firm supporter of our government” has
different structures learned by BCorrRAE and ConvBRNN: “((firm (supporter (of our))) governmen-
t))” (BCorrRAE) and “((firm supporter) (of (our government)))” (ConvBRNN). Obviously, the phrase
structure learned by ConvBRNN is more syntactically meaningful. This again demonstrates the advan-
tage of ConvBRAE over BCorrRAE in exploiting word alignments for learning better bilingual phrase
structures.

5 Conclusion and Future Work

In this paper, we have presented a convolution-enhanced bilingual recursive neural network to learn
bilingual semantic similarity. We first introduce a recursive neural network which directly exploits word
alignments to generate word-alignment-consistent bilingual phrase structures. Based on these structures,
we further employ a variant of tree-based convolutional neural network to produce bilingual phrase
embeddings by summarizing embeddings at different levels of lingual units. Experiment results and
analyses on machine translation demonstrate the effectiveness of our model.

In the future, we would like to explore more different selection functions in Eq. (3) for our model
due to its importance for the generation of bilingual phrase structures. Besides, as discussed in Section
3.2, we will further enhance the proposed model by trying more effective components, such as dynamic
version of k-max pooling, multi-layer convolutions.
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