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Abstract

Traditional machine translation systems often require heavy feature engineering and the combi-
nation of multiple techniques for solving different subproblems. In recent years, several end-
to-end learning architectures based on recurrent neural networks have been proposed. Unlike
traditional systems, Neural Machine Translation (NMT) systems learn the parameters of the
model and require only minimal preprocessing. Memory and time constraints allow to take
only a fixed number of words into account, which leads to the out-of-vocabulary (OOV) prob-
lem. In this work, we analyze why the OOV problem arises and why it is considered a serious
problem in German. We study the effectiveness of compound word splitters for alleviating the
OOV problem, resulting in a 2.5+ BLEU points improvement over a baseline on the WMT’14
German-to-English translation task. For English-to-German translation, we use target-side com-
pound splitting through a special syntax during training that allows the model to merge compound
words and gain 0.2 BLEU points.

1 Introduction

In the field of machine translation, traditional methods depend on a careful design of useful features
obtained by analyzing linguistic properties of the translation tasks. Inspired by recent success of meth-
ods that learn vector representation of words from large corpora in an unsupervised way, Devlin et al.
(2014) have shown that word representations learned by neural language models can be effectively used
as components in a complex translation system. By contrast, Neural Machine Translation (NMT) models
are end-to-end learning systems that tune model parameters so that the desired output sentence is gen-
erated for a given input sentence of arbitrary length with minimal processing steps such as tokenization.
Most of recently proposed NMT models are based on the encoder-decoder framework (Sutskever et al.,
2014; Cho et al., 2014), where a source sentence is mapped into a fixed-size vector that preserves both
the syntactic and semantic structure of the source sentence, from which a decoder starts with generating
a sequence of words in a target language. Bahdanau et al. (2015) extend the vanilla encoder-decoder
NMT framework by adding a small feed-forward neural network which learns which word in the source
sentence is relevant for predicting the next word in the target sequence. It has been shown that the
performance of such soft-attention NMTs stays consistent as the sequence length increases.

Although NMT models have been applied successfully to translation tasks, it is still challenging to
handle out-of-vocabulary (OOV) words because only a small number of words are considered to reduce
computational overhead. All words not in the vocabulary are assigned to a single special token, e.g.,
〈UNK〉 in our case. In order to address the OOV problem, Jean et al. (2015) further extend the model
of Bahdanau et al. (2015) with importance sampling so that it can hold a larger vocabulary without
increasing training complexity. Luong et al. (2015) address the OOV problem by looking up unknown
words in an automatically generated dictionary, and use an external word aligner to map words in the
target sequence to ones in the source sequence.

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/
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Regarding OOV words, a fundamental problem of NMT models that take words as inputs is that
having a larger vocabulary cannot be a solution for morphologically rich languages such as German and
Czech due to the proliferation of word forms resulting from the addition of affixes to word stems. This
means that even though we include millions of words in the vocabulary, quite a significant ratio of words
remains unknown tokens. We will discuss such properties of German in Section 3.

Therefore, instead of using words as only inputs and outputs, there have been several approaches which
take into account more fine-grained units such as characters. Based on the fact that rare words are often
composed of frequent words, Sennrich et al. (2016) build a vocabulary of subunits instead of words and
view a sentence as a sequence of subunits. Such a vocabulary typically includes meaningful linguistic
units, e.g., prefixes, suffixes and frequent stems, but it may also include less meaningful units because the
vocabulary building process solely relies on their frequencies. While learning directly from characters of
both source and target sentences is interesting since the OOV problem is not an issue anymore, it is more
difficult and time-consuming to train such models (Ling et al., 2015). As a compromise, (Luong and
Manning, 2016) propose a hybrid model that uses both words and characters. Similarly, (Chung et al.,
2016) suggest the use of a character-level decoder which takes words or subunits as inputs but outputs
character sequences.

According to the recent developments in NMT, it is highly likely that fine-grained units enable us
to get better neural translation models. In this paper we, hence, explore the problems that are typically
encountered by word-level neural translation systems, how we can avoid such problems and what remains
problematic. We will start with a brief explanation of the word-level NMT architecture proposed by
(Bahdanau et al., 2015) in the next section.

2 Background: Neural Machine Translation

Consider that we have a pair of a source sentence and its translation in the target language, e.g., (Wie
geht es dir?, How are you?) when translating German sentences to English. If a word is treated as an
atomic unit of translation, we can define both source and target sentences as a sequence of words such
that x = {xj}Tx

j=1 and y = {yi}Ty
i=1 where Tx is the number of words in the source sentence and Ty

is that of the target words. The goal of learning translation models can be expressed as maximizing
the joint probability p (y|x) of the target words y = {y1, · · · , yTy} conditioned on the source words
x = {x1, · · · , xTx}. We can factorize it into a product of conditional probabilities of a single target
word:

p (y|x) =
Ty∏
i=1

p (yi|y<i,x) (1)

where y<i = {y1, · · · , yi−1} denotes a set of words preceding a word at position i in the target sentence.
Each conditional p(yi|y<i,x) can be defined in a parameterized form by

p(yi = k|y<i,x) =
exp(sik)∑V

v=1 exp(siv)
(2)

where sik is a score for predicting the k-th word in the target vocabulary as a word at position i. Since in
most cases Tx and Ty are variable across sentence pairs as well as Tx 6= Ty in a single pair of sentences,
we use the encoder-decoder architecture, also known as sequence-to-sequence learning (Sutskever et
al., 2014; Cho et al., 2014; Bahdanau et al., 2015), where two RNNs are trained jointly to handle such
variable inputs and outputs. Using the encoder-decoder RNNs the score sik can be defined by sik =
f (yi−1,hi, ci). One RNN, the so-called encoder, computes the hidden state hj of a source word xj

given previous hidden state as hj = RNNenc(xj ,hj−1) where xj is vector representation of a word xj .
Similarly, we obtain a hidden state hi to be used for predicting yi using the other, so-called decoder
RNN as hi = RNNdec (yi−1,hi−1, ci) where ci =

∑Tx
j=1 αijhj s.t.

∑
j αij = 1 is a context vector,

which is a weighted sum of input hidden states. Moreover, we also learn the attention weights αij =
fatt

(
hi−1,hj

)
. The decoder’s initial hidden state h0 is initialized by the encoder, e.g., using the last
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POS/NE German English

Coverage Ratio Coverage Ratio

TRUNC 36.84% 0.12%
I-PER 37.03% 2.21% 41.69% 2.43%
I-ORG 51.67% 1.33% 76.70% 2.14%
I-LOC 63.17% 1.30% 76.18% 1.56%
ITJ/UH 66.67% 0.01% 70.00% 0.01%
NN 68.73% 20.50% 93.25% 14.75%
VVIZU 70.37% 0.17%
FM/FW 70.76% 0.27% 61.90% 0.03%
ADJ 78.99% 7.43% 90.49% 6.89%
VVFIN 86.08% 4.53%
VVPP 87.13% 2.29%
CARD/CD 87.62% 1.65% 92.01% 1.85%
VVINF 90.11% 1.80%

Table 1: Statistics of different tag sets.
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Figure 1: Coverage of the test set w.r.t. the size
of vocabulary.

hidden state hTx of the source sentence x while we can set the initial hidden state of the encoder h0 = 0.
For further details, see (Bahdanau et al., 2015).

Given a corpus of N training examples D = {(x(n),y(n)
)}Nn=1, we can iteratively update the model

parameters θ by using the gradient of the negative log-likelihood given by

∂

∂θ
L(θ; (x(n),y(n))) = −

T
(n)
y∑

i=1

∂

∂θ
sik − Ev∼V

[
∂

∂θ
exp(siv)

]
. (3)

As computational complexity of Equation (3) grows linearly in the size of the vocabulary V , it is often
the case that tens of thousands of the most frequent words are included in the vocabulary.

3 What is Behind the Out-of-Vocabulary Problem?

In the experimental results of (Jean et al., 2015), we can see that a larger vocabulary does not bring us
the performance improvement when the target language is German while English to French translation
benefits from the use of a larger vocabulary. This tells us that a larger vocabulary might not be an effective
solution to the OOV problem, at least, when we translate into German. To look into the reasons, let us
consider what type of words are treated as OOV words and how often such words appear in the corpus.
To be more precise, we collect the most frequent 30, 000 words from a large corpus, i.e., the training set
being used in our experiments. Then we calculate the following two scores for each of part of speech
(POS) and named entity (NE) tags with respect to OOV words as follows

coverage(tag) =
# of words with tag in vocabulary

# of words with tag
, ratio(tag) =

# of words with tag
# of words

.

For POS and NE tagging, we use the Stanford NLP suite1.
The results are summarized in Table 1, where we merge the different tagsets for German and English

into common tags to make them comparable. In particular, all different types of adjectives fall into
a single ADJ tag. The ratio refers to the frequency in the test set, e.g., 20.50% for NN means that
20.50% of the words in unseen data are nouns. As can be seen in the table, NEs in all forms, i.e., I-
PER, I-ORG and I-LOC, are poorly covered. This is intuitively obvious because a fixed-size vocabulary
cannot contain the names of all people, places, or organizations. NEs also appear frequently, i.e., 5%
of all unknown words are NEs. The coverage of numbers (CARD) is also suboptimal, with the English
vocabulary covering 92.01% while the German vocabulary covers only 87.62%. For numbers as well as
for NEs this may not be a problem per se because OOV words can be copied from the source sentence
using the alignment model.

1http://stanfordnlp.github.io/CoreNLP
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The biggest gap of coverage of a tag set between English and German can be seen for nouns (NN).
English features a coverage of 93.25% while German covers only 68.73%. The reason for this is most
likely due to an interesting property of the German language: compound words. In German, new words
can be created by concatenating two or more words.

Interestingly, it is hard to get 95% of German words covered by a vocabulary of even 1M words in
contrast to English. Figure 1 shows coverage of words in the test set as a function of vocabulary size.
Unless German compound words are split, coverage of German is lower than that of English by 3 ∼ 8%
depending on the vocabulary size. Splitting compound words enables to cover German words in the test
set as much as English ones as the vocabulary size increases.

4 Dealing with Compound Words

Compounds are words (more precisely, lexemes) consisting of more than one stem. Compounding is
found in many languages, including Dutch, Finnish, and German. To build a compound word, two or
more words are joined resulting in a longer word. For example, the German compound word Apfelkuchen
is produced by concatenating Apfel (apple) and Kuchen (pie). Yet in German, it needs to be explicitly
added to the vocabulary while its corresponding term, apple pie, is likely to be already included in the
vocabulary extracted from a large English corpus. As Germanic languages such as German have a high
number of compound words, we explore the methodology of compound splitting for German being both
on the source and target side, referred to as compound splitting and compound merging, respectively.

4.1 Compound Splitting
Compound splitters often employed in the literature generally fall into one of two categories (Fritzinger
and Fraser, 2010; Popović et al., 2006): corpus-driven and linguistic. The former is based on word
frequencies calculated on a training corpus, the best split being selected among the candidates. The latter
splits words through linguistic analysis e.g., by using a morphological analyzer. Hybrid approaches are
possible, and corpus-driven splitters found in practice often contain some additional rules instead of
relying solely on corpus statistics. Likewise, while it is possible to split words based solely on the output
of a morphological analyzer, a splitter may take word frequencies into account.

In this work, we consider the following two splitters:

1. The compound splitter developed by Weller and Heid (2012), herein referred to as IMS splitter, is
based on the corpus-driven approach by Koehn and Knight (2003). We compute a frequency list of
lemmatized words using TreeTagger (Schmid, 1994; Schmid, 1995) on the WMT14 training data as
well as a frequency list of words with respect to their POS tag.2 These two lists are used to improve
the performance of the IMS splitter. Different splitting possibilities are ranked by the geometric
mean of the frequencies (

∏n
i=1 freq(pi))

1
n where pi are the parts of the respective splittings and n

the number of parts. An exemplary output of this splitter can be found in Table 2, which shows
different ways to split a word along with the scores for this particular split.

2. Fritzinger and Fraser (2010) studied compound splitters in terms of their effectiveness in statistical
machine translation (SMT) systems and propose a hybrid approach that uses corpus statistics as
well as a morphological analyzer. Hence, we will refer to this splitter as hybrid splitter. Based on
split points provided by the morphological analyzer Smor, word frequencies from a large training
corpus are consulted. Smor is a finite-state based morphological analyzer concerned with the word
formation of German, i.e., inflection, derivation, and compounding. By employing a hybrid ap-
proach, only linguistically motivated splittings (provided by Smor) are performed according to the
frequency lists on the training corpus, hence reducing the number of incorrect splits. For example,
The word Durchschnittsauto (standard car) is split into Durchschnitt Auto instead of Durch Schnitt
Auto. The word Durchschnitt has a one-to-one relation with the English word average, but is itself
a compound word.

2We switched to TreeTagger from the Stanford Tagger because of its substantially faster processing speed.
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Table 2: Exemplary output of the IMS splitter.

Compound Split Compound Score

kühleinrichtung kühl ADJ einrichtung NN 869.3
kühlen V einrichtung NN 251.4
kühleinrichtung NN 6.0

gezeitenkraftwerk gezeiten NN kraft NN werk NN 984.9
gezeiten NN kraftwerk NN 324.44
gezeitenkraft NN werk NN 243.6
gezeitenkraftwerk NN 33.0

Another important aspect when talking about compound splitting is the concept of filler letters. When
a new word is formed through the use of compounding, sometimes filler letters are inserted between two
compounds. For German, these filler letters are usually s, en, n, er, and es. For example, the German word
Jahresverpflichtung is made from the words Jahr (year) and Verpflichtung (commitment), and between
these two words the infix es is inserted. The easiest way to deal with this issue is to maintain a list of
filler letters and a set of rules for testing whether a compound ends with one of them, in which case these
filler letters can be removed. Indeed, the IMS splitter uses exactly this type of rules to provide proper
splits. The hybrid splitter does not need an explicit definition of filler letters because this knowledge is
already encoded in the morphological analyzer Smor.

For the inverse task of translating from English to German, it is not so clear what filler letters should
be used because filler letters are needed for reconstructing a correct compound word from its individual
elements.

4.2 Compound Merging
When compounds occur on the target side it is necessary to join individual compound elements together.
We can deal with this problem by inserting special syntax into the training corpus that eases the process
of compound merging. For example, instead of encoding the word Autofahrer (car driver) as Auto and
Fahrer, we can encode it as Auto @@ Fahrer. By doing so, we hope the model will produce such
connection markers in the decoder, which can then easily be joined during postprocessing. This also
solves the problem of filler letters for German being on the target side, because filler letters can be
encoded using this special syntax as well. For instance, the word Kraftverkehrsverband is made of up
the words Kraft, Verkehr, and Verband and can be encoded as Kraft @@ Verkehr @s@ Verband.

This process has also been proposed by (Williams et al., 2015) using the hybrid splitter by (Fritzinger
and Fraser, 2010). We argue that this special syntax can also be produced by a much simpler corpus-
driven splitter such as the IMS splitter. Hence, we modified the IMS splitter to output these filler letters
between compound words. This modification applies to all compound splitters simply by comparing the
splitter’s output with its input and extracting filler letters using a regular expression.

5 Experimental Setup

This section describes the foundations of our experiments. In particular, we address preprocessing, which
is an important part of the machine learning pipeline, and the setup of our NMT training.

5.1 Dataset & Preprocessing
Our models were trained on the data provided by the 2014 Workshop on Machine Translation (WMT).
Specifically, we used the Europarl v7, Common Crawl, and News Commentary corpora. Our develop-
ment set corresponds to the data in the newstest2013 files while the test set is given by newstest2014.3

We use Moses’ tokenizer4 and filter out noisy sentences, written in a different language, using a language
detection tool.5

3We use cleaned test sets.
4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

tokenizer.perl
5https://github.com/shuyo/language-detection
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Since some of the German sentences in the training set were made available before the German or-
thography reform of 1996, we converted such words to conform to the new spelling rules. For instance,
the following rules were used: (muß −→ muss), (Phantasie −→ Fantasie), (Bestelliste −→ Bestellliste),
(essentiell −→ essenziell) and (geschrieen −→ geschrien). Note that this spelling conversion does not
affect the development and test sets because no occurrences of words written in the old style were present.

5.2 Training Details

Our NMT implementation is based on the neural network framework Blocks6 (van Merriënboer et al.,
2015). While it may be advisable to try different hyperparameters, an elaborate tuning of the RNNs was
not practical given that it took about one week to train a single hyperparameter configuration for machine
translation on the WMT data set on our hardware. Therefore, we chose the same set of hyperparameters
as in (Bahdanau et al., 2015) except for the size of the vocabularies. To be more specific, we set the
dimensionality of word vectors to 640, the number of hidden units in GRU-RNN to 1, 000, the maximum
sequence length during training to 50, the mini-batch size to 80, and the number of words in both source
and target vocabularies to 30, 000. We did not use weight noise regularization or dropout. We also
randomly shuffled the training data using a constant seed for all our experiments so that different models
are trained on the same order of the data set.

We trained our models on a NVIDIA Tesla K20 and Titan Black GPU. Since our data set contains
nearly 4 million instances, a single epoch corresponds to around 48, 000 iterations. Depending on the
model, the best score on the development set was usually achieved at around 400, 000 to 500, 000 itera-
tions, or 8 to 10 epochs, or 5 to 7 days. At every checkpoint, 15, 000 iterations in our experiments, we
computed the bilingual evaluation understudy (BLEU) score (Papineni et al., 2002), the Metric for Eval-
uation of Translation with Explicit ORdering (METEOR) (Banerjee and Lavie, 2005) and the translation
error rate (TER) (Snover et al., 2006) to monitor the progress of the model on the development set.

6 Experiments

In this section, we present the results for the experiments we conducted with the setup explained in the
previous sections. We will first show that German to English translation works considerably better than
English to German (Section 6.1), and then try to analyze this observation in more depth (Section 6.2).

6.1 Effect of Compound Splitting and Joining

Table 3 shows the performance of three models on the test set for both translation directions. All our
models produce cased outputs. Nonetheless, BLEU scores are given for evaluation performed before and
after lowercasing predictions and reference sets.

For English to German, both compound splitters contribute to the improvements of NMT models
across all measures except for TER although the gap of the performance between the models is negligi-
ble. However, for German to English translation, we can observe huge gains by using the corpus-based
compound words splitting method, outperforming the baseline by 2.7 BLEUuncased, 3.3 METEOR, and
−0.6 TER. While the use of compound splitters enables to achieve significant performance improve-
ment in terms of BLEU and METEOR, only marginal improvement was observed in TER. This implies
that splitting German compound words results in more number of correct n-grams in English whereas
it has no significant impact on word ordering. See more details of three metrics in (Birch and Osborne,
2011). Note that German word order can differ from that of English due to separated verb prefixes and
long-range movement of verbs in German.

When inspecting the output of both splitters, we noticed that the hybrid/linguistic splitter is more likely
to produce a correct splitting. However, the corpus-based splitter provides better results for NMT. This
contradiction has also been observed by (Fritzinger and Fraser, 2010) for phrase-based SMT. Corpus-
driven methods tend to split more aggressively. For instance, consider the word überall which may get
split into über and all by the corpus-driven approach due to these two words appearing very frequently.
Conversely, the linguistic splitter is unlikely to split this word.

6https://github.com/mila-udem/blocks
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Table 3: Results of compound split for German words using either a corpus-based splitter or hybrid
corpus-based/linguistic-motivated one. Scores in subscripts are on the development set.

Translation Direction Model ↑ BLEUuncased ↑ BLEUcased ↑ METEORuncased ↓ TERuncased

English → German Baseline 19.2119.6 18.7919.11 39.4039.00 63.4061.70

Hybrid Split 19.3419.58 18.9519.10 39.9039.10 63.7062.20

Corpus-based Split 19.4120.22 18.9919.78 40.3039.80 64.4062.10

German → English Baseline 21.7223.30 20.9122.36 26.5027.90 58.8058.70

Hybrid Split 22.3023.55 21.3722.50 27.3028.40 60.0059.30

Corpus-based Split 24.4224.89 23.4123.75 29.8030.30 58.2057.80
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Figure 2: Performance of NMT models handling compound words differently on the development set.

The explanation for a translation system performing better with aggressive splits could be that the
system can recover from words that are split too much. This is especially applicable to NMT, where
the problem of OOV words leads to many compound words not found in the vocabulary. Hence, the
performance hit by unsplit words that may lead to OOV words is larger than the performance hit produced
by overaggressive splitting.

We believe that the reason why compound splitting works much better for English than for German is
that the vocabulary coverage for English is well above the coverage of German. As noted in Section 3, we
found that only 68.73% German nouns are covered when encoding a text corpus using a fixed vocabulary
of size 30, 000, whereas English nouns are covered at a ratio of 93.25%. This motivated our experiment
that contains a compound splitter. Before we started training a NMT model with compound split data,
we first explored the effects of compound splitting in terms of word coverage on the test data. For this
analysis, we used the IMS splitter. Our results, which can be seen in Figure 1, confirm that word coverage
for German dramatically increases when compound splitting is applied. Another possible reason is that
if a compound word at the source side is split into multiple words, the NMT model described in Section 2
is able to learn alignments between English words and multiple subwords of the compound word. We
think that this is also related to why the frequency-based vocabulary construction method improves the
performance of NMT models (Sennrich et al., 2016).
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6.2 Difficulties When Translating into German

When German is on the target side, the model successfully produces the special syntax we used that
allows us to concatenate compound words as a postprocessing step (cf. Section 4.2). A translation pro-
duced by this model looks as follows:

Source Sentence The darker the meat, the higher the pH value.
Reference Sentence Je dunkler das Fleisch, desto höher der ph-Wert.

Baseline Model Je dunkler das Fleisch, desto höher der pH.
Split/Join Model Je dunkler das Fleisch, desto höher der pH @-@ Wert.

Split/Join Model (merged) Je dunkler das Fleisch, desto höher der pH-Wert.

The translation produced by the model for the phrase pH value is pH @-@ Wert and can be concate-
nated by the use of a regular expression. This seems to work even with longer compound words, as
shown by the following example:

Source Sentence A total of four road safety inspections were carried out.
Reference Sentence Insgesamt seien vier Verkehrsschauen durchgefhrt worden.

Baseline Model Insgesamt wurden vier 〈UNK〉 durchgefhrt.
Split/Join Model Es wurden insgesamt vier Straße @n@ Verkehr @s@ Inspektionen durchgefhrt.

Split/Join Model (merged) Es wurden insgesamt vier Straßenverkehrsinspektionen durchgefhrt.

In this case, the baseline model fails to translate the phrase altogether resulting in an unknown word.
For readers not familiar with German, all sentences are correct translations for the source sentence when
we disregard the unknown word, i.e., the baseline model and the split model differ in structure, but both
are correct, and the split join model is more precisely in translating the word for road safety inspection.

Another interesting observation is that the performance in terms of BLEU fluctuates wildly as split-
ting is applied. We compared the translation output between iterations showing favorable performance
and iterations with a lower BLEU score. We found that sentences were often restructured causing the
performance to drop. An example of this restructuring may look as follows:

Source Sentence However, the new rules put in place will undoubtedly make it more difficult to exercise the
right to vote in 2012 .

Reference Sentence Allerdings werden die neu eingeführten Regeln im Jahr 2012 zweifellos die Ausübung des
Wahlrechts erschweren .

Split/Join Model,
Iteration 450000

Mit den neuen Regeln wird es zweifellos schwieriger sein, das Wahlrecht im Jahr 2012
auszuüben .

Split/Join Model,
Iteration 465000

Die neuen Regeln werden jedoch zweifellos die Ausübung des Wahlrechts für 2012 er-
schweren .

The system output at iteration 450, 000 in this example receives 35.29 BLEU points, whereas the
output at iteration 465, 000 receives 71.43 BLEU points. This discrepancy can be explained with the fact
that BLEU as an evaluation measure favors sentences with more n-gram matches. The model’s output
at iteration 450, 000 receives a 4-gram match for the phrase zweifellos die Ausübung des Wahlrechts
erschweren, whereas the other model’s output does not. Please do note that both outputs are perfect
translations of the source sentence and would be evaluated similarly by a human evaluator.

7 Conclusion

In this work, we presented why word-level NMT models have trouble with OOV words and explained
why such problems arise. Based on the analysis about the OOV problem, we obtained substantial im-
provements of 2.7 BLEU points for German to English translations by splitting German compound words
on the source side. We also applied compound splitting when German was on the target side by modi-
fying the compound splitter’s output to contain special syntax that can later be used to create compound
words from their individual components. While we obtained only a modest improvement of 0.2 BLEU,
our proposed method is able to merge German words on the target side, allowing us to generate correct
target sentences.
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