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Abstract

Text-based document geolocation is com-
monly rooted in language-based infor-
mation retrieval techniques over geodesic
grids. These methods ignore the natural
hierarchy of cells in such grids and fall
afoul of independence assumptions. We
demonstrate the effectiveness of using lo-
gistic regression models on a hierarchy of
nodes in the grid, which improves upon
the state of the art accuracy by several
percent and reduces mean error distances
by hundreds of kilometers on data from
Twitter, Wikipedia, and Flickr. We also
show that logistic regression performs fea-
ture selection effectively, assigning high
weights to geocentric terms.

1 Introduction

Document geolocation is the identification of the
location—a specific latitude and longitude—that
forms the primary focus of a given document. This
assumes that a document can be adequately associ-
ated with a single location, which is only valid for
certain documents, generally of fairly small size.
Nonetheless, there are many natural situations in
which such collections arise. For example, a great
number of articles in Wikipedia have been man-
ually geotagged; this allows those articles to ap-
pear in their geographic locations in geobrowsers
like Google Earth. Images in social networks such
as Flickr may be geotagged by a camera and their
textual tags can be treated as documents. Like-
wise, tweets in Twitter are often geotagged; in this
case, it is possible to view either an individual
tweet or the collection of tweets for a given user
as a document, respectively identifying the loca-
tion as the place from which the tweet was sent or
the home location of the user.

Early work on document geolocation used
heuristic algorithms, predicting locations based on

toponyms in the text (named locations, determined
with the aid of a gazetteer) (Ding et al., 2000;
Smith and Crane, 2001). More recently, vari-
ous researchers have used topic models for doc-
ument geolocation (Ahmed et al., 2013; Hong et
al., 2012; Eisenstein et al., 2011; Eisenstein et
al., 2010) or other types of geographic document
summarization (Mehrotra et al., 2013; Adams and
Janowicz, 2012; Hao et al., 2010). A number of
researchers have used metadata of various sorts
for document or user geolocation, including doc-
ument links and social network connections. This
research has sometimes been applied to Wikipedia
(Overell, 2009) or Facebook (Backstrom et al.,
2010) but more commonly to Twitter, focusing
variously on friends and followers (McGee et al.,
2013; Sadilek et al., 2012), time zone (Mahmud et
al., 2012), declared location (Hecht et al., 2011),
or a combination of these (Schulz et al., 2013).

We tackle document geolocation using super-
vised methods based on the textual content of
documents, ignoring their metadata. Metadata-
based approaches can achieve great accuracy (e.g.
Schulz et al. (2013) obtain 79% accuracy within
100 miles for a US-based Twitter corpus, com-
pared with 49% using our methods on a compa-
rable corpus), but are very specific to the partic-
ular corpus and the types of metadata it makes
available. For Twitter, the metadata includes the
user’s declared location and time zone, infor-
mation which greatly simplifies geolocation and
which is unavailable for other types of corpora,
such as Wikipedia. In many cases essentially no
metadata is available at all, as in historical corpora
in the digital humanities (Lunenfeld et al., 2012),
such as those in the Perseus project (Crane, 2012).
Text-based approaches can be applied to all types
of corpora; metadata can be additionally incorpo-
rated when available (Han and Cook, 2013).

We introduce a hierarchical discriminative clas-
sification method for text-based geotagging. We
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apply this to corpora in three languages (English,
German and Portuguese). This method scales
well to large training sets and greatly improves
results across a wide variety of corpora, beat-
ing current state-of-the-art results by wide mar-
gins, including Twitter users (Han et al., 2014,
henceforth Han14; Roller et al., 2012, henceforth
Roller12); Wikipedia articles (Roller12; Wing and
Baldridge, 2011, henceforth WB11); and Flickr
images (O’Hare and Murdock, 2013, henceforth
OM13). Importantly, this is the first method that
improves upon straight uniform-grid Naive Bayes
on all of these corpora, in contrast with k-d trees
(Roller12) and the current state-of-the-art tech-
nique for Twitter users of geographically-salient
feature selection (Han14).

We also show, contrary to Han14, that logistic
regression when properly optimized is more ac-
curate than state-of-the-art techniques, including
feature selection, and fast enough to run on large
corpora. Logistic regression itself very effectively
picks out words with high geographic significance.
In addition, because logistic regression does not
assume feature independence, complex and over-
lapping features of various sorts can be employed.

2 Data

We work with six large datasets: two of geotagged
tweets, three of Wikipedia articles, and one of
Flickr photos. One of the two Twitter datasets is
primarily localized to the United States, while the
remaining datasets cover the whole world.

TWUS is a dataset of tweets compiled by
Roller12. A document in this dataset is the con-
catenation of all tweets by a single user, as long
as at least one of the user’s tweets is geotagged
with specific, GPS-assigned latitude/longitude co-
ordinates. The earliest such tweet determines the
user’s location. Tweets outside of a bounding box
covering the contiguous United States (including
parts of Canada and Mexico) were discarded, as
well as users that may be spammers or robots
(based on the number of followers, followees and
tweets). The resulting dataset contains 38M tweets
from 450K users, of which 10,000 each are re-
served for the development and test sets.

TWWORLD is a dataset of tweets compiled by
Han et al. (2012). It was collected in a simi-
lar fashion to TWUS but differs in that it covers
the entire Earth instead of primarily the United
States, and consists only of geotagged tweets.

Non-English tweets and those not near a city were
removed, and non-alphabetic, overly short and
overly infrequent words were filtered. The result-
ing dataset consists of 1.4M users, with 10,000
each reserved for the development and test sets.

ENWIKI13 is a dataset consisting of the 864K
geotagged articles (out of 14M articles in all) in
the November 4, 2013 English Wikipedia dump.
It is comparable to the dataset used in WB11 and
was processed using an analogous fashion. The
articles were randomly split 80/10/10 into training,
development and test sets.

DEWIKI14 is a similar dataset consisting of the
324K geotagged articles (out of 1.71M articles in
all) in the July 5, 2014 German Wikipedia dump.

PTWIKI14 is a similar dataset consisting of the
131K geotagged articles (out of 817K articles in
all) in the June 24, 2014 Portuguese Wikipedia
dump.

COPHIR (Bolettieri et al., 2009) is a large
dataset of images from the photo-sharing social
network Flickr. It consists of 106M images, of
which 8.7M are geotagged. Most images contain
user-provided tags describing them. We follow al-
gorithms described in OM13 in order to make di-
rect comparison possible. This involves removing
photos with empty tag sets and performing bulk
upload filtering, retaining only one of a set of pho-
tos from a given user with identical tag sets. The
resulting reduced set of 2.8M images is then di-
vided 80/10/10 into training, development and test
sets. The tag set of each photo is concatenated into
a single piece of text (in the process losing user-
supplied tag boundary information in the case of
multi-word tags).

Our code and processed corpora are available
for download.1

3 Supervised models for document
geolocation

The dominant approach for text-based geolocation
comes from language modeling approaches in in-
formation retrieval (Ponte and Croft, 1998; Man-
ning et al., 2008). For this general strategy, the
Earth is sub-divided into a grid, and then each
training set document is associated with the cell
that contains it. Some model (typically Naive
Bayes) is then used to characterize each cell and

1https://github.com/utcompling/
textgrounder/wiki/WingBaldridge_
EMNLP2014
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enable new documents to be assigned a latitude
and longitude based on those characterizations.
There are several options for constructing the grid
and for modeling, which we review next.

3.1 Geodesic grids

The simplest grid is a uniform rectangular one
with cells of equal-sized degrees, which was used
by Serdyukov et al. (2009) for Flickr images and
WB11 for Twitter and Wikipedia. This has two
problems. Compared to a grid that takes document
density into account, it over-represents rural areas
at the expense of urban areas. Furthermore, the
rectangles are not equal-area, but shrink in width
away from the equator (although the shrinkage is
mild until near the poles). Roller12 tackle the for-
mer issue by using an adaptive grid based on k-d
trees, while Dias et al. (2012) handle the latter is-
sue with an equal-area quaternary triangular mesh.

An additional issue with geodesic grids is that
a single metro area may be divided between two
or more cells. This can introduce a statistical
bias known as the modifiable areal unit problem
(Gehlke and Biehl, 1934; Openshaw, 1983). One
way to mitigate this, implemented in Roller12’s
code but not investigated in their paper, is to di-
vide a cell in a k-d tree in such a way as to pro-
duce the maximum margin between the dividing
line and the nearest document on each side.

A more direct method is to use a city-based rep-
resentation, either with a full set of sufficiently-
sized cities covering the Earth and taken from
a comprehensive gazetteer (Han14) or a limited,
pre-specified set of cities (Kinsella et al., 2011;
Sadilek et al., 2012). Han14 amalgamate cities
into nearby larger cities within the same state (or
equivalent); an even more direct method would
use census-tract boundaries when available. Dis-
advantages of these methods are the dependency
on time-specific population data, making them un-
suitable for some corpora (e.g. 19th-century doc-
uments); the difficulty in adjusting grid resolution
in a principled fashion; and the fact that not all
documents are near a city (Han14 find that 8% of
tweets are “rural” and cannot predicted by their
model).

We construct rectangular grids, since they are
very easy to implement and Dias et al. (2012)’s
triangular mesh did not yield consistently better
results over Wikipedia. We use both uniform grids
and k-d tree grids with midpoint splitting.

3.2 Naive Bayes

A geodesic grid of sufficient granularity creates a
large decision space, when each cell is viewed as
a label to be predicted by some classifier. This
situation naturally lends itself to simple, scalable
language-modeling approaches. For this general
strategy, each cell is characterized by a pseudo-
document constructed from the training docu-
ments that it contains. A test document’s location
is then chosen based on the cell with the most sim-
ilar language model according to standard mea-
sures such as Kullback-Leibler (KL) divergence
(Zhai and Lafferty, 2001), which seeks the cell
whose language model is closest to the test doc-
ument’s, or Naive Bayes (Lewis, 1998), which
chooses the cell that assigns the highest probabil-
ity to the test document.

Han14, Roller12 and WB11 follow this strat-
egy, using KL divergence in preference to Naive
Bayes. However, we find that Naive Bayes in con-
junction with Dirichlet smoothing (Smucker and
Allan, 2006) works at least as well when appropri-
ately tuned. Dirichlet smoothing is a type of dis-
counting model that interpolates between the un-
smoothed (maximum-likelihood) document distri-
bution θ̃di

of a document di and the unsmoothed
distribution θ̃D over all documents. A general
interpolation model for the smoothed distribution
θdi

has the following form:

P (w|θdi) = (1− λdi)P (w|θ̃di) + λdiP (w|θ̃D) (1)

where the discount factor λdi
indicates how much

probability mass to reserve for unseen words. For
Dirichlet smoothing, λdi

is set as:

λdi
= 1− |di|

|di|+m
(2)

where |di| is the size of the document and m is
a tunable parameter. This has the effect of re-
lying more on di’s distribution and less on the
global distribution for larger documents that pro-
vide more evidence than shorter ones. Naive
Bayes models are estimated easily, which allows
them to handle fine-scale grid resolutions with po-
tentially thousands or even hundreds of thousands
of non-empty cells to choose among.

Figure 1 shows a choropleth map of the behav-
ior of Naive Bayes, plotting the rank of cells for
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Figure 1: Relative Naive Bayes rank of cells for
ENWIKI13 test document Pennsylvania Avenue
(Washington, DC), surrounding the true location.

the test document Pennsylvania Avenue (Washing-
ton, DC) in ENWIKI13, for a uniform 0.1◦ grid.
The top-ranked cell is the correct one.

3.3 Logistic regression

The use of discrete cells over the Earth’s sur-
face allows any classification strategy to be em-
ployed, including discriminative classifiers such as
logistic regression. Logistic regression often pro-
duces produces better results than generative clas-
sifiers at the cost of more time-consuming train-
ing, which limits the size of the problems it may
be applied to. Training is generally unable to scale
to encompass several thousand or more distinct la-
bels, as is the case with fine-scale grids of the sort
we may employ. Nonetheless we find flat logis-
tic regression to be effective on most of our large-
scale corpora, and the hierarchical classification
strategy discussed in §4 allows us to take advan-
tage of logistic regression without incurring such
a high training cost.

3.4 Feature selection

Naive Bayes assumes that features are indepen-
dent, which penalizes models that must accom-
modate many features that are poor indicators and
which can gang up on the good features. Large
improvements have been obtained by reducing
the set of words used as features to those that
are geographically salient. Cheng et al. (2010;
2013) model word locality using a unimodal dis-
tribution taken from Backstrom et al. (2008) and
train a classifier to identify geographically lo-
cal words based on this distribution. This un-
fortunately requires a large hand-annotated cor-

pus for training. Han14 systematically investi-
gate various feature selection methods for find-
ing geo-indicative words, such as information gain
ratio (IGR) (Quinlan, 1993), Ripley’s K statis-
tic (O’Sullivan and Unwin, 2010) and geographic
density (Chang et al., 2012), showing significant
improvements on TWUS and TWWORLD (§2).

For comparison with Han14, we test against
an additional baseline: Naive Bayes combined
with feature selection done using IGR. Following
Han14, we first eliminate words which occur less
than 10 times, have non-alphabetic characters in
them or are shorter than 3 characters. We then
compute the IGR for the remaining words across
all cells at a given cell size or bucket size, select
the top N% for some cutoff percentage N (which
we vary in increments of 2%), and then run Naive
Bayes at the same cell size or bucket size.

4 Hierarchical classification

To overcome the limitations of discriminative clas-
sifiers in terms of the maximum number of cells
they can handle, we introduce hierarchical classifi-
cation (Silla Jr. and Freitas, 2011) for geolocation.
Dias et al. (2012) use a simple two-level genera-
tive hierarchical approach using Naive Bayes, but
to our knowledge no previous work implements a
multi-level discriminative hierarchical model with
beam search for geolocation.

To construct the hierarchy, we start with a root
cell croot that spans the entire Earth and from there
build a tree of cells at different scales, from coarse
to fine. A cell at a given level is subdivided to
create smaller cells at the next level of resolution
that altogether cover the same area as their parent.

We use the local classifier per parent approach
to hierarchical classification (Silla Jr. and Fre-
itas, 2011) in which an independent classifier is
learned for every node of the hierarchy above the
leaf nodes. The probability of any node in the hi-
erarchy is the product of the probabilities of that
node and all of its ancestors, up to the root. This
is defined recursively as:

P (croot) = 1.0
P (cj) = P (cj |↑cj)P (↑cj) (3)

where ↑cj indicates cj’s parent in the hierarchy.
In addition to allowing one to use many classi-

fiers that each have a manageable number of out-
comes, the hierarchical approach naturally lends
itself to beam search. Rather than computing the
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probability of every leaf cell using equation 3, we
use a stratified beam search: starting at the root
cell, keep the b highest-probability cells at each
level until reaching the leaf node level. With a
tight beam—which we show to be very effective—
this dramatically reduces the number of model
evaluations that must be performed at test time.

Grid size parameters Two factors determine
the size of the grids at each level. The first-level
grid is constructed the same as for Naive Bayes
or flat logistic regression and is controlled by its
own parameter. In addition, the subdivision factor
N determines how we subdivide each cell to get
from one level to the next. Both factors must be
optimized appropriately.

For the uniform grid, we subdivide each cell
intoNxN subcells. In practice, there may actually
be fewer subcells, because some of the potential
subcells may be empty (contain no documents).

For the k-d grid, if level 1 is created using a
bucket size B (i.e. we recursively divide cells as
long as their size exceeds B), then level 2 is cre-
ated by continuing to recursively divide cells that
exceed a smaller bucket size B/N . At this point,
the subcells of a given level-1 cell are the leaf cells
contained with the cell’s geographic area. The
construction of level 3 proceeds similarly using
bucket size B/N2, etc.

Note that the subdivision factor has a different
meaning for uniform and k-d tree grids. Further-
more, because creating the subdividing cells for a
given cell involves dividing by N2 for the uniform
grid but N for the k-d tree grid, greater subdivi-
sion factors are generally required for the k-d tree
grid to achieve similar-scale resolution.

Figure 2 shows the behavior of hierarchical LR
using k-d trees for the test document Pennsylva-
nia Avenue (Washington, DC) in ENWIKI13. Af-
ter ranking the first level, the beam zooms in on
the top-ranked cells and constructs a finer k-d tree
under each one (one such subtree is shown in the
top-right map callout).

5 Experimental Setup

Configurations. We experiment with several
methods for configuring the grid and selecting the
best cell. For grids, we use either a uniform or
k-d tree grid. For uniform grids, the main tunable
parameter is grid size (in degrees), while for k-d
trees it is bucket size (BK), i.e. the number of doc-
uments above which a node is divided in two.

Figure 2: Relative hierarchical LR rank of cells
for ENWIKI13 test document Pennsylvania Av-
enue (Washington, DC), surrounding the true lo-
cation. The first callout simply expands a portion
of level 1, while the second callout shows a level
1 cell subdivided down to level 2.

For cell choice, the options are:
• NB: Naive Bayes baseline
• IGR: Naive Bayes using features selected by

information gain ratio
• FlatLR: logistic regression model over all

leaf nodes
• HierLR: product of logistic regression mod-

els at each node in a hierarchical grid (eq. 3)
For Dirichlet smoothing in conjunction with Naive
Bayes, we set the Dirichlet parameter m =
1, 000, 000, which we found worked well in pre-
liminary experiments. For hierarchical classifica-
tion, there are additional parameters: subdivision
factor (SF) and beam size (BM) (§4), and hierar-
chy depth (D) (§6.4). All of our test-set results use
a depth of three levels.

Due to its speed and flexibility, we use Vowpal
Wabbit (Agarwal et al., 2014) for logistic regres-
sion, estimating parameters with limited-memory
BFGS (Nocedal, 1980; Byrd et al., 1995). Unless
otherwise mentioned, we use 26-bit feature hash-
ing (Weinberger et al., 2009) and 40 passes over
the data (optimized based on early experiments on
development data) and turn off the hold-out mech-
anism. For the subcell classifiers in hierarchical
classification, which have fewer classes and much
less data, we use 24-bit features and 12 passes.

Evaluation. To measure geolocation perfor-
mance, we use three standard metrics based on er-
ror distance, i.e. the distance between the correct
location and the predicted location. These metrics
are mean and median error distance (Eisenstein et
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al., 2010) and accuracy at 161 km (acc@161), i.e.
within a 161-km radius, which was introduced by
Cheng et al. (2010) as a proxy for accuracy within
a metro area. All of these metrics are indepen-
dent of cell size, unlike the measure of cell accu-
racy (fraction of cells correctly predicted) used in
Serdyukov et al. (2009). Following Han14, we use
acc@161 on development sets when choosing al-
gorithmic parameter values such as cell and bucket
sizes.

6 Results

6.1 Twitter

We show the effect of varying cell size in Table 1
and k-d tree bucket size in Figure 3. The number
of non-empty cells is shown for each cell size and
bucket size. For NB, this is the number of cells
against which a comparison must be made for each
test document; for FlatLR, this is the number of
classes that must be distinguished. For HierLR, no
figure is given because it varies from level to level
and from classifier to classifier. For example, with
a uniform grid and subdivision factor of 3, each
level-2 subclassifier will have between 1 and 9 la-
bels to choose among, depending on which cells
are empty.

Method
Cell Size #Class Acc. Mean Med.

(Deg) (km) @161 (km) (km)

NB
0.17◦ 11,671 36.6 929.5 496.4
0.50◦ 2,838 35.4 889.3 466.6

IGR, CU90% 1.5◦ 501 45.9 787.5 255.6

FlatLR

5◦ 556 59 35.4 727.8 248.7
4◦ 445 99 44.4 718.8 227.9
3◦ 334 159 47.3 721.3 186.2

2.5◦ 278 208 47.5 743.9 198.9
2◦ 223 316 46.9 737.7 209.9

1.5◦ 167 501 46.6 762.6 226.9
1◦ 111 975 43.0 810.0 303.7

HierLR, D2, SF2, BM5 4◦ – – 48.6 695.2 182.2
HierLR, D2, SF2, BM2 3◦ – – 49.0 725.1 174.6
HierLR, D3, SF2, BM2 3◦ – – 49.0 718.9 173.8
HierLR, D2, SF2, BM5 2.5◦ – – 48.2 740.9 187.7

Table 1: Dev set performance for TWUS, with
uniform grids. HierLR and IGR parameters op-
timized using acc@161. Best metric numbers for
a given method are underlined, except that overall
best numbers are in bold.

FlatLR does much better than NB and IGR, and
HierLR is still better. This is despite logistic re-
gression needing to operate at a much lower res-
olution.2 Interestingly, uniform-grid 2-level Hi-
erLR does better at 4◦ with a subdivision factor

2The limiting factor for resolution for us was the 24-hour
per job limit on our computing cluster.
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Figure 3: Dev set performance for TWUS, with
k-d tree grids.

of 2 than the equivalent FlatLR run at 2◦.
Table 2 shows the test set results for the vari-

ous methods and metrics described in §5, on both
TWUS and TWWORLD.3 HierLR is the best
across all metrics; the best acc@161km and me-
dian error is obtained with a uniform grid, while
HierLR with k-d trees obtains the best mean error.

Compared with vanilla NB, our implementa-
tion of NB using IGR feature selection obtains
large gains for TWUS and moderate gains for
TWWORLD, showing that IGR can be an effec-
tive geolocation method for Twitter. This agrees
in general with Han14’s findings. We can only
compare our figures directly with Han14 for k-d
trees—in this case they use a version of the same
software we use and report figures within 1% of
ours for TWUS. Their remaining results are com-
puted using a city-based grid and an NB imple-
mentation with add-one smoothing, and are signif-
icantly worse than our uniform-grid NB and IGR
figures using Dirichlet smoothing, which is known
to significantly outperform add-one smoothing
(Smucker and Allan, 2006). For example, for NB
they report 30.8% acc@161 for TWUS and 20.0%
for TWWORLD, compared with our 36.2% and
30.2% respectively. We suspect an additional rea-
son for the discrepancy is due to the limitations of
their city-based grid, which has no tunable param-
eter to optimize the grid size and requires that test
instances not near a city be reported as incorrect.

Our NB figures also beat the KL divergence fig-
ures reported in Roller12 for TWUS (which they
term UTGEO2011), perhaps again due to the dif-

3Note that for TWWORLD, it was necessary to modify
the parameters normally passed to Vowpal Wabbit, moving
up to 27-bit features and 96 passes, and 24-bit features with
24 passes in sublevels of HierLR.
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Corpus TWUS TWWORLD

Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 0.17◦ 36.2 913.8 476.3 1◦ 30.2 1690.0 537.2
NB k-d BK1500 36.2 861.4 444.2 BK500 28.7 1735.0 566.2
IGR Uniform 1.5◦, CU90% 46.1 770.3 233.9 1◦, CU90% 31.0 2204.8 574.7
IGR k-d BK2500, CU90% 44.6 792.0 268.6 BK250, CU92% 29.4 2369.6 655.0
FlatLR Uniform 2.5◦ 47.2 727.3 195.4 3.7◦ 32.1 1736.3 500.0
FlatLR k-d BK4000 47.4 692.2 197.0 BK12000 27.8 1939.5 651.6
HierLR Uniform 3◦, SF2, BM2 49.2 703.6 170.5 5◦, SF2, BM1 32.7 1714.6 490.0
HierLR k-d BK4000, SF3, BM1 48.0 686.6 191.4 BK60000, SF5, BM1 31.3 1669.6 509.1

Table 2: Performance on the test sets of TWUS and TWWORLD for different methods and metrics.

ference in smoothing methods.

6.2 Wikipedia

Table 3 shows results on the test set of ENWIKI13
for various methods. Table 5 shows the corre-
sponding results for DEWIKI14 and PTWIKI14.
In all cases, the best parameters for each method
were determined using acc@161 on the develop-
ment set, as above.
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HierLR, bucket size 1500. Beam sizes above 2
yield little improvement.

HierLR is clearly the stand-out winner among
all methods and metrics, and particularly so for the
k-d tree grid. This is achieved through a high sub-
division factor, especially in a 2-level hierarchy,
where a factor of 36 is best, as shown in Figure 4
for ENWIKI13. (For a 3-level hierarchy, the best
subdivision factor is 12.)

Unlike for TWUS, FlatLR simply cannot com-

Method Param #Class A@161 Med. Runtime

FlatLR
Uniform

10◦ 648 19.2 314.1 11h
8.5◦ 784 26.5 248.5 16h
7.5◦ 933 30.1 232.0 19h

FlatLR
k-d

BK5000 257 57.1 133.5 5h
BK2500 501 67.5 94.9 9h
BK1500 825 74.7 69.9 16h

HierLR
Uniform

7.5◦,SF2,BM1 — 85.2 67.8 23h
7.5◦,SF3,BM5 — 86.1 34.2 27h

HierLR
k-d

BK1500,SF5,BM1 — 88.2 19.6 23h
BK5000,SF10,BM5 — 88.4 18.3 14h
BK1500,SF12,BM2 — 88.8 15.3 33h

Table 4: Performance/runtime for FlatLR and 3-
level HierLR on the ENWIKI13 dev set, with vary-
ing parameters.

pete with NB in the larger Wikipedias (ENWIKI13
and DEWIKI14). ENWIKI13 especially has dense
coverage across the entire world, whereas TWUS
only covers the United States and parts of Canada
and Mexico. Thus, there are a much larger num-
ber of non-empty cells at a given resolution and
much coarser resolution required, especially with
the uniform grid. For example, at 7.5◦ there are
933 non-empty cells, comparable to 1◦ for TWUS.
Table 4 shows the number of classes and runtime
for FlatLR and HierLR at different parameter val-
ues. The hierarchical classification approach is
clearly essential for allowing us to scale the dis-
criminative approach for a large, dense dataset
across the whole world.

Moving from larger to smaller Wikipedias,
FlatLR becomes more competitive. In particular,
FlatLR outperforms NB and is close to HierLR for
PTWIKI14, the smallest of the three (and signifi-
cantly smaller than TWUS). In this case, the rel-
atively small size of the dataset and its greater ge-
ographic specificity (many articles are located in
Brazil or Portugal) allows for a fine enough reso-
lution to make FlatLR perform well—comparable
to or even finer than NB.

In all of the Wikipedias, NB k-d outperforms
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Corpus ENWIKI13 COPHIR
Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 1.5◦ 84.0 326.8 56.3 1.5◦ 65.0 1553.5 47.9
NB k-d BK100 84.5 362.3 21.1 BK3500 58.5 1726.9 70.0
IGR Uniform 1.5◦, CU96% 81.4 401.9 58.2 1.5◦, CU92% 60.8 1683.4 56.7
IGR k-d BK250, CU98% 80.6 423.9 34.3 BK1500, CU62% 54.7 2908.8 83.5
FlatLR Uniform 7.5◦ 25.5 1347.8 259.4 2.0◦ 60.6 1942.3 73.7
FlatLR k-d BK1500 74.8 253.2 70.0 BK3000 57.7 1961.4 72.5
HierLR Uniform 7.5◦, SF3, BM5 86.2 228.3 34.0 7◦, SF4, BM5 65.3 1590.2 16.7
HierLR k-d BK1500, SF12, BM2 88.9 168.7 15.3 BK100000, SF15, BM5 66.0 1453.3 17.9

Table 3: Performance on the test sets of ENWIKI13 and COPHIR for different methods and metrics.

NB uniform, and HierLR outperforms both, but
by greatly varying amounts, with only a 1% differ-
ence for DEWIKI14 but 12% for PTWIKI14. It’s
unclear what causes these variations, although it’s
worth noting that Roller12’s NB k-d figures on an
older English Wikipedia corpus were are notice-
ably higher than our figures: They report 90.3%
acc@161, compared with our 84.5%. We verified
that this is due to corpus differences: we obtain
their performance when we run on their Wikipedia
corpus. This suggests that the various differences
may be due to vagaries of the individual corpora,
e.g. the presence of differing numbers of geo-
tagged stub articles, which are very short and thus
hard to geolocate.

As for IGR, though it is competitive for Twitter,
it performs badly here—in fact, it is even worse
than plain Naive Bayes for all three Wikipedias
(likewise for COPHIR, in the next section).

6.3 CoPhIR

Table 3 shows results on the test set of COPHIR
for various methods, similarly to the ENWIKI13
results. HierLR is again the clear winner. Unlike
for ENWIKI13, FlatLR is able to do fairly well.
IGR performs poorly, especially when combined
with k-d.

In general, as can be seen, for COPHIR the
median figures are very low but the mean figures
very high, meaning there are many images that can
be very accurately placed while the remainder are
very difficult to place. (The former images likely
have the location mentioned in the tags, while the
latter do not.)

For COPHIR, and also TWWORLD, HierLR
performs best when the root level is significantly
coarser than the cell or bucket size that is best for
FlatLR. The best setting for the root level appears
to be correlated with cell accuracy, which in gen-
eral increases with larger cell sizes. The intuition

here is that HierLR works by drilling down from
a single top-level child of the root cell. Thus, the
higher the cell accuracy, the greater the fraction
of test instances that can be improved in this fash-
ion, and in general the better the ultimate values
of the main metrics. (The above discussion isn’t
strictly true for beam sizes above 1, but these tend
to produce marginal improvements, with little if
any gain from going above a beam size of 5.) The
large size of a coarse root-child cell, and corre-
spondingly poor results for acc@161, can be off-
set by a high subdivision factor, which does not
materially slow down the training process.

Our NB results are not directly comparable with
OM13’s results on COPHIR because they use var-
ious cell-based accuracy metrics while we use
cell-size-independent metrics. The closest to our
acc@161 metric is their Ac1 metric, which at a
cell size of 100 km corresponds to a 300km-per-
side square at the equator, roughly comparable to
our 161-km-radius circle. They report Ac1 figures
of 57.7% for term frequency and 65.3% for user
frequency, which counts the number of distinct
users in a cell using a given term and is intended to
offset bias resulting from users who upload a large
batch of similar photos at a given location. Our
term frequency figure of 65.0% significantly beats
theirs, but we found that user frequency actually
degraded our dev set results by 5%. The reason
for this discrepancy is unclear.

6.4 Parameterization variations

Optimizing for median. Note that better values
for the other metrics, especially median, can be
achieved by specifically optimizing for these met-
rics. In general, the best parameters for median
are finer-scale than those for acc@161: smaller
grid sizes and bucket sizes, and greater subdivision
factors. This is especially revealing in ENWIKI13
and COPHIR. For example, on the ENWIKI13
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Corpus DEWIKI14 PTWIKI14
Method Parameters A@161 Mean Med. Parameters A@161 Mean Med.
NB Uniform 1◦ 88.4 257.9 35.0 1◦ 76.6 470.0 48.3
NB k-d BK25 89.3 192.0 7.6 BK100 77.1 325.0 45.9
IGR Uniform 2◦, CU82% 87.1 312.9 68.2 2◦, CU54% 71.3 594.6 89.4
IGR k-d BK50, CU100% 86.0 226.8 10.9 BK100, CU100% 71.3 491.9 57.7
FlatLR Uniform 5◦ 55.1 340.4 150.1 2◦ 88.9 320.0 70.8
FlatLR k-d BK350 82.0 193.2 24.5 BK25 86.8 320.8 30.0
HierLR Uniform 7◦, SF3, BM5 88.5 184.8 30.0 7◦, SF2, BM5 88.6 223.5 64.7
HierLR k-d BK3500, SF25, BM5 90.2 122.5 8.6 BK250, SF12, BM2 89.5 186.6 27.2

Table 5: Performance on the test sets of DEWIKI14 and PTWIKI14 for different methods and metrics.

dev set, the “best” uniform NB parameter of 1.5◦,
as optimized on acc@161, yields a median error
of 56.1 km, but an error of just 16.7 km can be
achieved with the parameter setting 0.25◦ (which,
however, drops acc@161 from 83.8% to 78.3%
in the process). Similarly, for the COPHIR dev
set, the optimized uniform 2-level HierLR median
error of 46.6 km can be reduced to just 8.1 km
by dropping from 7◦ to 3.5◦ and bumping up the
subdivision factor from 4 to 35—again, causing a
drop in acc@161 from 68.6% to 65.5%.

Hierarchy depth. We use a 3-level hierarchy
throughout for the test set results. Evaluation on
development data showed that 2-level hierarchies
perform comparably for several data sets, but are
less effective overall. We did not find improve-
ments from using more than three levels. When
using a simple local classifier per parent approach
as we do, which chains together spines of related
but independently trained classifiers when assign-
ing a probability to a leaf cell, most of the ben-
efit presumably comes from simply enabling lo-
gistic regression to be used with fine-grained leaf
cells, overcoming the limitations of FlatLR. Fur-
ther benefits of the hierarchical approach might be
achieved with the data-biasing and bottom-up er-
ror propagation techniques of Bennett and Nguyen
(2009) or the hierarchical Bayesian approach of
Gopal et al. (2012), which is able to handle large-
scale corpora and thousands of classes.

6.5 Feature Selection

The main focus of Han14 is identifying geograph-
ically salient words through feature selection. Lo-
gistic regression performs feature selection natu-
rally by assigning higher weights to features that
better discriminate among the target classes.

Table 6 shows the top 20 features ranked by fea-
ture weight for a number of different cells, labeled

by the largest city in the cell. The features were
produced using a uniform 5◦ grid, trained using
27-bit features and 40 passes over TWUS. The
high number of bits per feature were chosen to en-
sure as few collisions as possible of different fea-
tures (as it would be impossible to distinguish two
words that were hashed together).

Most words are clearly region specific, con-
sisting of cities, states and abbreviations, sports
teams (broncos, texans, niners, saints), well-
known streets (bourbon, folsom), characteristic
features (desert, bayou, earthquake, temple), local
brands (whataburger, soopers, heb), local foods
(gumbo, poutine), and dialect terms (hella, buku).

Top-IGR words Bottom-IGR words
lockerby presswiches plan times
killdeer haubrich party end
fordville yabbo men twitter
azilda presswich happy full
ahauah pozuelo show part
hutmacher akeley top forget
cere chewelah extra close
miramichi computacionales late dead
alamosa bevilacqua facebook cool
multiservicios presswiche friday enjoy
ghibran curtisinn black true
briaroaks guymon dream found
joekins dakotamart hey drink
numerica missoula face pay
bemidji mimbres finally meet
amn shingobee easy lost
roug gottsch time find
pbtisd uprr live touch
marcenado hesperus wow birthday
banerjee racingmason yesterday ago

Table 7: Top and bottom 40 features selected using
IGR for TWUS with a uniform 1.5◦ grid.

As a comparison, Table 7 shows the top and bot-
tom 40 features selected using IGR on the same
corpus. Unlike for logistic regression, the top IGR
features are mostly obscure words, only some of
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Salt Lake San Francisco New Orleans Phoenix Denver Houston Montreal Seattle Tulsa Los Angeles
utah sacramento orleans tucson denver houston montreal seattle tulsa knotts
slc hella jtfo az colorado antonio mtl portland okc sd
salt sac prelaw phoenix broncos texans quebec tacoma oklahoma pasadena
byu niners saints arizona aurora sa magrib wa wichita diego
provo berkeley louisiana asu amarillo corpus rue vancouver ou ucla
ut safeway bourbon tempe soopers whataburger habs bellevue kansas disneyland
utes oakland kmsl scottsdale colfax heb canadian oregon ku irvine
idaho earthquake uptown phx springs otc ouest seahawks lawrence socal
orem sf joked chandler centennial utsa mcgill pdx shaki tijuana
sandy modesto wya fry pueblo mcallen coin uw ks riverside
rio exploit canal glendale larimer westheimer gmusic puyallup edmond pomona
ogden stockton metairie desert meadows pearland laval safeway osu turnt
lds hayward westbank harkins parker jammin poutine huskies stillwater angeles
temple cal bayou camelback blake mayne boul everett topeka usc
murray jose houma mesa cherry katy est seatac sooners chargers
menudito swaaaaggg lawd gilbert siiiiim jamming je ducks straighht oc
mormon folsom gtf pima coors tsu sherbrooke victoria kc compton
gateway roseville magazine dbacks englewood marcos pas beaverton manhattan meadowview
megaplex juiced gumbo mcdowell pikes laredo fkn hella boomer rancho
lake vallejo buku devils rockies texas centre sounders sooner ventura

Table 6: Top 20 features selected for various regions using logistic regression on TWUS with a uniform
5◦ grid.

which have geographic significance, while the bot-
tom words are quite common. To some extent this
is a feature of IGR, since it divides by the binary
entropy of each word, which is directly related
to its frequency. However, it shows why cutoffs
around 90% of the original feature set are neces-
sary to achieve good performance on the Twitter
corpora. (IGR does not perform well on Wikipedia
or COPHIR, as shown above.)

7 Conclusion

This paper demonstrates that major performance
improvements to geolocation based only on text
can be obtained by using a hierarchy of logistic
regression classifiers. Logistic regression also al-
lows for the use of complex, interdependent fea-
tures, beyond the simple unigram models com-
monly employed. Our preliminary experiments
did not show noticeable improvements from bi-
gram or character-based features, but it is pos-
sible that higher-level features such as morpho-
logical, part-of-speech or syntactic features could
yield further performance gains. And, of course,
these improved text-based models may help de-
crease error even further when metadata (e.g. time
zone and declared location) are available.

An interesting extension of this work is to rely
upon the natural clustering of related documents.
Joint modeling of geographic topics and loca-
tions has been attempted (see §1), but has gener-
ally been applied to much smaller corpora than
those considered here. Skiles (2012) found sig-

nificant improvements by clustering the training
documents of large-scale corpora using K-means,
training separate models from each cluster, and es-
timating a test document’s location with the clus-
ter model returning the best overall similarity (e.g.
through KL divergence). Bergsma et al. (2013)
likewise cluster tweets using K-means but predict
location only at the country level. Such methods
could be combined with hierarchical classification
to yield further gains.
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