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Abstract

WordNet is probably the best known lexical resource in Natural Language Processing. While it
is widely regarded as a high quality repository of concepts and semantic relations, updating and
extending it manually is costly. One important type of relation which could potentially add enor-
mous value to WordNet is the inclusion of collocational information, which is paramount in tasks
such as Machine Translation, Natural Language Generation and Second Language Learning. In
this paper, we present ColWordNet (CWN), an extended WordNet version with fine-grained col-
locational information, automatically introduced thanks to a method exploiting linear relations
between analogous sense-level embeddings spaces. We perform both intrinsic and extrinsic eval-
uations, and release CWN for the use and scrutiny of the community.

1 Introduction

The embedding of cues about how we perceive concepts and how these concepts relate and generalize
across different domains gives knowledge resources the capacity of generalization, which lies at the core
of human cognition (Yu et al., 2015) and is also central to many Natural Language Processing (NLP)
applications (Jurgens and Pilehvar, 2015). It is general practice to identify and formalize conceptual
relations using a reference knowledge repository. As such a repository, WordNet (Miller et al., 1990)
stands out as the de facto standard lexical database, containing over 200k English senses with 155k
word forms. Over the years, WordNet has become the cornerstone of agglutinative resources such as
BabelNet (Navigli and Ponzetto, 2012) and Yago (Suchanek et al., 2007). It is also used in semantically
intensive tasks such as Word Sense Disambiguation (Navigli, 2009), Query Expansion and IR (Fang,
2008), Sentiment Analysis (Esuli and Sebastiani, 2006), semantic similarity measurement (Pilehvar et
al., 2013), development and evaluation of word embeddings models (Huang et al., 2012; Faruqui et al.,
2015), and Taxonomy Learning Evaluation (Bordea et al., 2015).

While the value of WordNet for NLP is indisputable, it is generally recognized that enriching it with
additional information makes it an even more valuable resource. Thus, there is a line of research aimed at
extending it with novel terminology (Jurgens and Pilehvar, 2016), cross-predicate relations (Lopez de la
Calle et al., 2016), and so forth. Nonetheless, one type of information has been largely neglected so far:
collocations, i.e., idiosyncratic binary lexical co-occurrences. As a standalone research topic, however,
collocations have been the focus of a substantial amount of work, e.g. for automatically retrieving them
from corpora (Choueka, 1988; Church and Hanks, 1989; Smadja, 1993; Kilgariff, 2006; Evert, 2007;
Pecina, 2008; Bouma, 2010; Gao, 2013), and for their semantic classification according to different
typologies (Wanner et al., 2006; Gelbukh and Kolesnikova., 2012; Moreno et al., 2013; Wanner et al.,
2016). However, to the best of our knowledge, no previous work attempted the automatic enrichment of
WordNet with collocational information. The only related attempt consisted in designing a schema for
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the manual inclusion of lexical functions from Explanatory Combinatorial Lexicology (ECL) (Mel’čuk,
1996) into the Spanish EuroWordNet (Wanner et al., 2004).

Given the importance of collocations for a series of NLP applications (e.g. machine translation, text
generation or paraphrasing), we propose to fill this gap by putting forward a new methodology which
exploits intrinsic properties of state-of-the-art semantic vector space models and leverages the trans-
formation matrix introduced by Mikolov et al. (2013b) in a word-level machine translation task. As a
result, we release an extension of WordNet with detailed collocational information, named ColWordNet
(CWN). This extension is carried out by means of the inclusion of novel edges, where each edge encodes
a collocates-with relation, as well as the semantics of the collocation itself. For example, given the pair
of synsets desire.n.01 and ardent.a.01, a novel relation col:intense−−−−−−−→

x
is introduced, where ‘in-

tense’ is the semantic category denoting intensification, and x is the confidence score assigned by our
algorithm.

The remainder of the paper is organized as follows: In Section 2, we provide some background on col-
locations and the vector space models on which we base our approach. Section 3 describes the method-
ology followed to construct CWN. Then, Section 4 presents both intrinsic and extrinsic experimental
results. And, finally, Section 5 summarizes the main contributions of our paper and outlines potential
avenues for future work.

2 Background

In what follows, we first present relevant background on the semantic categories of collocations we use
in our work (Section 2.1) and then on the resources used in our experiments (Section 2.2).

2.1 Collocations

Collocations are restricted lexical co-occurrences of two syntactically related lexical items, the base and
the collocate. In a collocation, the base is freely chosen by the speaker, while the choice of the collocate
depends on the base; see, e.g., (Cowie, 1994; Mel’čuk, 1996; Kilgariff, 2006) for a theoretical discussion.
For instance, in the collocations take [a] step, solve [a] problem, pay attention, deep sorrow, and strong
tea, step, problem, attention, sorrow and tea are the bases and take, solve, pay, deep and strong their
respective collocates.

Besides a syntactic dependency, between the base and the collocate a semantic relation holds. Some
of these semantic relations, such as ‘intense’, ‘weak’, ‘perform’, ‘cause’, etc. can be found across a
large number of collocations. For instance, an ‘intense’ applause is a thundering applause, an ‘intense’
emotion is deep, ‘intense’ rain is heavy, and so on. In our experiments, we focused on the subset of the
most prominent eight semantic collocation relations (or categories), which are listed in the first column of
Table 1. These semantic categories are a generalization of the lexical functions (LFs) from ECL already
used in Wanner et al. (2004). We have decided to use somewhat more generic categories instead of LFs
because, on the one hand, some of the LFs differ only in terms of their syntactic structure (i.e. they
capture the same semantic relation), and, on the other hand, LFs pose a great challenge for annotation
due to their syntactic granularity.

2.2 Resources

The CWN lexical database is generated thanks to the exploitation of word and sense-based vector space
models stemming from BabelNet (Navigli and Ponzetto, 2012),1 which currently constitutes the largest
semantic repository of both concepts and named entities.2 In BabelNet, just like in WordNet, concepts
are represented as synsets (i.e., set of synonym senses3). This allows us to exploit BabelNet’s direct
mapping with WordNet so that when our algorithm yields a candidate collocate synsetnbn, we may retrieve

1http://babelnet.org/
2In its 3.6 release version, BabelNet is composed of 6.1M concepts and 7.7M named entities.
3For example, the concept defined as principal activity in your life that you do to earn money is represented by the synset

{occupation, business, job, line of work, line}, where occupation, business, job, line of work, and line are senses/lexicalizations
of the given synset.
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its corresponding synsetnwn, provided there exists one. In what follows, we briefly describe two different
vector space models that are used in this paper for the task of synset-level collocation discovery.

SENSEMBED4 (Iacobacci et al., 2015) is a knowledge-based approach for obtaining latent continu-
ous representations of individual word senses based on Word2Vec (Mikolov et al., 2013a). Unlike other
sense-based embeddings approaches, such as, e.g., Huang et al. (2012), which address the inherent pol-
ysemy of word-level representations relying solely on text corpora, SENSEMBED exploits the structured
knowledge of BabelNet along with distributional information gathered from the Wikipedia corpus. In
this paper, we used SENSEMBED for automatically disambiguating our training data, and as our bases
model.

SHAREDEMBED. For this model we exploit distributional information from a 3B-word corpus ex-
tracted from the web (Han et al., 2013),5 arguably richer in collocations than the encyclopedic style of
Wikipedia. Similarly to SENSEMBED, this model is based on a pre-disambiguation of text corpora using
BabelNet as sense inventory. However, unlike SENSEMBED, which learns vector representations for in-
dividual word senses, for this model we are interested in obtaining fine-grained information in the form
of both plain text words and synsets6 in a shared vector space (see Section 3.2 for the motivation behind
this choice, and its application). To this end, we follow Chen et al. (2014) and modify the objective
function of Word2Vec,7 so that words and synsets can be learned jointly in a single training. The output
is a vector space of word and synset embeddings that we use as collocates model.

3 Methodology

In this section, we provide a detailed description of the algorithm behind the construction of CWN. The
system takes as input the WordNet lexical database and a set of collocation lists pertaining to predefined
semantic categories, and outputs CWN. First, we collect training data and perform automatic disam-
biguation (Section 3.1). Then, we use this disambiguated data for training a linear transformation matrix
from the base vector space, i.e., SENSEMBED, to the collocate vector space, i.e., SHAREDEMBED (Sec-
tion 3.2). Finally, we exploit the WordNet taxonomy to select input base collocates to which we apply
the transformation matrix in order to obtain a sorted list of candidate collocates (Section 3.3).

3.1 Collecting and Disambiguating Training Data
As is common in previous work on semantic collocation classification (Moreno et al., 2013; Wanner et
al., 2016), our training set consists of a list of manually annotated collocations. For this purpose, we
randomly selected nouns from the Macmillan Dictionary and manually classified their corresponding
collocates with respect to their semantic categories.8 Note that there may be more than one collocate for
each base. Since collocations with different collocate meanings are not evenly distributed in language
(e.g., we may tend to use more often collocations conveying the idea of ‘intense’ and ‘perform’ than
‘begin to perform’), the number of instances per category in our training data also varies significantly
(see Table 1).

Our training dataset consists at this stage of pairs of plain words, with the inherent ambiguity this gives
raise to. We surmount this challenge by applying a disambiguation strategy based on the notion that, from
all the available senses for a collocation’s base and collocate, their correct senses are those which are
most similar. This is a strategy that has been proved effective in previous concept-level disambiguation
tasks (Delli Bovi et al., 2015). Formally, let us denote the SENSEMBED vector space as S, and our
original text-based training data as T. For each training collocation 〈b, c〉 ∈ T we consider all the
available lexicalizations (i.e., senses) for both the base b and the collocate c in S , namely Lb = {l1b ...lnb },
and Lc = {l1c ...lmc }, and their corresponding set of sense embeddings Vb = {~v 1

b , ..., ~v
n
b } and Vc =

4We downloaded the pre-trained sense embeddings at http://lcl.uniroma1.it/sensembed/.
5ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
6As explained above, a synset is a set composed of synonym senses.
7We used the Continous Bag-Of-Words (CBOW) model with standard hyperparameters: 300 dimensions and a window size

of 8 words.
8We do not consider phrasal verb collocates, e.g. stand up, give up or calm down.
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Sem. Category Example # instances
‘intense’ absolute certainty 586
‘weak’ remote chance 70
‘perform’ give chase 393
‘begin to perform’ take up a chase 79
‘increase’ improve concentration 73
‘decrease’ limit [a] choice 73
‘create’, ‘cause’ pose [a] challenge 195
‘put an end’ break [the] calm 79

Table 1: Semantic categories and size of training set

{~v 1
c , ..., ~v

m
c }. Our aim is to select, among all possible pairs of senses, the pair 〈l′b, l′c〉 that maximizes the

cosine similarity between the corresponding embeddings v′b and v′c, which is computed as follows:

〈~v ′b, ~v ′c〉 = argmax~vb∈Vb, ~vc∈Vc

~vb · ~vc
‖~vb‖ ‖~vc‖ (1)

Our disambiguation strategy yields a set of disambiguated pairs D. This is the input for the next module
of the pipeline, the learning of a transformation matrix aimed at retrieving WordNet synset collocates for
any given WordNet synset base.

3.2 Training a Sense-Level Transformation Matrix for each Semantic Category
Among the many properties of word embeddings (Mikolov et al., 2013a; Mikolov et al., 2013c) that
have been explored so far in the literature (e.g., modeling analogies or projecting similar words nearby
in the vector space), the most pertinent to this work is the linear relation that holds between semantically
similar words in two analogous spaces (Mikolov et al., 2013b). Mikolov et al.’s original work learned
a linear projection between two monolingual embeddings models to train a word-level machine transla-
tion system between English and Spanish. Other examples include the exploitation of this property for
language normalization, i.e. finding regular English counterparts of Twitter language (Tan et al., 2015),
or hypernym discovery (Espinosa-Anke et al., 2016).

In our specific case, we learn a linear transformation from ~v ′b to ~v ′c, aiming at reflecting an inherent
condition of collocations. Since collocations are a linguistic phenomenon that is more frequent in the
narrative discourse than in formal essays, they are less likely to appear in an encyclopedic corpus (recall
that SENSEMBED vectors, which we use, are trained on a dump of the English Wikipedia). This motivates
the use of S as our base space, and our SHAREDEMBED X as the collocate model, as it was trained over
more varied language such as blog posts or news items.

Then, we construct our linear transformation model as follows: For each disambiguated collocation
〈l′b, l′c〉 ∈ D, we first retrieve the corresponding base vectors ~v ′b. Next, we exploit the fact that X
contains both BabelNet synsets and words, and derive for each l′c two items, namely the vectors as-
sociated to its lexicalization (word-based) and its BabelNet synset. For example, for the training pair
〈ardent bn:00097467a,desire bn:00026551n〉 ∈ D, we learn two linear mappings, namely
ardent bn:00097467a 7→ desire and ardent bn:00097467a 7→ bn:00026551n. We opt
for this strategy, which doubles the size of the training data in most lexical functions (depending on
coverage), due to the lack of resources of manually-encoded classification of collocations. By following
this strategy we obtain an extended training set D∗ = {~bi,~ci}ni=1 (~bi ∈ X , ~ci ∈ S, n ≥ |D|). Then, we

construct a base matrix B =
[
~b1 . . .~bn

]
and a collocate matrix C = [~c1 . . .~cn] with the resulting set of

training vector pairs. We use these matrices to learn a linear transformation matrix Ψ ∈ RdS×dX , where
dS and and dX are, respectively, the number of dimensions of the base vector space (i.e., SENSEMBED)
and the collocate vector space (SHAREDEMBED).9 Following the notation in Tan et al. (2015), this
transformation can be depicted as:

9In our setting the numbers of dimensions are dS = 400 and dX = 300.
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BΨ ≈ C

As in Mikolov et al.’s original approach, the training matrix is learned by solving the following opti-
mization problem:

min
Ψ

n∑
i=1

‖~bi − ~ci‖2

Having trained Ψ, the next step of the pipeline is to apply it over a subset of WordNet’s base con-
cepts and their hyponyms. For each synset in this branch, we apply a scoring and ranking procedure
which assigns a collocates-with score. If such score is higher than a predefined threshold, tuned over a
development set, this relation is included in CWN.

3.3 Retrieving and Sorting WordNet Collocate Synsets

During the task of enriching WordNet with collocational information, we first gather a set of base Word-
Net synsets by traversing WordNet hypernym hierarchy starting from those base concepts that are most
fit for the input semantic category.10 Then, the transformation matrix learned in Section 3.2 is used to
find candidate WordNet synset collocates (mostly verbs or adjectives) for each base WordNet synset.

As explained in Section 3, WordNet synsets are mapped to BabelNet synsets, which in turn map to
as many vectors in SENSEMBED as their associated lexicalizations. Formally, given a base synset b, we
apply the transformation matrix to all the SENSEMBED vectors Vb = {~v 1

b , ..., ~v
n
b } associated with its

lexicalizations. For each ~v ib ∈ Vb, we first get the vector ~ψ i
b = ~v ibΨ obtained as a result of applying

the transformation matrix and then we gather the subset W i
b = {~w i,1

b . . . ~w i,10
b } (~w i,j

b ∈ X ) of the
top ten closest vectors by cosine similarity to ~ψ i

b in the SHAREDEMBED vector space X . Each ~wi,jb is

ranked according to a scoring function λ(·), which is computed as follows11: λ(~w i,j
b ) = cos(~ψ i

b, ~w
i,j
b )

j .
This scoring function takes into account both the cosine similarity as well as the relative position12 of
the candidate collocate with respect to other neighbors in the vector space. Apart from sorting the list
of candidate collocates, this scoring function is also used to measure the confidence of the retrieved
collocate synsets in CWN.

4 Evaluation

We evaluate CWN both intrinsically and extrinsically. Our intrinsic evaluation consists of a manual scor-
ing of the correctness of the newly introduced relations (Section 4.1). Extrinsic evaluation assesses the
quality of CWN as an input resource for introducing collocational information into a word embeddings
model (Section 4.2).

4.1 Intrinsic: Precision of Collocate Relations

Sampling and evaluation are carried out as follows. First, for each semantic category, we retrieve 50
random bases included in the aforementioned base concepts (see Section 3.3) and all their hyponym
branch. This results in an evaluation set Test of 800 collocations, as for each base we retrieve the 5
highest scoring candiates. These collocations are evaluated in terms of correctness, i.e., if the associated
synset is an appropriate collocate for the input base. Note that not all bases in the test set may be suitable
for the given semantic category, and that is why we also perform an evaluation on the test data restricted
to only those bases manually selected for being suitable for having at least one collocate. We denote the
restricted test data as Test∗. For example, the base synset putt.n.01 defined as hitting a golf ball

10These are: For ‘intense’ and ‘weak’, attitude.n.01, feeling.n.01 and ability.n.02. For the rest of them,
we select cognition.n.01, act.n.02 and action.n.01.

11If wi,j
b appears in a different W j

b set (j 6= i), its scores are averaged.
12Position is arguably an important factor as there may be dense areas where cosine similarity alone may not reflect entirely

the fitness of a candidate.
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‘intense’ ‘perform’ ‘put an end’ ‘increase’

Baseline CWN Baseline CWN Baseline CWN Baseline CWN

Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test*

P@1 0.00 0.00 0.35 0.46 0.15 0.16 0.20 0.36 0.05 0.08 0.15 0.50 0.05 0.14 0.15 0.42
P@5 0.03 0.30 0.43 0.57 0.06 0.06 0.13 0.23 0.02 0.03 0.12 0.40 0.04 0.11 0.18 0.51
MRR 0.05 0.41 0.48 0.65 0.18 0.19 0.32 0.59 0.07 0.12 0.20 0.68 0.07 0.21 0.22 0.65
MAP 0.05 0.45 0.48 0.64 0.15 0.18 0.32 0.59 0.07 0.12 0.19 0.64 0.07 0.20 0.22 0.64

‘decrease’ ‘create/cause’ ‘weak’ ‘begin to perform’

Baseline CWN Baseline CWN Baseline CWN Baseline CWN

Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test* Test Test*

P@1 0.00 0.00 0.30 0.46 0.05 0.16 0.10 0.50 0.00 0.00 0.10 0.22 0.00 0.00 0.00 0.00

P@5 0.02 0.03 0.19 0.29 0.04 0.13 0.04 0.20 0.02 0.03 0.04 0.08 0.03 0.07 0.02 0.20
MRR 0.02 0.04 0.39 0.61 0.07 0.25 0.10 0.50 0.03 0.04 0.01 0.22 0.05 0.12 0.04 0.41
MAP 0.02 0.03 0.38 0.58 0.06 0.20 0.10 0.50 0.03 0.04 0.01 0.22 0.05 0.12 0.04 0.41

Table 2: Summary of the manual evaluation of the performance of CWN and of the baseline

that is on the green using a putter does not admit any ‘decrease’ collocate, and therefore its collocations
are not considered in Test∗.

Since our algorithm returns a list of candidate collocate synsets for an input base synset, the task
naturally becomes that of a ranking problem, and therefore ranking metrics such as Precision@K (P@K),
Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) are appropriate for evaluating this
experiment. These measures provide insights on different aspects of the outcome of the task, e.g. how
often valid collocates were retrieved in the first positions of the rank (MRR), and if there were more than
one valid collocate, whether this set was correctly retrieved, (MAP and R-P)13. In Table 2 we provide a
detailed summary of the performance of our system (CWN), as compared with a competitor unsupervised
baseline which exploits word analogies (as in ~man − ~king + ~woman = ~queen). This baseline, which
we deploy on the SHAREDEMBED space, takes as input a prototypical collocation of a given semantic
category (e.g. thunderous applause for ‘intense’) and an input base, and collects the top 10 Nearest
Neighbours (NNs) to the vector resulting of the aforementioned analogy operation. This approach was
recently used in a similar setting (Rodrı́guez-Fernández et al., 2016). Due to the difficulty of the task,
and the restriction it imposes for collocates to be disambiguated synsets rather than any text-based word,
the unsupervised approach fails short when compared to our supervised method, which is capable to find
more and better disambiguated collocates.

Note that for half of the semantic categories under evaluation, our approach correlated well with human
judgement, with the highest ranking candidates being more often correct than those ranked lower. This
is the case of ‘put an end’, ‘decrease’, ‘create/cause’ and ‘weak’. In fact, it is in ’put an end’, where our
system achieves the highest MRR score, which we claim to be the most relevant measure, as it rewards
cases where the first ranked returned collocation is correct without measuring in the retrieved collocates
at other positions. Moreover, let us highlight the importance of two main factors. First, the need for a
well-defined semantic relation between bases and collocates. It has been shown in other tasks that exploit
linear transformations between embeddings models that even for one single relation there may be clusters
that require certain specificity in the domain or semantic of the data (see Fu et al. Fu et al. (2014) for
a discussion of this phenomenon in the task of taxonomy learning). Second, the importance of having
a reasonable amount of training pairs so that the model can learn the idiosyncrasies of the semantic
relation that is being encoded (e.g., Mikolov et al. (2013b) report a major increase in performance as
training data increases in several orders of magnitude). This is reinforced in our experiments, where we
obtain the highest MAP score for ‘intense’, the semantic category for which we have the largest training
data available.

13See Bian et al. (2008) for an in-depth analysis of these metrics.
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‘intense’ ‘weak’ ‘perform’ ‘create/cause’
correct dist. diff. correct dist. diff. correct dist. diff. correct dist. diff.

original 0.22 0.04 +0.18 0.17 0.05 +0.12 0.15 0.05 +0.10 0.17 0.06 +0.11
retrofitted 0.27 0.06 +0.21 0.19 0.06 +0.13 0.25 0.11 +0.14 0.28 0.12 +0.16

Table 3: Comparison of collocational sensitivity between original and retrofitted embeddings models
over four semantic categories.

4.2 Extrinsic evaluation: Retrofitting Vector Space Models to CWN

We complement our manual evaluation with an extrinsic experiment, where we assess the extent to which
our newly generated lexical resource can be used to introduce collocational sensitivity to a generic word
embeddings model.14 To this end, we extract collocation clusters by extracting all the synsets associated
lemmas (e.g. for heavy.a.01 rain.n.01, we would extract the cluster [heavy, rain, rainfall]). These are
used as input for the Retrofitting Word Vectors algorithm (Faruqui et al., 2015).15 This algorithm takes
as input a vector space and a semantic lexicon which may encode any semantic relation, and puts closer
in the vector space words that are related in the lexicon.

Previous approaches have encoded semantic relations by introducing some kind of bias into a vector
space model (Yu et al., 2015; Pham et al., 2015; Mrkšić et al., 2016; Nguyen et al., 2016). For instance,
Yu et al. (2015) encode (term, hypernym) relations by grouping together terms and their hypernyms,
rather than semantically related items. In this way, their biased model puts closer to jaguar terms like
animal or vehicle, while an unbiased model would put nearby terms such as lion, bmw or jungle. We
aim at introducing a similar bias, but in terms of collocational information. This is achieved, for each
lexical function and each synset in CWN-st, by obtaining its top 3 collocate candidates and incorporate
information on their collocationality into the model.

4.2.1 Collocational Sensitivity
In this experiment, we assess the extent to which a retrofitted model with collocational bias is able to
discriminate between a correct collocation and a random combination of the same base with an unrelated
collocate. To this end, we manually constructed two datasets, one for noun+adjective (‘intense’ and
‘weak’ semantic categories) and one for noun+verb combinations, which we evaluate on the two most
productive semantic categories, namely ‘perform’ and ‘create/cause’. The datasets consist of 50 bases
and one of their correct collocates according to the Macmillan Collocations Dictionary, accompanied
by four distractor (dist. in Table 3) collocates. For instance, given the correct ‘perform’ collocation
make a pledge, we expect our ‘perform’-wise retrofitted model to increase the score in ~make + ~pledge
substantially more than a combination ~pledge + ~distractor. For each evaluated semantic category, we
computed the average increase of the cosine similarity between all correct collocations and all distractors
(diff. in Table 3). As shown in Table 3, there is a consistent increase over the four evaluated semantic
categories, namely ‘intense’, ‘weak’, ‘perform’ and ‘create/cause’. This proves the potential of our
retrofitted model to discern between correct and wrong collocates. In the following section, we explore
the possibility to use this vector space for finding collocates giving a base as input.

4.2.2 Exploring Nearest Neighbours for Collocate Discovery
Inspired by Yu et al.’s (2015) work on introducing hypernymic bias into a word embeddings model, we
explore the extent to which our retrofitted models can be used to discover alternative collocates given
the composition of the words involved in a collocation as input. In order to discover these collocates,
we compose the base and the collocate by averaging their respective word embeddings and retrieve its
closest words in the vector space according to cosine similarity. In Table 4, we show a sample of five
NNs for several input adjective+noun collocations. These examples reveal how the vector space model
retroffited using our collocations tends to bring closer in the space modifiers (i.e., collocates), providing

14We use the Google News pre-trained Word2Vec vectors, available at code.google.com/archive/p/word2vec/,
as input for retrofitting.

15We used the code available at https://github.com/mfaruqui/retrofitting
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‘intense’ ‘weak’
original retrofitted original retrofitted

ferocious + hatred

vicious fierce

dim +light

bright faint
fury fearsome dimmed unaccented

ferocity fury dimmer dense
savage hate dimming bright

hostility savage lights centaur

intense + sympathy

fierce considerable

mild + comment

milder modest
empathy tremendous NamedEntity meek

admiration enormous NamedEntity NamedEntity
anger encouragement NamedEntity NamedEntity

grudging respect immense NamedEntity NamedEntity

sheer + delight

amazement immense

modest + progress

progress mild
sheer unadulterated colossal pro gress meek

sheer joy delectation Modest dissatisfaction
joy disgust NamedEntity progess

astonishment stupendous strides slight

Table 4: Comparison of the five NNs of six sample adj+noun collocations between a generic word
embeddings model and a retrofitted version with semantic collocation information (‘intense’ and ‘weak’).
Note the increase in plausible collocates in retrofitted models (in bold). NamedEntity refers to noisy
entities appearing among the top 5 NNs.

an interesting method for automatic collocation discovery. Despite its simplicity, this collocational dis-
covery approach extracts a considerable amount of suitable fine-grained collocates for a given base. For
example, given the collocation intense sympathy, the retrofitted space extracts considerable, tremendous,
enormous and immense as candidate collocates of intensity among the five nearest neighbours. As future
work we plan to further exploit and evaluate the impact of this property.

5 Conclusions and Future Work

We have described a system for an automatic enrichment of the WordNet lexical database with fine-
grained collocational information, yielding a resource called ColWordNet (CWN). Our approach is based
on the intuition that there is a linear transformation in vector spaces between bases and collocates of the
same semantic category, e.g. between heavy and rain, or between ardent and desire. We have exploited
sense-based embedding models to train an algorithm designed to retrieve valid collocates for a given
input base. This pipeline is carried out at the sense level (rather than the word level), by leveraging
models which use BabelNet as a reference sense inventory. We evaluated CWN both intrinsically and
extrinsically, and verified that our algorithm is able to encode fine-grained collocates-with relations at
synset level.

Release. We release CWN at several different confidence levels. The version with the highest confi-
dence includes over 100k collocational edges, which connect over 8k unique base and collocate WordNet
synsets. These connections are further enriched by two pieces of information, namely (1) the type of col-
location (e.g. ‘intense’ or ‘perform’), and (2) a confidence score derived from our approach. Moreover,
in addition to CWN, we also release four modified versions of the well-known Word2Vec Google News
vector space model, retrofitted with collocational information, which we constructed for the extrinsic
evaluation of CWN. These models can be exploited both for assessing the correctness of a collocation
and for the discovery of alternative collocates for a given collocation. Finally, we also make available
the evaluation datasets built as part of the Collocational Sensitivity experiment. All data associated with
this publication is publicly available at http://www.taln.upf.edu/colwordnet.

Future work. In the future, we plan to design a method to retrieve the best bases for a given semantic
category, which would allow us not to rely on predefined manually built base concepts. Finally, we
are currently investigating the potential of applying neural approaches recasting the task as a sequence
classification problem for including collocational information in WordNet clusters.
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