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Abstract

Video event detection is a challenging problem in information and multimedia retrieval. Differ-
ent from single action detection, event detection requires a richer level of semantic information
from video. In order to overcome this challenge, existing solutions often represent videos using
high level features such as concepts. However, concept-based representation can be confusing
because it does not encode the relationship between concepts. This issue can be addressed by
exploiting the co-occurrences of the concepts, however, it often leads to a very huge number of
possible combinations. In this paper, we propose a new approach to obtain the relationship be-
tween concepts by exploiting the syntactic dependencies between words in the image captions.
The main advantage of this approach is that it significantly reduces the number of informative
combinations between concepts. We conduct extensive experiments to analyze the effectiveness
of using the new dependency representation for event detection on two large-scale TRECVID
Multimedia Event Detection 2013 and 2014 datasets. Experimental results show that i) Depen-
dency features are more discriminative than concept-based features. ii) Dependency features can
be combined with our current event detection system to further improve the performance. For
instance, the relative improvement can be as far as 8.6% on the MEDTEST14 10Ex setting.

1 Introduction

Detecting event from videos has been an important research topic due to the explosion of internet videos.
In order to build a reliable event detection system, one must rely on the video content rather than sim-
ply using textual metadata (Davidson et al., 2010). However, internet videos are often captured under
arbitrary conditions, which makes the large content variation among videos of the same event. To handle
this problem, we can represent videos using multimodal features such as Dense trajectories (Wang and
Schmid, 2013), SIFT (Lowe, 2004), and audio MFCC (Lee et al., 1988). Another approach to tackle this
problem is to represent videos using the concept-based representation, i.e., video is represented by the
concept detection scores indicating the presence of the concepts. This approach is particularly helpful
when the number of training videos are scarce (Chen et al., 2014; Habibian et al., 2014b; Habibian et al.,
2013; Ma et al., 2013; Ye et al., 2015). Some other works further select a subset of informative concepts
for event detection (Jiang et al., 2015; Mazloom et al., 2013).

Nevertheless, the concept-based representation has two drawbacks i) It is non-trivial to obtain a large
concept vocabulary. That is why people often combine concepts from multiple vocabularies to construct
a larger one, in the hope to cover a wide range of concepts in real world videos (Yu et al., 2014). ii) The
relationship between concepts, e.g., co-occurrence, are not captured. However, these relationships can
convey a richer level of semantic information which can not be found from encoding individual concepts.
Figure 1 illustrates the benefit of exploiting these relationships for event detection.

One can obtain the relationships between concepts by harvesting the social-tagged images (Li et al.,
2012), however, tag information is often far from the actual content of the image. Visual phrases (Sadeghi
and Farhadi, 2011) models a person and an interacting object through the use of a composite template.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: An illustrative example of limitation when using concept-based representation for video. In
both videos, “man”, “tree”, and “standing” can be detected. However, if the dependency (man, standing)
is also detected, it is more likely a “flash mob gathering”. On the other hand, if (tree, standing) is
detected, it is probably a “Felling a tree” event.

This approach might not be applicable to real world application because there are only 17 visual phrases
being used and they are manually selected. Singh et al. (Singh et al., 2015) select relevant concept pairs
for event detection by discovering from the event text query. Habibian et al. (Habibian et al., 2014a)
also utilize the event query to discover the co-existence or exclusive existence relationships for zero-shot
event detection. Assari et al. (Assari et al., 2014) and Can et al. (Can and Manmatha, 2014) model the
concept co-occurrences or dependencies based on the joint distributions of two concepts, which relies on
the concept detection scores. Borth et al. (Borth et al., 2013) have exploited some syntactic dependencies,
such as the combination of adjectives and nouns, for training a sentiment analysis model.

The main drawback of the existing works is that the concept relationships are either manually defined
or learned from the concept-based representation, which may face the effect of cumulative error. We
address the former issue by exploiting more relationships between concepts such as syntactic dependency
relations like subject and object. Such kind of syntactic relationships can also automatically eliminate
irrelevant combinations between words or concepts. Typically, we propose a new approach to obtain
the relationship between concepts by extracting the word dependencies from the image captions using
standard natural language processing technologies. We then train a dependency model directly from the
captioned images and use these dependencies as features for event detection.

What differentiates our approach from the previous works is that we explore a comprehensive set
of relationship between concepts that is based on the syntactic dependencies. The immediate benefit
of our approach is that we can easily obtain a large and informative dependency vocabulary from a
much smaller concept vocabulary. In short, the contributions of this paper are twofold: i) A pilot study to
exploit word dependencies as features for video event detection. These dependencies encode not only the
co-occurrences but also various types of co-occurrences between concepts. ii) We report comprehensive
experiments to demonstrate the benefit of the new dependency-based representation.

2 Word Dependency

The central idea in the present paper is to exploit word dependencies as features for event detection.
Therefore, the development of the model to predict dependencies for a given video is a key issue. In the
following section, we describe a method for obtaining training data for dependency prediction, and our
model for dependency prediction.
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A person wearing a helmet is riding a motorcycle.
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Figure 2: Example of word dependencies. Solid arrows show dependencies included in our vocabulary,
while dotted arrows indicate dependencies excluded.
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Figure 3: Top 30 frequent concepts and dependencies extracted from the MSCOCO captions.

2.1 Dependency Extraction

Dependency tree represents relationships among words in a sentence, such as subject-verb and verb-
object relations. Figure 2 shows an image, its caption, and the dependency tree of the caption obtained
by applying Stanford Parser (Manning et al., 2014). For example, an arrow from “riding” to “person”
is labeled with “nsubj”, which means “person” is a nominal subject of “riding”.1 Dependency trees can
represent more precise semantic information than a bag of concepts. In this example, the dependecy
tree indicates that “person” is the subject of “riding”, not the object. This distinction is crucial in event
detection as exemplified in Figure 1.

Dependency tree is defined as a set of dependencies, each of which is a triple (label, head, dependent),
where label is a dependency label (e.g. “nsubj”), head is a source word of the dependency (e.g. “riding”),
and dependent is the other side of the dependency (e.g. “person”).

As dependencies consist of pair of words, the simplest way to construct a vocabulary of dependecies
is to enumerate all pairs of words. However, this is obviously infeasible. When we have n words
and k dependency labels, the total number of dependencies is kn2. As in the typical situation where
n = 20, 000 and k = 40, we need to consider 16 billion dependencies.

In fact, most of the dependencies are not useful for event detection. One reason is that dependencies
that appear in real text are very sparse; i.e., most of the triples do not appear. For example, the dependency
(“dobj”, “wear”, “motorcycle”), which means something is wearing a motorcycle, is unlikely to appear
in real text, because it does not make sense. The distribution of dependencies is highly skewed, and it is
not clever to consider all combinations of words and dependency labels. Another reason is that several
types of dependencies represent only grammatical relations, and do not convey semantic information.

1Dependency labels are defined in the guideline of Universal Dependencies. For details, see:
http://universaldependencies.org/.
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Table 1: Comparison of our model prediction with human evaluation on the COCO validation dataset.

Mean AP Model prediction Human evaluation
Concept 0.4347 0.4410
Dependency 0.1282 0.2033

For example, the dependency (“aux”, “riding”, “is”) describes that “is” is an auxiliary verb of “riding”,
but this dependency is purely grammatical and does not include any semantic information.

These observations lead us to the idea that we extract a vocabulary of semantically informative de-
pendencies from real texts by excluding unnecessary dependencies. Our solution here is to process
dependencies obtained by dependency parsing in the following manner.

1. Apply a dependency parser to caption texts and obtain dependency trees.

2. Remove function words, such as determiners and punctuations, and select top n frequent words as
a concept vocabulary.

3. Select dependencies in which both words are included in the concept vocabulary.

4. Cluster dependency labels that have similar relations.

Because our dependencies are extracted from real texts, our vocabulary of dependencies does not include
semantically meaningless dependencies. Step 2 and 3 further exclude purely grammatical dependencies
and less frequent dependencies. Step 4 is intended to further reduce semantically subtle distinctions.
For example, two labels, “nsubj” and “csubj”, are defined to represent subject relations, but their dis-
tinction (nominal vs. clausal) is not particularly important for our purpose. Therefore, we collapse such
semantically similar dependency labels to get a reduced number of dependency types.

In Figure 2, solid arrows show dependencies included in our vocabulary, while dotted arrows indicate
dependencies excluded. This example demonstrates that our method selects dependencies that capture
semantic information of original texts while excluding less informative dependencies.

2.2 Dependency Modeling
Images and caption texts for the development of the dependency prediction model are obtained from the
training set of Microsoft COCO (Lin et al., 2014), which contains 82,783 images and 414,113 captions
constructed by crowdsourcing. Stanford CoreNLP 2015-04-20 is used for dependency parsing. We
selected n = 1, 000 concepts, which covers 89.4% of words (excluding function words) in the caption
texts of the training data. Using this concept vocabulary, the method described in Section 2 extracted
20,931 dependencies that have more than 10 occurrences in the training data, which cover 63.3% of all
the dependencies in the original caption texts. Top 30 frequent concepts and dependencies extracted from
the training captions are shown in Fig. 3.

We consider the problem of predicting dependencies as a multi-label classification task because mul-
tiple dependencies can present in one image. To train the dependency model, we finetune a deep neural
network on the COCO images from the VGG (16 layers) network (Simonyan and Zisserman, 2014). We
add a cross-entropy loss layer on top of a sigmoid layer to account for the loss function. The entire
network is trained using the Stochastic Gradient Descent (SGD) optimizer.

We compare the model predictions with the human performance to evaluate the effectiveness of our
concept and dependency models. In order to measure the human accuracy, we use concepts/dependencies
of one gold caption as the predicted labels, and use concepts/dependencies from the remaining captions
of the same image as gold labels. If an image has multiple captions, we repeat this procedure so that
every caption is used as the prediction, and report the average performance.

The detailed comparison of our model prediction with human performance is shown in Table 1. We
found that our concept prediction model has comparable performance with agreement among human-
annotated captions, while our dependency prediction is inferior to the human performance. The low
agreement between annotators on the dependency evaluation also demonstrates the inherent challenge of
dependency modeling.
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Figure 4: Overview of our event detection framework.

3 Event Detection Framework

In this section, we present a common event detection system, which consists of four main components:
feature extraction, feature encoding, feature classification, and feature fusion (Fig. 4).

3.1 Feature extraction
Our framework supports a large variety of features including low-level and high-level features. Low-level
features such as audio MFCC and Dense trajectories (Wang and Schmid, 2013) can be extracted from
temporal windows spanning of several frames, while still image features such as SIFT (Lowe, 2004)
is extracted from sampled frames of video. These raw low-level features require a special encoding
technique to generate video-level representation, which will be described in Section 3.2.

We also extract high-level features such as visual concept features extracted from deep visual models.
For example, our framework supports state-of-the-art deep learning features which are extracted from
pre-trained deep models (Simonyan and Zisserman, 2014). These models are trained on large image
collection such as ImageNet (Deng et al., 2009). Using these models, we can extract concept scores for
each sampled frame and aggregate them into the final representation for each video. One can also utilize
features from the previous fully-connected layers, such as fc6 and fc7, to train the event detectors
because they often retain richer information than the last full-connected layer.

Our concept and dependency features can be also considered as high-level features. However, differ-
ent from the aforementioned high-level features that are extracted from pre-trained visual models, our
concept and dependency features are extracted from our concept and dependency models respectively.

3.2 Feature encoding
We use Fisher Vector encoding to map local descriptors extracted from low-level features into the video-
level representation. The Fisher vector (FV) has been successfully employed for various image and action
classification problems (Perronnin and Dance, 2007; Wang and Schmid, 2013). It can be considered as
an extension of Bag-of-Words (BoW) encoding where both first- and second-order statistics between the
local descriptors and their assigned codewords are also encoded. Therefore, Fisher vector can achieve
comparable performance to that of BoW while using a much smaller codebook.

In our experiment, we first randomly selected one million local descriptors for training a Gaussian
mixture model (GMM), which is later used as the codebook for encoding. As suggested in (Perronnin et
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Figure 5: Results of event detection performance with respect to various vocabulary sizes.

al., 2010), it is better to reduce the local feature dimension by using principal component analysis (PCA)
and apply power normalization, e.g., with α = 0.5, followed by L2-normalization to the Fisher vector.

3.3 Feature classification
We use LibSVM (Chang and Lin, 2011) for training event detectors. The pre-computed kernel technique
is utilized to reduce the training time. This technique is especially useful when the number of events are
large. For low-level features, which are encoded using Fisher vector encoding, we use linear SVM for
training and testing. For high-level features, since its feature dimension is rather small, we employ the
χ2 kernel SVM to obtain a better recognizing performance.

3.4 Feature fusion
Different features cover various characteristics of multimedia data. Hence it is natural to combine these
features to get the benefit from multi-modal features. For the sake of simplicity, we use the average late
fusion strategy for feature combination.

4 Experiments

We conduct experiments on the TRECVID Multimedia Event Detection (MED) 2013 and 2014 bench-
marks under the 10Ex and 100Ex settings, in which only 10 and 100 training videos are given for each
event respectively (Over et al., 2014). Dependency features are extracted from the final layer (fc8) of the
dependency network presented in Section 2.2 for each sampled frame in video (1 frame every 4 seconds)
and then aggregated to form the video representation. We employ LibSVM (Chang and Lin, 2011) with
the exponential-χ2 kernel for event training and testing. All the results are reported in terms of mean
average precision (mean AP).

4.1 How many dependencies?
We first study how different number of dependencies affect to the event detection performance. We
found that selecting the most frequent dependencies contributes more than randomly selecting the same
number of dependencies. Following this observation, we only consider the top frequent dependencies,
and report the results in Fig. 5. Small vocabulary sizes often result in a poor outcome. When increasing
the vocabulary size, the performance also increases rapidly. The highest performance can be obtained
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Figure 6: Performance comparison of dependency features with other methods on the MEDTEST13
10Ex setting. Performance of each event is reported in each group, the last group shows the average
performance over all events. MED Concepts refers to concepts obtained from video annotations (Habib-
ian et al., 2013), and Informative Concepts refers to selected concepts in (Mazloom et al., 2013). The
mean average precisions from left to right are 0.1350 (MED Concepts), 0.1470 (Informative Concepts),
0.1476 (ImageNet Concepts), 0.1310 (COCO Concepts), 0.1466 (1000 Dependencies) and 0.1515 (5000
Dependencies).

by using around thousands of dependencies. However, if more than ten thousands of dependencies are
added to the vocabulary, the performance tends to slightly drop. The reason is that at this point, the
dependencies become much less frequent, so their detectors might become less reliable as well.

4.2 Comparison with other methods
Figure 6 shows the performance of our dependency features on the MEDTEST13 10Ex. We include the
reported results on the same setting in (Habibian et al., 2013) and (Mazloom et al., 2013) for comparison.
The performance of ImageNet concepts (Deng et al., 2009) are produced using the same network that was
used to fine-tune our dependency model (Simonyan and Zisserman, 2014). We also select 1,000 COCO
concepts as described in Section 2 and report its performance. The best dependency run can outperform
the COCO concept run with a relative improvement of 15.6%. Our dependency features only achieve a
marginal improvement over the ImageNet baseline. However, this result is already encouraging because
our dependency model was trained with around 80K labeled images, compared to about one million
labeled images of the ImageNet model.

4.3 Contribution to our MED system
Finally, we conduct experiments to demonstrate the contributions of our dependency feature to our event
detection system. State-of-the-art event detection systems (Yu et al., 2014; Yu et al., 2015) often em-
ploy features from multiple modalities such as audio and visual features. Following this strategy, we
implemented a number of features in our system including audio MFCC (Lee et al., 1988), SIFT (Lowe,
2004), and Dense trajectories (Wang and Schmid, 2013). In light of the success of deep learning, we
also use features extracted from (Simonyan and Zisserman, 2014), which is a pre-trained network on Im-
ageNet (Deng et al., 2009). We also include the reported performance of recent state-of-the art systems
in (Yu et al., 2014) and (Yu et al., 2015) for comparison.

Table 2 compares performance of all aforementioned features. Our (5,000-dimensional) dependency
feature outperforms ImageNet concepts in all settings, while still inferior to the performance of the
Dense trajectories features (Wang and Schmid, 2013). When combining our existing system with the
new dependency feature, we achieve a relative improvement of 6.8% and 8.6% on the MEDTEST13
10Ex and MEDTEST14 10Ex settings respectively. We report lower results than the ones reported in (Yu
et al., 2014; Yu et al., 2015). The reason can be due to the fact that they included more concept features
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Table 2: Contribution of the new dependency features to our event detection system.

MEDTEST13 MEDTEST14
10Ex 100Ex 10Ex 100Ex

MFCC (Lee et al., 1988) 0.0440 0.1010 0.0449 0.0776
SIFT (Lowe, 2004) 0.0893 0.2235 0.0730 0.1796
IDT (MBH) (Wang and Schmid, 2013) 0.1550 0.2812 0.0937 0.2138
IDT (HOGHOF) (Wang and Schmid, 2013) 0.1743 0.3198 0.1184 0.2595
ImageNet (Simonyan and Zisserman, 2014) 0.1476 0.2632 0.1037 0.1930
Dependencies 0.1515 0.2729 0.1043 0.1948
Late fusion
(w/o dependencies)

0.2420 0.4101 0.1707 0.3449

Late fusion
(w/ dependencies)

0.2584 0.4244 0.1853 0.3571

DMSY (Yu et al., 2015) 0.2800 0.3860 0.2330 0.3260
CMU (Yu et al., 2014) 0.3130 0.4640 0.2850 0.4190

in their system such as Google Sports (Karpathy et al., 2014) and YFCC concepts (Thomee et al., 2015).
Example of some detected concepts for each event can be found in Table 3.

5 Conclusions and Future Work

We exploited word dependencies as a new semantic video representation for recognizing complex events.
Different from the existing works, this representation encodes the relationship between concepts based
on the syntactic dependencies between words. Therefore it captures semantically richer information,
which is crucial for video event detection. We demonstrated that the dependency-based representation is
more discriminative than the concept-based representation. Moreover, it also helps improve the detection
performance of our existing event detection system.

One limitation of the current work is that we exploited image captions rather than video captions. The
main reason is that we have not found any large-scale video captioning corpus for this project. Also the
accuracy of dependency prediction from video would be less accurate since video is more challenging
to model. In the future work, we plan to extend this work to further modeling word dependencies from
video captions.
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