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Abstract

Active learning (AL) consists of asking human
annotators to annotate automatically selected
data that are assumed to bring the most bene-
fit in the creation of a classifier. AL allows to
learn accurate systems with much less anno-
tated data than what is required by pure super-
vised learning algorithms, hence limiting the
tedious effort of annotating a large collection
of data.

We experimentally investigate the behav-
ior of several AL strategies for sequence
labeling tasks (in a partially-labeled sce-
nario) tailored on Partially-Labeled Condi-
tional Random Fields, on four sequence la-
beling tasks: phrase chunking, part-of-speech
tagging, named-entity recognition, and bio-
entity recognition.

1 Introduction
Today, the state-of-the-art methods in most natural lan-
guage processing tasks are supervised machine learn-
ing approaches. Their main problem lies in their need
of large human-annotated training corpus, which re-
quires a tedious and expensive work from domain ex-
perts. The process of active learning (AL) employs one
or more human annotators by asking them to label new
samples which are supposed to be the most informa-
tive in the creation of a new classifier. A classifier is
incrementally retrained with all the data labeled by the
annotator. AL has been demonstrated to work well and
to produce accurate classifiers while saving much hu-
man annotation effort. One critical issue is to define
a measure of the informativeness which should reflect
how much new information a new example would give
in the learning of a new classifier once annotated.

A lot of work has been done on the AL field in
the past years (see (Settles, 2012) for an exhaustive
overview). In particular, AL proved its usefulness in se-
quence labeling tasks (Settles and Craven, 2008). Yet,
researchers have always adopted as annotation unit an
entire sequence (i.e., the annotator is asked to anno-
tate the whole sequence) while it looks like it could be
much more relevant to ask for labeling only small parts
of it (e.g., the ones with highest ambiguity). A few

works have investigated this idea. For instance, Wan-
varie et al. (2011) proposed to use Partially-Labeled
Conditional Random Fields (PL-CRFs) (Tsuboi et al.,
2008), a semi-supervised variation of Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001) able to deal
with partially-labeled sequences, thus enabling to adopt
as annotation unit single tokens and still learning from
full sequences. AL with partially labeled sequences
has proven to be effective in substantially reducing the
amount of annotated data with respect to common AL
approaches (see (Wanvarie et al., 2011)).

In this work we focus on AL strategies for partially
labeled sequences adopting the single token as annota-
tion unit and PL-CRFs as learning algorithm given its
nature in dealing with partially labeled sequences. We
propose several AL strategies based on measures of un-
certainty adapted for the AL with partially labeled se-
quences scenario and tailored on PL-CRFs. We further
propose two strategies that exploit the finer granularity
given by the partially-labeled scenario. We also show
that the choice of single-token annotation can bring
to unpredictable results on sequence labeling tasks in
which the structure of the sequences is not regular, e.g.,
named-entity recognition. We propose a first solution
to the problem of unpredictability. The aim of this
work is thoroughly compare the effectiveness and the
behavior of all the proposed AL strategies on four stan-
dard sequence labeling tasks, phrase chunking, part-
of-speech tagging, named-entity recognition and bio-
entity recognition.

The remainder of this paper is as follows. In Sec-
tion 2 we summarize the related work in AL, in Sec-
tion 3 we describe PL-CRFs, the semi-supervised al-
gorithm we adopt in this work. Section 4 describes
in details the AL framework and the AL strategies we
propose. Section 5 provides a description of the experi-
mental setting, the datasets, and discusses the empirical
results. Section 6 summarizes our findings.

2 Related Work

Our work belongs to the pool-based AL framework. It
considers the case in which a large amount (pool) of
unlabeled examples is available, from which samples
to be labeled must be chosen. This framework fits all
the sequence labeling problems we consider here. For
a more exhaustive survey on other AL frameworks see

898



(Settles, 2012).
Most of the AL works on sequence labeling adopted

the entire sequence as annotation unit (Settles and
Craven, 2008) which was demonstrated by Wanvarie
et al. (2011) to be less effective than using the single
token as annotation unit. The main AL works in this
latter line of work are (Shen et al., 2004), (Tomanek
and Hahn, 2009) and (Wanvarie et al., 2011). Shen
et al. (2004) adopted SVMs as learning algorithm and
proposed two strategies that combine three criteria, in-
formativeness, representativeness and diversity. SVMs
allowed them to use as annotation unit a subset of the
tokens in a sequence, without annotating, in any way,
the rest of the tokens in the sequence. In (Tomanek and
Hahn, 2009), the most uncertain tokens of the sequence
are singularly annotated, but the rest of the labels in the
sequence are then chosen by the classifier in a semi-
supervised fashion. Wanvarie et al. (2011) is the clos-
est work to ours, they adopt a minimum confidence se-
lection strategy with re-estimation using the PL-CRFs.
Differently from our work, Wanvarie et al. (2011) show
that adopting the AL with partially labeled sequences
using re-estimation, the annotation cost can be dramat-
ically reduced (by annotating from 8% to 10% of the
tokens of the entire training set), obtaining the same
level of performance of the classifier trained on the en-
tire, fully-labeled, training set. We started our work
from this conclusion and we focused on AL with par-
tially labeled sequences using re-estimation by compar-
ing several AL strategies in order to find the strategy
that allows to create the best classifier with the mini-
mum annotation effort.

3 Partially-Labeled
Conditional Random Fields

Nowadays, CRFs are the de-facto standard for the so-
lution of sequence labeling tasks (Sarawagi, 2008). In
traditional CRFs (Lafferty et al., 2001) the conditional
probability of a sequence of labels y given a sequence
of observed feature vectors x is given by:

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(y,x) (1)

where a standard choice for sequence labeling tasks are
the so called Linear-chain CRFs:

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt) (2)

with:

Ψt(yt, yt−1,xt) = Ψu(yt, xt)Ψb(yt, yt−1) (3)

where Ψu(yt, xt) models the co-occurrence between
features xt, and label yt at time t, and Ψb(yt, yt−1)
models the co-occurrence between two adjacent labels
yt and yt−1.

PL-CRFs introduced by Tsuboi et al. (2008) allow to
learn a CRF model using partially-labeled sequences,
marginalizing on those tokens that do not have an as-
signed label. In PL-CRFs, L denotes a partially labeled
information about a sequence. It consists of a sequence
of sets Lt in which Lt = Y (where Y is the set of all
the possible labels) if there is no label information for
token at time t. Lt is a singleton containing yt if the
label of the token at time t is known, and YL is the set
of label sequences that fits the partial label information
L. Then the probability of a partial labeling may be
computed as:

p(YL|x) =
∑

y∈YL

p(y|x) (4)

In order to perform inference and parameter learning
on PL-CRFs, some modifications on traditional CRFs
inference algorithms are required.

3.1 Forward-Backward Algorithm
Differently from traditional CRFs, the forward and
backward scores (respectively α and β), are calculated
as follows:

αt,L(j) =


0 if j 6∈ Lt

Ψ1(j, y0, x1) else if t = 1
and j ∈ Lt

SA(j) otherwise

(5)

βt,L(i) =


0 if j 6∈ Lt

1 else if t = T
and j ∈ Lt

SB(j) otherwise

(6)

where

SA(j) =
∑

i∈Lt−1

αt−1,L(i)Ψt(j, i, xt) (7)

SB(j) =
∑

j∈Lt+1

βt+1,L(j)Ψt+1(j, i, xt+1) (8)

and y0 is a special label that encodes the beginning of
a sequence.

3.2 Marginal Probability
The marginal probability p(yt = j|x,L) is calculated
as:

p(yt = j|x,L) =
αt,L(j) · βt,L(j)

ZL(x)
(9)

with:

∀t, ZL(x) =
∑
j∈Lt

αt,L(j) · βt,L(j) (10)

In case there is no label information, the formulas for
forward and backward scores (Equations (5) and (6))
and for the marginal probabilities (Equation (9)) yield
the standard results of CRFs.
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3.3 Viterbi Algorithm
The most probable sequence assignment may be de-
rived with a Viterbi algorithm by recursively comput-
ing the following quantities:

δt,L(j) =


0 if j 6∈ Lt

Ψ1(j, y0, x1) else if t = 1
and j ∈ Lt

M(j) otherwise

(11)

where

M(j) = max
i∈Lt−1

δt−1,L(i)Ψt(j, i, xt) (12)

The most probable assignment is then calculated as:
y∗ = argmaxyp(y|x,L)

3.4 Log-Likelihood
PL-CRFs’s parameters θ are learnt through maximum
log-likelihood estimation, that is to maximize the log-
likelihood function LL(θ):

LL(θ) =
N∑

i=1

log p(YL(i) |x(i))

=
N∑

i=1

logZY
L(i) (x(i))− logZY(x(i))

(13)

The parameters θ that maximize Equation (13) are
computed via the LBFGS optimization method (Byrd
et al., 1994).

4 Active Learning Strategies
Pool-based AL (see (Lewis and Catlett, 1994)) is prob-
ably the most common scenario in AL, where one has
a large amount (pool) of unlabeled examples U1 and a
small amount of labeled examples T1. In this scenario,
the process of AL consists in a series of n iterations
where a classifier Φi is trained with labeled examples
Ti, and then is used to classify the unlabeled examples
Ui. At this point an AL strategy S will select a number
of examplesB that once labeled will hopefully improve
the performance of the next classifier Φi+1.

Algorithm 1 shows the pool-based AL framework
for partially annotated sequences as introduced in
(Wanvarie et al., 2011). Differently from AL for fully
labeled sequences (Esuli et al., 2010), thanks to the
finer granularity of the partially labeled model, we use
the token as basic annotation unit, instead of the entire
sequence.

The point of using the partial labeling is in saving the
request for human annotations on tokens whose labels
are already known (inferred) by the classifier and con-
centrate on those tokens that the classifier finds hard to
label. Using the semi-supervised approach of the PL-
CRFs we can take advantage of single-labeled tokens
instead of an entire labeled sequence.

The entire pool-based AL process with partially la-
beled sequences is summarized in Algorithm 1. The

Algorithm 1 Pool-based active learning framework

Require: T1, the initial training set
U1, the initial unlabeled set
S, the selected AL strategy
n, the number of iterations
B, the dimension of the update batch

1: for i← 1 to n do
2: Φi ← train(Ti)
3: Li ← Φi(Ui)
4: for b← 1 to B do
5: x(b)

∗ ← arg minxt∈x,x∈Li
S(t,x)

6: Li ←Li − x(b) ∪ Φi(x(b), y∗)
7: Ui← Ui − x(b)

∗ ∪ (x(b)
∗ , y∗)

8: Ti ← Ti − x(b)
∗ ∪ (x(b)

∗ , y∗)
9: Ui+1← Ui

10: Ti+1← Ti

function S(t,x) is what, hereafter, we call an AL strat-
egy. S(t,x) takes as input an automatically annotated
sequence x and an element t of this sequence, from the
set of sequences Li annotated by the PL-CRF classi-
fier Φi, and returns a measure of informativeness as a
function of the classifier decision.

For each iteration through the update batch B, the
most informative element x(b)

∗ , according to the AL
strategy, is chosen. The subscript ∗, in this case, repre-
sents the most informative token, while the superscript
(b) represents the sequence in which the token appears.
After the choice of the most informative token the sets
Li, Ui and Ti are updated. Li is updated by remov-
ing the annotated sequence x(b) and all the informa-
tion given by the classifier, and by adding the same se-
quence with the new manually labeled token (y∗) and
all the re-estimated annotation given by the classifier
Φi(x(b), y∗). In the unlabeled set Ui and the training
set Ti the most informative token x(b)

∗ is updated with
its manually labeled version (x(b)

∗ , y∗)1. After B token
annotations, the unlabeled set and the training set for
the next iteration, respectively Ui+1 and Ti+1, are up-
dated.

The inference methods of Section 3 allow not only
to train a CRF model with partially labeled sequences,
but give the possibility of classifying partially labeled
sequences, using the known labels as support for the
prediction of the other ones. Thus, in this AL scenario,
each time a token is chosen it is immediately labeled,
and this new information, as we can see from line 6 of
Algorithm 1, is promptly used to re-estimate the infor-
mativeness of the other tokens in the sequence in which
the chosen token appears.

One may argue that, for a human annotator, anno-

1In order to have a light notation we omit the fact that
when the most informative token is the first annotated token
of a sentence, the whole sentence, with just one annotated
token, is added to the training set Ti
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tating only one or few tokens, instead of the entire se-
quence, is a difficult task. This would be correct in
the scenario in which the text is presented to the hu-
man annotator without any visual clue about the an-
notations. However, in (Culotta and McCallum, 2005)
it is shown that presenting to the human annotator the
highlighted sequence to be annotated along with the as-
sociated sequence of labels obtained by the classifier
requires much less effort from the annotator than per-
forming the annotation without any visual and contex-
tual clue.

4.1 Greedy Strategies
In this section we present three AL strategies that select
the most informative tokens, regardless of the assign-
ment performed by the Viterbi algorithm. The ratio-
nale behind these strategies is that, even though we are
looking for the most probable sequence assignment, we
also want to annotate the most informative tokens sin-
gularly.

The Minimum Token Probability (MTP) strategy
employs as measure of informativeness the probability
of the most probable assignment at time t. This strategy
greedily samples the tokens whose highest probability
among the labels is lowest.

SMTP (t,x) = max
j∈Y

p(yt = j|x,L) (14)

The Maximum Token Entropy (MTE) strategy relies
on the entropy measure to evaluate the ambiguity about
the label of a token. The rationale of it is that, if more
than one label have the same assigned marginal proba-
bility, the entropy will be high, that is,

SMTE(t,x) =∑
j∈Y

p(yt = j|x,L) · log p(yt = j|x,L) (15)

In order to directly plug the SMTE strategy into the AL
framework of Algorithm 1, we removed the minus sign
at the beginning of the entropy formula. This allow
us to use the min operator with a maximum entropy
approach.

The Minimum Token Margin (MTM) strategy is
a variant of the margin sampling strategy introduced
in (Scheffer et al., 2001). It calculates the informative-
ness by considering the two most probable assignments
and by subtracting the highest probability by the low-
est. With max ′ that calculates the second maximum
value, MTM is defined as:

SMTM (t,x) =
max
j∈Y

p(yt =j|x,L)−max
j∈Y

′p(yt = j|x,L) (16)

4.2 Viterbi Strategies
The following AL strategies take into consideration the
most probable sequence assignments obtained from the
Viterbi algorithm computed on already known labels in
the sequence.

The rationale is that, with these strategies, the mea-
sure of uncertainty is chosen according to the informa-
tion obtained from the outcome of the Viterbi algorithm
(i.e., the most probable sequence assignment).

The Minimum Viterbi Probability (MVP) is the
base strategy adopted in (Wanvarie et al., 2011). It
takes as measure of informativeness the probability of
the label chosen by the Viterbi algorithm.

SMV P (t,x) = p(y∗t |x,L) (17)

where y∗t is the label assignment chosen by the Viterbi
algorithm. In general, the token assignments that max-
imize the probability of the sequence assignment y∗t
are different from the token assignments that maxi-
mize the probability of the individual token assign-
ments argmaxj∈Yp(yt = j).

The Maximum Viterbi Pseudo-Entropy (MVPE)
strategy calculates for each token the “pseudo” entropy
of the most probable sequences at the variation of the
label at position t. The prefix pseudo is used because
even though it is calculated as an entropy, the summa-
tion is over all the possible labels that can be associated
to a token, and not all the possible sequence assign-
ments.

SMV PE(t,x) =∑
j∈Y

p(y∗yt=j |x,L) · log p(y∗yt=j |x,L) (18)

where y∗yt=j represents the most probable assignment
with the label at time t constrained to the value j. As
in the MTE strategy the minus sign is removed in order
to plug the functions directly into the AL framework of
Algorithm 1.

The Minimum Viterbi Margin (MVM) strategy
calculates the difference of the sequence probabili-
ties of the two most probable sequence assignments
at the variation of the label at time t. When the dif-
ference at time t is low, the Viterbi algorithm, in that
time, chooses between two almost equally probable, se-
quence assignments. Formally:

SMV M (t,x) = p(y∗y∗t |x,L)− p(y′∗y′∗t |x,L) (19)

where y′∗ is the second most probable assignment.
PL-CRFs allow us to inspect one token at time in or-

der to decide if it is worth to annotate. This fact give
us the possibility of exploit two quantities in order to
estimate the informativeness of a token, the sequence
probability, usually adopted in the traditional AL for
sequence labeling, and the marginal probabilities of the
single tokens as in Section 4.1. The Minimum Expec-
tation (ME) strategy combines the marginal probabili-
ties, p(yt = j|x,L) and p(y∗yt=j |x,L).

SME(t,x) =
∑
j∈Y

p(yt = j|x,L) · p(y∗yt=j |x,L)

(20)
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Here the maximum sequence probability is seen as a
function, and what we calculate is the expected value of
this very function. The rationale of this strategy is pick-
ing those tokens in which both, the sequence probabil-
ity returned by the Viterbi algorithm, and the marginal
probability of the considered labels are low.

Given that the ME strategy gives a high weight to
the sequence probability, one might expect that tokens
that belongs to longer sequences are selected more fre-
quently, given that, the sequence probability of longer
sequences is usually lower than shorter ones. One way
to normalize this difference is subtracting the current
maximum sequence probability, that is, the maximum
sequence probability calculated without any new label
estimation, to the expected value obtained from the es-
timation of the label assignment of the token. This is
the Minimum Expectation Difference (MED) strat-
egy.

SMED(t,x) = SME(t,x)− p(y∗|x,L) (21)

The rationale of this strategy is that when the expected
value is far from the maximum value, that is the value
returned by the Viterbi algorithm, it means that we have
uncertainty on the token taken into consideration.

The Random (RAND) strategy samples random to-
kens without any external information. It is used as
baseline to compare the real effectiveness of the pro-
posed strategy.

At the best of our knowledge the strategies presented
in this section (with the exception of the MVP strategy)
have never been applied in the context of AL with par-
tially labeled sequences scenario.

5 Experiments

5.1 Datasets

We have experimented and evaluated the AL strate-
gies of Section 4 on four sequence labeling tasks,
part-of-speech tagging, phrase chunking, named-entity
recognition and bio-entity recognition. We used the
CoNLL2000 dataset (Tjong Kim Sang and Buchholz,
2000) for the phrase chunking task, the CoNLL2003
dataset (Tjong Kim Sang and De Meulder, 2003),
for the named-entity recognition task, the NLPBA2004
dataset (Kim et al., 2004), for the biomedical entity
recognition task and the CoNLL2000POS dataset2 for
the part-of-speech labeling task. All the datasets are
publicly available and are standard benchmarks in se-
quence labeling tasks. Table 1 shows some statistics of
the datasets in terms of dimensions, number of labels,
distribution of the labels, etc. The data heterogeneity of
the different datasets allowed us to test the AL strate-
gies on different “experimental settings”, thus to have
a more robust empirical evaluation.

2This is the CoNLL2000 dataset annotated with part-of-
speech labels instead of chunking labels.

5.2 Experimental Setting

We tested the AL strategies described in Section 4
on test sets composed by 2012 sequences and 47377
tokens for the CoNLL2000 and CoNLL2000POS
datasets, by 3452 sequences and 46394 tokens for
the CoNLL2003 dataset and by 3856 sequences and
101039 tokens for the NLPBA2004 dataset. We
chose an initial training set T1 of ∼5 sequences on
CoNLL2000 and CoNLL2000POS datasets, ∼7 se-
quences on CoNLL2003 dataset and ∼4 sequences on
NLPBA2004 dataset, for a total of∼100 labeled tokens
for each dataset. The dimension of the batch update B
has been chosen as a trade-off between an ideal case in
which the system is retrained after every single anno-
tation (i.e., B = 1) and a practical case with higher B
to limit the algorithmic complexity (since the PL-CRF
classifier must be retrained every iteration). We used in
our experiments B = 50. We fixed the number of AL
iterations n at 40 because what matters here is how the
strategies behave in the beginning of AL process when
the annotation effort remains low. For each strategy
and for each dataset, we report averaged results of three
runs with a different randomly sampled initial training
set T1.

For each dataset we adopted a standard set of fea-
tures. For the CoNLL2000 dataset we adopted the same
standard features used in (Wanvarie et al., 2011) for the
same dataset, for the CoNLL2003 and the NLPBA2004
dataset we adopted the features used in (Wanvarie et
al., 2011) for the CoNLL2003 dataset, while for the
CoNLL2000POS dataset we used the features pre-
sented in (Ratnaparkhi, 1996). As evaluation measure
we adopted the token variant of the F1 measure, intro-
duced by Esuli and Sebastiani (2010). This variant, in-
stead of the entire annotation (chunk/entity), calculates
TP s, FP s, and FNs, singularly for each token that
compose the annotation, bringing to a finer evaluation.

5.3 Results

From the learning curves of Figure 1 and Figure 2 it
is clear that most of the strategies have the same trend
throughout the different datasets. This results is some-
what different from the results obtained in (Settles and
Craven, 2008) in which there is not a clear winner
among the strategies they proposed in a fully-labeled
scenario. The strategies that perform particularly bad
(worse than the RAND strategy in CoNLL2000POS
and in CoNLL2003 dataset) in all the datasets are the
MTE and MTP. This is expected, because the choice
of the measure of informativeness related to the token
without taking in consideration the Viterbi path is sub-
optimal in this task. Surprisingly, the MTM strategy
even though based on the same principle of MTE and
MTP, is very effective in most of the datasets. The
most effective strategies, that is, the ones that are the
faster at helping the classifier to reach a better accu-
racy are the MTM, MVM, and MVP, in particular the
margin-based strategies perform very good in all the
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Table 1: Training Data Statistics. #S is the number of total sequences in the dataset, #T is the number of tokens
in the dataset, #L is the number of positive labels (labels different from the negative label O), AAL is the average
length, in tokens, of annotations (sequence of tokens that refer to the same instance of a label), APT is the average
number of token in a sequence annotated with a positive label, ASL is the average length of a sequence, AA is the
average number of annotations in a sequence, %AC is the percentage of sequences with more than one positive
annotation, %DAC is the percentage of sequences that have two or more annotations with different labels.

Dataset #S #T #L AAL APT ASL AA %AC %DAC

CoNLL2000 8936 211727 11 1.6 20.6 24 12.0 98% 98%
CoNLL2000POS 8936 211727 35 1.0 20.8 24 20.8 100% 99%
CoNLL2003 17290 254979 4 1.4 2.5 15 2.2 45% 32%
NLPBA2004 18546 492551 5 2.5 5.9 27 3.1 72% 47%

0 500 1000 1500 2000
number annotated tokens

0.75

0.80

0.85

0.90

0.95

F1 MTP
MTE
MTM
MVP
MVPE
MVM
ME
MED
RAND

0 500 1000 1500 2000
number annotated tokens

0.5

0.6

0.7

0.8

0.9

F1 MTP
MTE
MTM
MVP
MVPE
MVM
ME
MED
RAND

Figure 1: F1 results on CoNLL2000 dataset (left) and CoNLL2000POS dataset (right). For both datasets the
maximum number of annotated tokens used (2100) represents ∼1% of the entire training set.

datasets. The MVPE strategy performs particularly bad
in the CoNLL2003 dataset but it performs better than
the RAND strategy in the other datasets. The perfor-
mance of the ME strategy is always above the aver-
age, in particular it is the best performing strategy in
the NLPBA2004 dataset. However, in the CoNLL2003
dataset its performance is similar to the RAND’s per-
formance. Looking at the data, as expected, ME tends
to choose tokens belonging to the longest sequences,
regardless if the sequence is already partially anno-
tated, that is, it tends to choose tokens from the same
sequences. This behavior is not particularly relevant on
the CoNLL2003 dataset given that the average num-
ber of positive tokens per sentence is not high (2.5,
see Table 1). For the other datasets, the average num-
ber of positive tokens per sentence is high, and so
the ME strategy is particularly effective. The MED
strategy has the most heterogeneous behavior among
the datasets. It shows average performances in the
CoNLL2000 dataset and NLPBA2004 dataset, but is
slower than the RAND strategy in the CoNLL2003 and
CoNLL2000POS datasets.

In Figure 2 (left) we can notice that there are some
strategies that are consistently worse than the RAND
strategy. The difference between the strategies below

the RAND strategy and the RAND strategy itself might
be due to the fact that those strategies ask to label to-
kens that are “outliers” (if we imagine tokens as points
of the features space) that rarely appear in the training
and test set, and on which the classifier is very uncer-
tain. Given that we are in a semi-supervised setting,
with very few training examples, these “outliers” can
introduce a lot of noise in the created models and so
yielding poor results. This phenomenon does not hap-
pen in the RAND strategy given that it samples uni-
formly from the unlabeled set and given that the “out-
liers” (special cases) are not many, the probability of
randomly selecting an “outlier” is low.

5.3.1 Performance Drop

The AL strategies applied on the CoNLL2003 dataset
(Figure 2 (left)) suffer of some “random” drop of per-
formance. We believe that the first reason that yield
such a behavior is that named entities often appear once
in a sentence, and have heterogeneous structures with
respect to some homogenous structures as the chunk
and POS. The second reason is that, it may happen that
the strategies are not accurate enough to localize pre-
cisely the best token to label or that getting the label
of an isolated token does not help the classifier much
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Figure 2: F1 results on CoNLL2003 dataset (left) and NLPBA2004 dataset (right). 2100 annotated tokens repre-
sent the ∼0.8% and ∼0.4% respectively of the CoNLL2003 training set and the NLPBA2004 training set.

for the remaining of the (unlabeled) tokens in the se-
quence.
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Figure 3: F1 results on CoNLL2003 dataset, three to-
kens annotation. 6100 annotated tokens represent the
∼2.4% of the CoNLL2003 training set.

A similar phenomenon, called missed class effect
(Tomanek et al., 2009), happens in AL when the strate-
gies inspect regions of the example space around the
decision boundaries, bringing to a slow AL process. In
(Tomanek et al., 2009) the missed class effect prob-
lem is solved by helping the AL strategies to inspect
regions far from the decision boundaries, that is, by
choosing an entire sequence instead of a single to-
ken. This solution is not suitable in this context given
that we will loose all the advantages we have in the
partially-labeled scenario, thus, we decided to anno-
tate for each chosen token the previous token and the
next token. The learning curves of the AL strategies
adopting this method (Figure 3) show a monotonically
increasing performance in function of the number of
annotated tokens.

By annotating three tokens at time, the tokens that
were considered “outliers” in the scenario with a single

token annotation are now supported by other tokens of
the sequence. This fact helps to decrease the noise in-
troduced in the semi-supervised model yielding better
results.

5.3.2 Statistical Analysis
Figure 4 reports a few statistics that highlight the be-
havior of the methods on one of the datasets. One may
see for instance that the MVM and ME strategies are
very different from the other methods in that they se-
lect tokens that belong to significantly longer sentences
on average. Also it may be seen that MVM in partic-
ular selects tokens that are far from already annotated
tokens in the sentence. This strategy probably yields a
particular behavior with respect to exploration and ex-
ploitation that seems to suit the two tasks well. The
other strategies do exhibit different behaviors that intu-
itively should not work well. For instance the MED and
the MVPE strategies select tokens from new fully unla-
beled sentences (not shown statistics), preferably short,
so that the distance from selected tokens to already la-
beled tokens in the sentence (when any) is low. These
curves look like relevant indicators of the behavior of
the methods, and it would probably be worth monitor-
ing these all along the AL process to make sure the
learning exhibit a suitable behavior. This will be a fu-
ture study that is out of the scope of this work.

6 Conclusion

In this paper we have presented several AL strategies
tailored for the PL-CRFs in a pool-based scenario. We
have tested the proposed strategies on four different
datasets for four different sequence labeling tasks. Dif-
ferently from other similar work in the field of AL,
in this study we have shown that margin-based strate-
gies constantly achieve good performance on four tasks
with very different data characteristics. Furthermore,
we have found that on datasets with certain character-
istics a particular phenomenon that makes the entire
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Figure 4: Behavior of the methods on CoNLL2000 dataset as a function of the number of the iterations (x-axis,
from 1 to 40). Average length of the sentence the tokens that are selected by the AL strategy belong to (left) and
average distance from a token that is selected to the closest already labeled token in the sentence, if any (right).

AL process highly unpredictable shows up. This phe-
nomenon consists in random drops of accuracy of the
classifiers learnt during the AL process. We have pro-
posed a first solution for this problem that does not have
a relevant impact on the human annotation effort.
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