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Abstract
In Corpus-Based Machine Translation,
the search space of the translation
candidates for a given input sentence
is often defined by a set of (cycle-
free) context-free grammar rules. This
happens naturally in Syntax-Based
Machine Translation and Hierarchi-
cal Phrase-Based Machine Translation
(where the representation will be the
set of the target-side half of the syn-
chronous rules used to parse the input
sentence). But it is also possible to
describe Phrase-Based Machine Trans-
lation in this framework. We propose
a natural extension to this representa-
tion by using lattice-rules that allow
to easily encode an exponential num-
ber of variations of each rules. We also
demonstrate how the representation of
the search space has an impact on de-
coding efficiency, and how it is possible
to optimize this representation.

1 Introduction
A popular approach to modern Machine
Translation is to decompose the translation
problem into a modeling step and a search
step. The modeling step will consist in defin-
ing implicitly a set of possible translations T
for each input sentence. Each translation in
T being associated with a real-valued model
score. The search step will then consist in find-
ing the translation in T with the highest model
score. The search is non-trivial because it is
usually impossible to enumerate all members
of T (its cardinality being typically exponen-
tially dependent on the size of the sentence to
be translated).

Since at least (Chiang, 2007), a common
way of representing T has been through a

cycle-free context-free grammar. In such
a grammar, T is represented as a set of
context-free rules such as can be seen on fig-
ure 1. These rules themselves can be gener-
ated by the modeling step through the use
of phrase tables, synchronous parsing, tree-to-
string rules, etc. If the model score of each
translation is taken to be the sum of rule scores
independently given to each rule, the search
for the optimal translation is easy with some
classic dynamic programming techniques.
However, if the model score is going to take

into account informations such as the lan-
guage model score of each sentence, it cannot
be expressed in such a way. Since the lan-
guage model score has proven empirically to
be a very good source of information, (Chiang,
2007) proposed an approximate search algo-
rithm called cube pruning.
We propose here to represent T using

context-free lattice-rules such as shown in fig-
ure 2. This allows us to compactly encode a
large number of rules. One benefit is that it
adds flexibility to the modeling step, making
it easier: many choices such as whether or not
a function word should be included, the rela-
tive position of words and non-terminal in the
translation, as well as morphological variations
can be delegated to the search step by encod-
ing them in the lattice rules. While it is true
that the same could be achieved by an explicit
enumeration, lattice rules make this easier and
more efficient.
In particular, we show that a decoding al-

gorithm working with such lattice rules can
be more efficient than one working directly on
the enumeration of the rules encoded in the
lattice.
A distinct but related idea of this paper is

to consider how transforming the structure of
the rules defining T can lead to improvements
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Figure 1: A simple cycle-free context grammar
describing a set of possible translations.

in the speed/memory performances of the de-
coding. In particular, we propose a method to
merge and reduce the size of the lattice rules
and show that it translates into better perfor-
mances at decoding time.

In this paper, we will first define more pre-
cisely our concept of lattice-rules, then try to
give some motivation for them in the context
of a tree-to-tree MT system (section 3). In sec-
tion 4, we then propose an algorithm for pre-
processing a representation given in a lattice-
rule form that allows for more efficient search.
In section 5, we describe a decoding algorithm
specially designed for handling lattice-rules.
In section 6, we perform some experiments
demonstrating the merit of our approach.

2 Notations and Terminology

Here, we define semi-formally the terms we
will use in this paper. We assume knowledge
of the classic terminology of graph theory and
context-free grammar.

2.1 Expansion rules
A flat expansion rule is the association of a
non-terminal and a “flat” right hand side that
we note RHS. A flat RHS is a sequence of
words and non-terminal. See figure 1 for an
example of a set of flat expansion rules.

A set of expansion rules is often produced
in Hierarchical or Syntax-Based MT, by pars-
ing with synchronous grammars or otherwise.
In such a case, the set of rules define a rep-
resentation of the (weighted) set of possible
translations T of an input sentence.

2.2 Lattice
In the general sense, a lattice can be described
as a labeled directed acyclic graph. More pre-

cisely, the type of lattice that we consider in
this work is such that:

• Edges are labeled by either a word, a
non-terminal or an epsilon (ie. an empty
string).

• Vertices are only labeled by a unique id
by which they can be designated.

Additionally, edges can also be labeled by a
real-valued edge score and some real-valued
edge features. Alternatively, a lattice could
also be seen as an acyclic Finite State Automa-
ton, with vertices and edges corresponding to
states and transitions in the FSA terminology.
For simplicity, we also set the constraint

that each lattice has a unique “start” ver-
tex labeled vS from which each vertex can be
reached and a unique “end” vertex vE that can
be reached from each vertex. Each path from
vS to vE define thus a flat RHS, with score
and features obtained by summing the score
and features of each edge of the path.
A lattice expansion rule is similar to a flat

expansion rule, but with the RHS being a lat-
tice. Thus a set of lattice expansion rules can
also define a set of possible translations T of
an input sentence.
For a given lattice L, we will often note v ∈
L a vertex of L and e : v1 → v2 ∈ L an edge
of L going from vertex v1 to vertex v2.
Figures 2 and 3 show examples of such lat-

tices.

2.3 Translation set and
Representations

We note T a set of weighted sentences. T is in-
tended as representing the set of scored trans-
lation candidates generated by a MT system
for a given input sentence. As is customary in
Corpus-Based MT literature, we will call de-
coding the process of searching for the trans-
lation with highest score in T .
A representation of T , noted RT is a set of

rules in a given formalism that implicitly de-
fine T . As we mentioned earlier, in MT, RT is
often a set of cycle-free context-free grammar
rules.
In this paper, we consider representations
RT consisting in a set of lattice expansion
rules. With normal context-free grammar, it
is usually necessary that a non-terminal is the
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Figure 2: A simple example of lattice rule for
non-terminal X0. The lower part list the set
of “flat” rules that would be equivalent to the
ones expressed by the lattice.

left-hand side of several rules. Using lattice
expansion rules, however, it is not necessary,
as one lattice RHS can encode an arbitrary
number of flat rules (see for example the RHS
of X0 in figure 3). Therefore, we set the con-
straint that there is only one lattice expansion
rule for each left-hand non-terminal. And we
will note unambiguously RHS(X) the lattice
that is the right hand side of this rule.

3 Motivation

3.1 Setting
This work was developed mainly in the context
of a syntactic-dependency-based tree-to-tree
translation system described in (Richardson et
al., 2014). Although it is a tree-to-tree sys-
tem, we simplify the decoding step by “flatten-
ing” the target-side tree translation rules into
string expansion rules (keeping track of the de-
pendency structure in state features). Thus
our setting is actually quite similar to that
of many tree-to-string and string-to-string sys-
tems. Aiming at simplicity and generality, we
will set aside the question of target-side syn-
tactic information and only describe our algo-
rithms in a “tree-to-string” setting. We will
also consider a n-gram language model score
as our only stateful non-local feature.

However, this tree-to-tree original setting

should be kept in mind, in particular when
we describe the issue of the relative position
of heads and dependents in section 3.2.2, as
such issues do not appear as commonly in “X-
to-string” settings.

3.2 Rule ambiguities
Expansion rules are typically created by
matching part of the input sentence with
some aligned example bilingual sentence. The
alignment (and the linguistic structure of
the phrase in the case of Syntax-Based Ma-
chine Translation) is then used to produce the
target-side rule. However, it is often the case
that it is difficult to fully specify a rule from
an example. Such cases often come from two
main reasons:

• Imperfect knowledge (eg. it is unclear
whether a given unaligned word should
belong to the translation)

• Context dependency (eg. the question of
whether “to be” should be in plural form
or not, depending on its subject in the
constructed translation).

In both situation, it seems like it would be
better to delay the full specification of the
rule until decoding time, when the decoder
can have access to the surrounding context of
the rule and make a more informed choice. In
particular, we can expect features such as lan-
guage model or governor-dependent features
(in the case of tree-to-tree Machine transla-
tion) to help remove the ambiguities.
We detail some cases for which we encode

variations as lattice-rule.

3.2.1 Non-aligned words
When rules are extracted from aligned exam-
ples, we often find some target words which
are not aligned to any source-side word and
for which it is difficult to decide whether or
not they should be included in the rule. Such
words are often function words that do not
have an equivalent in the source language.
In Japanese-English translations, for example,
articles such as “a” and “the” do not typically
have equivalent in the Japanese side, and their
necessity in the final sentence will often be a
matter of context. We can make these edges
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optionals by doubling them with an epsilon-
edge. Different weights and features can be
given to the epsilon edges to balance the ten-
dency of the decoder to skip edges. In figure 2,
this is illustrated by the epsilon edges allowing
to skip “for” and “the”

3.2.2 Non-terminal positions
In the context of our tree-to-tree translation
system, we often find that we know which tar-
get word should be the governor of a given
non-terminal, but that we are unsure of the
order of the words and non-terminals sharing
a common governor. It can be convenient to
represent such ambiguities in a lattice format
as shown in figure 2. In this figure, one can see
that the RHS of X0 encode two possible order-
ing for the word “bus” and the non-terminal
X2.

3.2.3 Word variations
Linguistics phenomenons such as morpholog-
ical variations can naturally create many mi-
nor problems in the setting of Corpus-Based
Translation. Especially if the variations in
the target language have no equivalence in
the source language. An example of this in
Japanese-English translation is the fact that
verbs in Japanese are “plural-independent”,
while the verb “to be” in English is not. There-
fore, a RHS that is a candidate for translating
a large part of a Japanese input sentence can
easily use one of the variant of “to be” that is
not consistent with the full sentence. To solve
this, for each edge corresponding to the words
“is” or “are”, we add an alternative edge with
the same start and end vertices as the other
word. The decoder will then be able to choose
the edge that gives the best language model
score. The same can be done, for example, for
the article “a/an”. Figure 2 provides an exam-
ple of this, with two edges “is” and “are” in
the RHS of X0.

Alternative edges can be labeled with differ-
ent weights and features to tune the tendency
of the decoder to choose a morphological vari-
ation.

While such variations could be fixed in a
post-processing step, we feel it is a better op-
tion to let the decoder be aware of the possible
options, lest it would discard rules due to lan-
guage model considerations when these rules

Figure 3: The lattice RHS(X0) optimized with
the algorithm described in section 4

could actually have been useful with a simple
change.

4 Representation optimisation

4.1 Goal
Given a description as a set of rule and scores
R1

T of T , it is often possible to find another de-
scription R2

T of T having the same formalism
but a different set of rules. Although the T
that is described remains the same, the same
search algorithm applied to R1

T or R2
T might

make approximations in a different way, be
faster or use less memory.
It is an interesting question to try to trans-

form an initial representation R1
T into a rep-

resentation R2
T that will make the search step

faster. This is especially interesting if one is
going to search the same T several times, as is
often done when one is fine-tuning the param-
eters of a model, as this representation opti-
misation needs only be done once.
The optimisation we propose is a natural fit

to our framework of lattice rules. As lattice are
a special case of Finite-State Automata (FSA),
it is easy to adapt existing algorithms for FSA
minimization. We describe a procedure in al-
gorithm 1, which is essentially a simplification
and adaptation to our case of the more gen-
eral algorithm of (Hopcroft, 1971) for FSA.
The central parts of the algorithm are the two
sub-procedures backward vertex merging and
forward vertex merging. An example of the
result of an optimisation is given on figure 3.
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Data: Representation RT

Result: Optimized Representation
1 for non-terminal X ∈ RT do
2 Apply backward vertex merging to

RHS(X);
3 Apply forward vertex merging to

RHS(X);
4 end
Algorithm 1: Representation optimisation

4.2 Forward and backward merging
We describe the forward vertex merging in
algorithm 2. This merging will merge ver-
tices and suppress redundant edges, proceed-
ing from left to right. The end result is a
lattice with a reduced number of vertices and
edges, but encoding the same paths as the ini-
tial one.

The basic idea here is to check the vertices
from left to right and merge the ones that have
identical incoming edges. After having been
processed by the algorithm, a vertex is put in
the set P (line 9). At each iteration, the can-
didate set C contains the set of vertices that
can potentially be merged together. It is up-
dated at each iteration to contain the set of
not-yet-processed vertices for which all incom-
ing edges come from processed vertices (done
by marking edges at line 6 and then updating
C at line 10). At each iteration, the merging
process consists in:

1. Eliminating duplicate edges from the pro-
cessed vertices to the candidate vertices
(line 5). These duplicate edges could have
been introduced by the merging of previ-
ously processed vertices.

2. Merging vertices whose set of incom-
ing edges is identical. Here, merg-
ing two vertices v1 and v2 means
that we create a third vertex v3

such that incoming(v3) = incoming(v1)
= incoming(v2), and outgoing(v3) =
outgoing(v31)

∪
outgoing(v2), then re-

move v1 and v2.

The backward vertex merging is defined
similarly to the forward merging, but with go-
ing right to left and inverting the role of the
incoming and outgoing edges.

Data: Lattice RHS L
Result: Optimized Lattice RHS

1 P ← ∅ //processed vertices;
2 C ← {vS} //candidate set ;
3 while |C| > 0 do
4 for v ∈ C do
5 Eliminate duplicate edges in

incoming(v);
6 Mark edges in outgoing(v);
7 end
8 Merge all vertices v1, v2 ∈ C such that

incoming(v1) = incoming(v2);
9 P ← P∪ C;

10 C ← {v ∈ L∖ P s.t. all edges in
incoming(v) are marked};

11 end
Algorithm 2: Forward Vertex Merging

4.3 Optimizing the whole
representation

Algorithm 1 describe the global optimisation
procedure. For each lattice RHS, we just per-
form first a backward merge and then a for-
ward merge.
We have set the constraint in section 2.3

that each non-terminal should have only one
lattice RHS. Note here that if there are sev-
eral RHS for a given non-terminal, we can first
merge them by merging their start vertex and
end vertex, then apply this optimisation al-
gorithm to obtain a representation with one
optimised RHS per non-terminal.
This optimisation could be seen as doing

some form of hypothesis recombination, but of-
fline.
In term of rule optimisations, we only con-

sider here transformations that do not mod-
ify the number of non-terminals. But it is
worthwhile to note that there are some se-
quence appearing in the middle of some rules
that cannot be merged through a lattice rep-
resentation, but could be factored as sub-rules
appearing in different non-terminals. Indeed,
a lattice rule could actually be encoded as a
set of “flat” rules by introducing a sufficient
number of non-terminals, but this could pos-
sibly be less efficient from the search algorithm
point of view. We plan to investigate the ef-
fects of this type of rule optimisations in con-
junction with the described lattice-type opti-
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misations in the future.

4.4 Handling of Edge Features
In the context of parameter tuning, we usually
want the decoder to output not only the trans-
lations, but also a list of features characteriz-
ing the way the translation was constructed.
Such features are, for example, the number of
rules used, the language model of the transla-
tion, etc. In out context, some features will be
dependent on the specific edges used in a rule.
For example, the epsilon edge used to option-
ally skip non-aligned words (see section 3.2.1)
is labeled with a feature “nb-words-skipped”
set to 1, so that we can obtain the number
of words skipped in a given translation and
tune a score penalty for skipping such words.
Similar features also exist for picking a word
variation (section 3.2.3).

In the description of the merging process
of section 4.2, one should thus be aware that
two edges are to be considered identical only
if both their associated word and their set of
feature values are identical. This can some-
times prevent useful merging of states to take
place. A solution to this could be to follow
(de Gispert et al., 2010) and to discard all
these features information during the decod-
ing. The features values are then re-estimated
afterward by aligning the translation and the
input with a constrained version of the de-
coder.

We prefer to actually keep track of the fea-
tures values, even if it can reduce the efficiency
of vertex merging. In that setting, we can also
adapt the so-called Weight Pushing algorithm
(Mohri, 2004) to a multivalues case in order
to improve the “mergeability” of vertices. The
results of section 6.1 shows that it is still pos-
sible to strongly reduce the size of the lattices
even when keeping track of the features values.

5 Decoding algorithm

In order to make an optimal use of these
lattice-rule representations, we developed a
decoding algorithm for translation candidate
sets represented as a set of lattice-rules. For
the most part, this algorithm re-use many of
the techniques previously developed for decod-
ing translation search spaces, but adapt them
to our setting.

5.1 Overview
The outline of the decoding algorithm is de-
scribed by algorithm 3. For simplicity, the
description only compute the optimal model
score over the translations in the candidate set.
It is however trivial to adapt the description
to keep track of which sentence correspond to
this optimal score and output it instead of the
score. Likewise, using the technique described
in (Huang and Chiang, 2005), one can easily
output k-best lists of translations. For sim-
plicity again, we consider that a n-gram lan-
guage model score is the only stateful non-
local feature used for computing the model
score, although in a tree-to-tree setting, other
features (local in a tree representation but not
in a string representation) could be used. The
model score of a translation t has therefore the
shape:

score(t) = λ · lm(t) +
∑

e

score(e)

where λ is the weight of the language model,
lm(t) is the language model log-probability of
t and the sum is over all edges e crossed to
obtain t.

5.2 Scored language model states
Conceptually, in a lattice L, at each vertex
v, we can consider the partial translations ob-
tained by starting at vS and concatenating the
words labeling each edge not labeled by a non-
terminal until v. If an edge is labeled by a non-
terminal X, we first traverse the correspond-
ing lattice RHS(X) following the same pro-
cess. Such a partial translation can be reduced
compactly to a scored language model state
(l, r, s), where l represent the first n words1 of
the partial translation, r its last n words and s
its partial score. It is clear that if two partial
translations have the same l and r parts but
different score, we can discard the one with
the lowest score, as it cannot be a part of the
optimal translation.
Further, using the state reduction tech-

niques described in (Li and Khudanpur, 2008)
and (Heafield et al., 2011), we can often reduce
the size of l and r to less than n, allowing fur-
ther opportunities for discarding sub-optimal

1n being the order of the language mode
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partial translations. For better behavior dur-
ing the cube-pruning step of the algorithm (see
later), the partial score s of a partial transla-
tion includes rest-costs estimates (Heafield et
al., 2012).

We define the concatenation operation
on scored language model states to be:
(l1, r1, s1) ⊕ (l2, r2, s2) = (l3, r3, s3), where
s3 = s1 + s2 + λlm(r1, l2), with lm(r1, l2) be-
ing the language model probability of l2 given
r1 with rest-costs adjustments. r3 and l3 are
the resulting minimized states. Similarly, if
an edge e is labeled by a word, we define
the concatenation of a scored state with an
edge to be (l1, r1, s1) ⊕ e = (l2, r2, s2) where
s2 = s1 + score(e) + λlm(word(e)|r1).

Conveniently for us, the KenLM2 open-
source library (Heafield, 2011) provides func-
tionalities for easily computing such concate-
nation operations.

5.3 Algorithm
Having defined these operations, we can now
more easily describe algorithm 3. Each vertex
v has a list best[v] of the scored states of the
best partial translations found to be ending
at v. On line 1, we initialize best[vS ] with
(., ., 0), where “.” represent an empty language
model state. We then traverse the vertices of
the lattice in topological order.

For each edge e : v1 → v2, we compute new
scored states for best[v2] as follow:

• if e is labeled by a word or an epsilon, we
create a state st2 = st1⊕ e for each st1 in
best[v1] (line 10).

• if e is labeled by a non-terminal X, we re-
cursively call the decoding algorithm on
the lattice RHS(X). The value returned
by the line 15 will be a set of states corre-
sponding to optimal partial translations
traversing RHS(X). We can concate-
nate these states with the ones in best[v1]
to obtain states corresponding to partial
translations ending at v2 (line 6).

Results of the calls decode(X) are memo-
ized, as the same non-terminal is likely to ap-
pear in several edges of a RHS and in several
RHS.

2http://kheafield.com/code/kenlm/

Lines 5 and 6 are the “cube-pruning-like”
part of the algorithm. The function pruneK

returns the K best combinations of states
in best[v] and decode(RHS(X)), where best
means “whose sum of partial score is highest”.
It can be implemented efficiently through the
algorithms proposed in (Huang and Chiang,
2005) or (Chiang, 2007).
The L ←max st operation on lines 6 and

10 has the following meaning: L is a list of
scored language model state and st is a scored
language model state. L←max st means that,
if L already contains a state st2 with same left
and right state as st, L is updated to contain
only the scored state with the maximum score.
If L do not contain a state similar to st, st in
simply inserted into L. This is the “hypothe-
sis recombination” part of the algorithm. The
function truncK′ truncate the list best[v] to its
K ′ highest-scored elements.
The final result is obtained by calling

decode(X0), where X0 is the “top-level” non-
terminal. The result of decode(X0) will
contain only one scored state of the form
(BOS, EOS, s), with s being the optimal
score.
The search procedure of algorithm 3 could

be described as “breadth-first”, since we sys-
tematically visit each edge of the lattice. An
alternative would be to use a “best-first”
search with an A*-like procedure. We have
tried this, but either because of optimisation
issues or heuristics of insufficient qualities, we
did not obtain better results than with the al-
gorithm we describe here.

6 Evaluation

We now describe a set of experiments aimed
at evaluating our approach.
We use the Japanese-English data from the

NTCIR-10 Patent MT task3 (Goto et al.,
2013). The training data contains 3 millions
parallel sentences for Japanese-English.

6.1 Effect of Lattice Representation
and Optimisation

We first evaluate the impact of the lattice rep-
resentation on the performances of our decod-
ing algorithm. This will allow us to measure

3http://ntcir.nii.ac.jp/PatentMT-2/
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Data: Lattice RHS L
Result: Sorted list of best states

1 best[vE ] = {(.,.,0.0)};
2 for vertex v ∈ L in topological order do
3 for edge e : v → v2 ∈ outgoing(v) do
4 if label(e) = X then
5 for st1, st2 ∈ pruneK(best[v],

decode(RHS(X)) do
6 best[v2]←max st1 ⊕ st2;
7 end
8 else
9 for st ∈ truncK′(best[v]) do

10 best[v2]←max st⊕ e;
11 end
12 end
13 end
14 end
15 return best[vE ];

Algorithm 3: Lattice-rule decoding. See
body for detailed explanations.

the benefits of our compact lattice represen-
tation of rules, as well as the benefits of the
representation optimisation algorithm of sec-
tion 4.

We use our Syntactic-dependency system to
generate a lattice-rule representation of the
possible translations of the 1800 sentences of
the development set of the NTCIR-10 Patent
MT task. We then produce two additional rep-
resentations:

1. An optimized lattice-rule representation
using the method described in section 4.

2. An expanded representation, that un-
fold the original lattice-rule representa-
tion into “flat rules” enumerating each
path in the original lattice-rule represen-
tation (like the list X0′ enumerate the lat-
tice X0 in figure 2).

Table 1 shows 3 columns. One for each of
these 3 representations. We can see that, as
expected, the performances in term of average
search time or peak memory used are directly
related to the number of vertices and edges
in the representation. We can also see that
our representation optimisation step is quite
efficient, since it is able to divide by two the
number of vertices in the representation, on

average. This leads to a 2-fold speed improve-
ment in the decoding step, as well as a large
reduction of memory usage.

6.2 Decoding performances
In order to further evaluate the merit of our
approach, we now compare the results ob-
tained by using our decoder with lattice-rules
with using a state-of-the-art decoder on the
set of flat expanded rules equivalent to these
lattice rules.
We use the decoder described in (Heafield

et al., 2013), which is available under an open-
source license4 (henceforth called K-decoder).
In this experience, we expanded the lattice
rules generated by our MT system for 1800
sentences into files having the required format
for the K-decoder. This basically mean we
computed an equivalent of the expanded rep-
resentation of section 6.1. This process gener-
ated files ranging in size from 20MB to 17GB
depending on the sentence. We then ran the
K-decoder on these files and compared the re-
sults with our own. We used a beam-width
of 10000 for the K-decoder. Experiments were
run in single thread mode. Partly to obtain
more consistent results, and partly because the
K-decoder was risking using too much memory
for our system.
The results on table 3 show that, as the K-

decoder do not have access to a more compact
representation of the rules, it end up needing
a much larger amount of memory for decoding
the same sentences.
In term of model score obtained, the perfor-

mances are quite similar, with the lattice-rule
decoder providing slightly better model score.
It is interesting to note that, on “fair-

ground” comparison, that is if our decoder do
not have the benefit of a more compact lattice-
rule representation, it actually perform quite
worse as we can see by comparing with the
third column of table 1 (at least in term of de-
coding time and memory usage, while it would
still have a very slight edge in term of model
score with the selected settings). On the other
hand, the K-decoder is a rather strong base-
line, shown to perform several times faster
than a previous state-of-the-art implementa-
tion in (Heafield et al., 2013). It is well opti-

4http://kheafield.com/code/search/
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Representation: Original Optimized Expanded
Peak memory used 39 GB 16GB 85GB
Average search time 6.13s 3.31s 9.95s
#vertices (avg/max) 65K (1300K) 32K (446K) 263K (5421K)
#edges (avg/max) 92K (1512K) 83K (541K) 263K (5421K)

Table 1: Impact of the lattice representation on performances.

System JA–EN
Lattice 29.43

No-variations 28.91
Moses (for scale) 28.86

Table 2: Impact on BLEU of using flexible
lattice rules.

mized and makes use of advanced techniques
with the language model (as the one described
in (Heafield et al., 2013)) for which we do not
have implemented an equivalent yet. There-
fore, we are hopeful we can further improve
our decoder in the future.

Also, note that, for practical reason, while
we only measured the decoding time for our
decoder 5, the K-decoder time include the time
taken for loading the rule files.

6.3 Translation quality

Finally, we evaluate the advantages of ex-
tracting lattice rules such as proposed in sec-
tion 3. That is, we consider rules for which
null-aligned words are bypassable by epsilon-
edges, for which Non-terminal are allowed to
take several alternative positions around the
word that is thought to be their governor, and
for which we consider alternative morphologies
of a few words (“is/are”, “a/an”). We compare
this approach with heuristically selecting only
one possibility for each variation present in the
lattice rule extracted from a single example.

Results shown on figure 2 show that we
do obtain a significant improvement in trans-
lation quality. Note that the Moses score
(Koehn et al., 2007), taken from the official re-
sults of NTCIR-10 is only here “for scale”, as
our MT system uses a quite different pipeline.

5in particular, we factored out the representation
optimisation time, which is reasonable if we are in the
setting of a parameter tuning step in which the same
sentences are translated repeatedly

7 Related work

Searching for the most optimal translation in
an implicitly defined set has been the focus of
a lot of research in Machine Translation and
it would be difficult to cover all of it. Among
the most influential approaches, (Koehn et al.,
2003) was using a form of stack based de-
coding for Phrase-Based Machine Translation.
(Chiang, 2007) introduced the cube-pruning
approach, which has been further improved
in the previously mentioned (Heafield et al.,
2013). (Rush and Collins, 2011) recently pro-
posed an algorithm promising to find the op-
timal solution, but that is rather slow in prac-
tice.
Weighted Finite State Machines have seen

a variety of use in NLP (Mohri, 1997). More
specifically, some other previous work on Ma-
chine Translation have used lattices (or more
generally Weighted Finite State Machines). In
the context of Corpus-Based Machine Trans-
lation, (Knight and Al-Onaizan, 1998) was al-
ready proposing to use Weighted Transducers
to decode the “IBM” models of translation
(Brown et al., 1993). (Casacuberta and Vi-
dal, 2004) and (Kumar et al., 2006) also pro-
pose to directly model the translation process
with Finite State Transducers. (Graehl and
Knight, 2004) propose to use Tree Transducers
for modeling Syntactic Machine Translation.
These approaches are however based on differ-
ent paradigm, typically trying to directly learn
a transducer rather than extracting SCFG-like
rules.
Closer to our context, (de Gispert et al.,

2010) propose to use Finite-State Transducers
in the context of Hierarchical Phrase Based
Translation. Their method is to iteratively
construct and minimize the full “top-level lat-
tice” representing the whole set of translations
bottom-up. It is an approach more focused
on the Finite State Machine aspect than our,
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System K-decoder Lattice-rule decoder
Peak memory used 52G 16G
Average search time 3.47s 3.31s
Average model score -107.55 -107.39

Nb wins 401 579

Table 3: Evaluation of the performances of our lattice-rule decoder compared with a state-of-
the-art decoder using an expanded flat representation of the lattice rules. “Nb wins” is the
number of times one of the decoder found a strictly better model score than the other one, out
of 1800 search.

which is more of an hybrid approach that stays
closer to the paradigm of cube-pruning. The
merit of their approach is that they can apply
minimization globally, allowing for more possi-
bilities for vertex merging. On the other hand,
for large grammars, the “top-level lattice” will
be huge, creating the need to prune vertices
during the construction. Furthermore, the
composition of the “top-level lattice” with a
language model will imply redundant compu-
tations (as lower-level lattices will potentially
be expanded several times in the top-level lat-
tice). As we do not construct the global lattice
explicitly, we do not need to prune vertices (we
only prune language model states). And each
edge of each lattice rule is crossed only once
during our decoding.

Very recently, (Heafield et al., 2014) also
considered using the redundancy of translation
hypotheses to optimize phrase-based stack de-
coding. To do so, they group the partial hy-
potheses in a trie structure.

We are not aware of other work proposing
“lattice rules” as a native format for express-
ing translational equivalences. Work like (de
Gispert et al., 2010) rely on SCFG rules cre-
ated along the (Chiang, 2007) approach, while
work like (Casacuberta and Vidal, 2004) adopt
a pure Finite State Transducer paradigm (thus
without explicit SCFG-like rules).

8 Conclusion
This work proposes to use a lattice-rule repre-
sentation of the translation search space with
two main goals:

• Easily represent the translation ambigui-
ties that arise either due to lack of context
or imperfect knowledge.

• Have a method for optimizing the repre-

sentation of a search space to make this
search more efficient.

We demonstrate that many types of am-
biguities arising when extracting translation
rules can easily be expressed in this frame-
work, and that making these ambiguities ex-
plicit and solvable at compile time through
lattice-rules leads to improvement in transla-
tion quality.
We also demonstrate that making a direct

use of the lattice-rules representation allows a
decoder to perform better than if working on
the expanded set of corresponding “flat rules”.
And we propose an algorithm for computing
more efficient representations of a translation
candidate set.
We believe that the the link between the

representation of a candidate set and the de-
coding efficiency is an interesting issue and
we intend to explore further the possibilities
of optimizing representations both in the con-
texts we considered in this paper and in others
such as Phrase-Based Machine Translation.
The code of the decoder we implemented for

this paper is to be released under a GPL li-
cense6.
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