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Abstract

Predicting vocabulary of second language
learners is essential to support their lan-
guage learning; however, because of the
large size of language vocabularies, we
cannot collect information on the entire
vocabulary. For practical measurements,
we need to sample a small portion of
words from the entire vocabulary and pre-
dict the rest of the words. In this study, we
propose a novel framework for this sam-
pling method. Current methods rely on
simple heuristic techniques involving in-
flexible manual tuning by educational ex-
perts. We formalize these heuristic tech-
niques as a graph-based non-interactive
active learning method as applied to a spe-
cial graph. We show that by extending the
graph, we can support additional function-
ality such as incorporating domain speci-
ficity and sampling from multiple corpora.
In our experiments, we show that our ex-
tended methods outperform other methods
in terms of vocabulary prediction accuracy
when the number of samples is small.

1 Introduction

Predicting the vocabulary of second language
learners is essential to support them when they are
reading. Educational experts have been continu-
ously studying methods for measuring the size of
a learner’s vocabulary, i.e., the number of words

∗The main body of this work was done when the first
author was a Ph.D. candidate in the University of Tokyo and
the paper was later greatly revised when the first author was
a JSPS (Japan Society for the Promotion of Science) research
fellow (PD) at National Institute of Informatics. See http:
//yoehara.com/ for details.

the learner knows, over the decades (Meara and
Buxton, 1987; Laufer and Nation, 1999). Ehara
et al. (2012) formalized a more fine-grained mea-
surement task called vocabulary prediction. The
goal of this task is to predict whether a learner
knows a given word based on only a relatively
small portion of his/her vocabulary. This vocabu-
lary prediction task can be further used for predict-
ing the readability of texts. By predicting vocab-
ulary unknown to readers and showing the mean-
ing of those specific words to readers, Ehara et al.
(2013) showed that the number of documents that
learners can read increases.

Word sampling is essential for vocabulary pre-
diction. Because of the large size of language vo-
cabularies, we usually cannot collect information
on the entire vocabulary. For practical measure-
ments, we inevitably need to sample a small por-
tion of words from the entire vocabulary and then
predict the rest. We refer to this sampling tech-
nique as word sampling.

Word sampling can greatly affect the perfor-
mance of vocabulary prediction. For example, if
we consider only short everyday general domain
words such as “cat” and “dog” as samples, the rest
of the vocabulary is difficult to predict since learn-
ers likely know most of these words. To more ac-
curately measure a learner’s vocabulary, we ide-
ally must sample words that are representative of
the entire set of words. More specifically, we wish
to sample words such that if a learner knows these
words, he/she is likely to know the rest of the
words in the given vocabulary, and vice versa.

To our knowledge, however, all current studies
have relied on a simple heuristic method. In this
heuristic method, educational experts first some-
how create groups of words with the aim that the
words in a group are of similar difficulty for learn-
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ers. To create groups of words, the experts typi-
cally make use of word frequencies and sometimes
manually reclassify words based on experience.
Next, a fixed number of words are randomly sam-
pled from each group via a uniform distribution.
We call this approach heuristic word sampling.

In this study, we propose a novel framework
that formalizes word sampling as non-interactive
graph-based active learning based on weighted
graphs. In our approach, nodes of a graph corre-
spond to words, whereas the edge weights show
how similar the difficulty levels of a word pair
are. Unlike interactive active learning algorithms
used in the NLP community, which use expert an-
notators’ human labels for sampling nodes, non-
interactive active learning algorithms exclude ex-
pert annotators’ human labels from the protocol
(Ji and Han, 2012; Gu and Han, 2012). Given
a weighted graph and using only its structure,
without human labels, these algorithms sample
nodes that are important for classification with al-
gorithms called label propagation. Excluding an-
notators’ human labels from the protocol is bene-
ficial for educational purposes since learners can
share the same set of sampled words via, for ex-
ample, printed handouts.

Formalizing the current methods as non-
interactive graph-based active learning enables us
to extend the sampling methods with additional
functionality that current methods cannot han-
dle without applying burdensome manual heuris-
tics because we can flexibly design the weighted
graphs fed to the active learning algorithms. In our
framework, this extension is achieved by extend-
ing the graph, namely, our framework can handle
domain specificity and multiple corpora.

Domains are important when one wants to mea-
sure the vocabulary of learners. For example, con-
sider measuring non-native English speakers tak-
ing computer science graduate courses. We may
want to measure their English vocabulary with an
emphasis on computer science rather than their
general English vocabulary. However, such an
extension is impossible via current methods, and
thus it is desirable to sample algorithms to be able
to handle domain specificity. Our framework can
incorporate domain specificity between words in
the form of edges between such words.

Handling multiple corpora is important when
we cannot single out which corpus we should rely
on. The current technique used by educational

experts to handle multiple corpora is to heuristi-
cally integrate multiple frequency lists from mul-
tiple corpora into a single list of words; however,
such manual integration is burdensome. Thus, au-
tomatic integration is desirable. Our framework
converts multiple corpora into graphs, merges
these graphs together, and then samples from the
merged graph.

Our contributions as presented in this paper are
summarized as follows:

1. We formalize word sampling for vocabulary
prediction as graph-based active learning.

2. Based on this formalization, we can perform
more flexible word sampling that can handle
domain specificity and multiple corpora.

The remaining parts of this paper are orga-
nized as follows. In §2, we explain the problem
setting in detail. We first explain how existing
heuristic word sampling works and how it relies
on the cluster assumption from the viewpoint of
graphs. Then, we introduce existing graph-based
non-interactive active learning methods. In §3,
we show that the existing heuristic word sampling
is merely a special case of a non-interactive ac-
tive learning method (Gu and Han, 2012). Pre-
cisely, the existing sampling is identical to the case
where a special graph called a “multi-complete
graph” is fed to a non-interactive active learning
method. Since this method can take any weighted
graphs other than this special graph, this imme-
diately leads to a way of devising new sampling
methods by modifying graphs. §4 explains exactly
how we can modify graphs for improving active
learning. §5 evaluates the proposed method both
quantitatively and qualitatively, and §6 concludes
our paper.

2 Problem Setting

2.1 Heuristic Word Sampling
A simple vocabulary estimation technique intro-
duced by educational experts is to use the fre-
quency rank of words in a corpus based on the
assumption that learners using words with similar
frequency ranks have a similar vocabulary (Laufer
and Nation, 1999). In accordance with this as-
sumption, they first group words by frequency
ranks in a corpus and then assume that words in
each group have a similar vocabulary status. For
example, they sampled words as follows:

1375



1. Rank words by frequency in a corpus.

2. Group words with frequency ranks from 1 to
1, 000 as Level 1000, words with frequency
ranks from 1, 001 to 2, 000 as Level 2000,
and so on.

3. Take 18 samples from Level 1000, another 18
samples from Level 2000, and so on.

The rationale behind this method is to treat
high-ranked and low-ranked words separately
rather than sample words from the entire vocabu-
lary. After sampling words, this sampling method
can be used for various measurements; for exam-
ple, Laufer and Nation (1999) used this method
to estimate the size of the learners’ vocabulary
by simply adding 1, 000 ∗ Correctly answered words

18 for
each level.

2.2 Cluster Assumption
In the previous subsection, we noted that existing
word sampling methods rely on the assumption
that words with similar frequency ranks are known
to learners whose familiar words are similar each
other. This assumption is known as the cluster as-
sumption in the field of graph studies (Zhou et al.,
2004).

To further describe the cluster assumption, we
first define graphs. A graph G = (V, E) consists
of a set of nodes (vertices) V and a set of edges E .
Here, each node has a label, and each edge has a
weight. A label denotes the category of its corre-
sponding node. For example, in binary classifica-
tion, a label is taken from {+1,−1}. A weight is
a real value; when the weight of an edge is large,
we describe the edge as being heavy.

The cluster assumption is an assumption that
heavily connected nodes in a graph should have
similar labels. In other words, the cluster as-
sumption states that weights of edges and labels
of nodes should be consistent.

We explain how the cluster assumption relates
to our task. In our application, each node corre-
sponds to a word. Labels of the nodes in a graph
denote the vocabulary of a learner. If he/she knows
a word, the label of the node corresponding to the
word is +1; if not, the label is −1. The cluster
assumption in our application is that the heavier
the edge, the higher the similarity between users
familiar with the two words.

In this manner, existing word sampling meth-
ods implicitly assume cluster assumption. This

is therefore the underlying approach for reducing
the word sampling problem into graph-based ac-
tive learning. Since graphs allow for more flexible
modeling by changing the weights of edges, we
expect that more flexible word sampling will be
enabled by graph-based active learning.

2.3 Label Propagation

Since the graph-based active learning algorithms
are based on label propagation algorithms, we will
explain them first. Basically, given a weighted
graph, label propagation algorithms classify their
nodes in a weakly supervised manner. While the
graph-based active learning algorithm that we are
trying to use (Gu and Han, 2012) does not use la-
bel propagation algorithms’ outputs directly, it is
tuned to be used with a state-of-the-art label prop-
agation method called Learning with Local and
Global Consistency (LLGC) (Zhou et al., 2004).

Label propagation algorithms predict the labels
of nodes from a few manually supervised labels
and graph weights. To this end, label propaga-
tion algorithms follow the following steps. First,
humans label a small subset of the nodes in the
graph. This subset of nodes is called the set of la-
beled nodes, and the remaining nodes are called
unlabeled nodes. Second, label propagation al-
gorithms propagate labels to the unlabeled nodes
based on edge weights. The rationale behind la-
bel propagation algorithms lies in cluster assump-
tion; as label propagation algorithms assume that
two nodes connected by a heavily weighted edge
should have similar labels, more heavily weighted
edges should propagate more labels.

We formalize Learning with Local and Global
Consistency (LLGC) (Zhou et al., 2004), one
of the state-of-the-art label propagation methods.
Here, for simplicity, suppose that we want to per-
form binary classification of nodes. Let N be the
total number of nodes in a graph. Then, we de-
note labels of each node by y def= (y1, . . . , yN )>.
For unlabeled nodes, yi is set to 0. For labeled
nodes, yi is set to +1 if the learner knows a word,
−1 if not. We also introduce a label propagation
(LP) score vector f = (f1, . . . , fN )>. This LP
score vector is the output of label propagation and
is real-valued. To obtain the classification result
from this real-valued LP score vector for an un-
labeled node (word) i, the learner is predicted to
know the word i if fi > 0, and he/she is predicted
to be unfamiliar with the word if fi ≤ 0.
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Next, we formally define a normalized graph-
Laplacian matrix, which is used for penalization
based on the cluster assumption. Let an N × N
-sized square matrix W be a weighted adjacency
matrix of G. W is symmetric and non-negative
definite; its diagonal elements Wi,i = 0 and
all other elements are non-negative1. The graph
Laplacian of a normalized graph, known as a nor-
malized graph Laplacian matrix, is defined as

Lnorm
W

def= I−D
− 1

2
W WD

− 1
2

W . Here, DW is defined
as a diagonal matrix whose diagonal element is
(DW)i,i

def=
∑|V|

j=1 Wi,j , and I denotes the iden-
tity matrix of the appropriate size. Note that a
normalized graph Laplacian Lnorm

W depends on the
weighted adjacency matrix W.

Then, LLGC can be formalized as a simple op-
timization problem as shown in Equation 1.

min
f
‖f − y‖22 + µf>Lnorm

W f (1)

Equation 1 consists of two terms. Intuitively,
the first term tries to make the LP score vector, the
final output f , as close as possible to the given la-
bels y. The second term is designed to meet the
cluster assumption: it penalizes the case where
two nodes with heavy edges have very different
LP scores. µ > 0 is the only hyper-parameter of
LLGC: it determines how strong the penalization
based on the cluster assumption should be. Thus,
in total, Equation 1 outputs an LP score vector f
considering both the labeled input y and the clus-
ter assumption of the given graph W: the heav-
ier an edge, the closer the scores of the two nodes
connected by the edge becomes.

2.4 Graph-based active learning algorithms
An important categorization of graph-based active
learning for applications is whether it is interactive
or non-interactive. Here, interactive approaches
use human labels during the learning process; they
present a node for humans to label, and based on
this label, the algorithms compute the next node to
be presented to the humans. Thus, in interactive
algorithms, human labeling and computations of
the next node must run concurrently.

Non-interactive algorithms do not use human
labels during the learning process. Given the
entire graph, these algorithms sample important

1While all elements of a non-negative definite matrix are
not necessarily non-negative, we define all elements of W
as non-negative here, following the definition of Zhou et al.
(2004).

nodes for label propagation algorithms. Here, im-
portant nodes are the ones that minimize estimated
classification error of label propagation when the
nodes are labeled. Note that, unlike active learning
used in the NLP community, non-interactive active
learning algorithms exclude expert annotators’ hu-
man labels from the protocol. While they exclude
expert annotators, they are still regarded as active
learning methods in the machine learning commu-
nity since they try to choose such nodes that are
beneficial for classification (Ji and Han, 2012; Gu
and Han, 2012).

For educational purposes, non-interactive algo-
rithms are preferred over interactive algorithms.
The main drawback of interactive algorithms is
that they must run concurrently with the hu-
man labeling. For our applications, this means
that the vocabulary tests for vocabulary prediction
must always be computerized. In contrast, non-
interactive algorithms allow us to have vocabulary
tests printed in the form of handouts, so we focus
on non-interactive algorithms throughout this pa-
per.

Compared with interactive algorithm studies,
such as Zhu et al. (2003), graph-based non-
interactive active learning algorithms have been
introduced in recent years. There has been a sem-
inal paper on non-interactive algorithms (Ji and
Han, 2012). We used Gu and Han’s algorithm be-
cause it reports higher accuracy for many tasks
with competitive computation times over Ji and
Han’s algorithm (Gu and Han, 2012).

These active learning methods share two basic
rules although their objective functions are dif-
ferent. First, these methods tend to select glob-
ally important nodes, also known as hubs. A no-
table example of global importance is the num-
ber of edges. Second, these methods tend to
avoid sampling nodes that are heavily connected
to previously sampled nodes. This is due to clus-
ter assumption, the assumption that similar nodes
should have similar labels, which suggests that it is
redundant to select nodes close to previously sam-
pled nodes; the labels of such nodes should be reli-
ably predicted from the previously sampled nodes.

Gu and Han’s algorithm, which is the algorithm
we used, also follows these rules. In this algo-
rithm, when considering the k-th sample, for every
node i in the current set of not-yet-chosen nodes, a
score score(k, i) is calculated, and the node with
the highest score is chosen. First, the score is de-
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signed to be large if the i-th node is globally im-
portant. In the algorithm, the global importance
of a node is measured by an eigenvalue decompo-
sition of the normalized graph-Laplacian, Lnorm.
Transformed from the graph’s adjacency matrix,
this matrix stores the graph’s global information.
Second, the score is designed to be smaller if the
i-th node is close to one of the previously sampled
nodes.

Score score (k, i) is defined as follows. We
perform eigenvalue decomposition beforehand.
Lnorm

W = UΛU>, ui is the transpose of the i-th
row of U, and λi is its corresponding eigenvalue.

score (k, i) def=

(
H−1
k ui

)>
Λ−1

(
H−1
k ui

)
1 + u>i H−1

k ui
(2)

In Equation 2, Hk preserves information of the
previous k − 1 samples. First, H0 is a diag-
onal matrix whose i-th diagonal element is de-
fined as 1

(µλi+1)2−1
where µ is a hyper-parameter.

H0 weighs the score of globally important nodes
through the eigenvalue decomposition. Second,
Hk is updated such that the scores of the nodes
distant from the previously taken samples are
higher. The precise update formula of Hk follows.
ik+1 is the index of the node sampled at k + 1-th
round. For the derivation of this formula, see Gu
and Han (2012).

H−1
k+1 = H−1

k −
(
H−1
k uik+1

) (
H−1
k uik+1

)>
1 + u>ik+1

H−1
k uik+1

(3)

Hyper-parameter µ determines how strong the
cluster assumption should be; the larger the value,
the more strongly the algorithm avoids selecting
nodes near previously selected samples over the
graph. Note that µ is inherited from the LLGC2

algorithm (Zhou et al., 2004), i.e., the label prop-
agation algorithm that Gu and Han’s algorithm is
based on. From the optimization viewpoint, µ de-
termines the degree of penalization.

Remember that the score has nothing to do with
the LP scores described in §2.3. score is used
to choose nodes used for training in the graph-
based non-interactive active learning. LP scores
are later used for classification by label propaga-
tion algorithms that use the chosen training nodes.
Throughout this paper, when we mean LP scores,
we explicitly write “LP scores”. All the other
scores mean score.

2Learning with Local and Global Consistency.

Figure 1: Converting frequency list into multiple-
complete graph.

3 Formalizing heuristic word sampling
as graph-based active learning

Figure 1 shows how to formalize a word frequency
list into a multiple complete graph. The word fre-
quency list is split into clusters, and each cluster
forms a complete graph. Each node in a graph cor-
responds to a word. By gathering all the complete
graphs, a multiple complete graph can be formed.

Multiple complete graph GT,n is defined as a
graph of T complete graphs, each of which con-
sists of n nodes fully connected within the n
nodes. An example of a multiple complete graph
can be seen in Figure 2. We can define the
Tn × Tn adjacency matrix for multiple com-
plete graphs. Wcomplete

all is defined as follows:

Wcomplete
all

def=


Wcomplete 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 Wcomplete


(4)

Wcomplete def=


0 1 · · · 1 1
1 0 1 · · · 1
... 1

. . .
...

1
...

. . . 1
1 1 · · · 1 0

 (5)

We can see that Wcomplete
all is a block-diagonal

matrix where each block is a n × n matrix,
Wcomplete.

Heuristic word sampling can be rewritten into
non-interactive active learning on graphs. Suppose
there are T groups, each of which has n words,
and we want to sample n0 words from each. In
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Figure 2: Example of multi-complete graph, where Theorem 3.1 holds true. Here, T = 4, n = 5, and
k = 10; 10 light blue (light) nodes have already been sampled, and 10 blue (dark) nodes remain; the
11-th node is sampled uniformly randomly from the nodes within the red rectangles.

heuristic word sampling, for each group from T
groups, n0 words are sampled from the n words
in the group uniformly randomly. Thus, there are
Tn0 words in total.

Since heuristic word sampling takes a node
from each of the T groups, T concurrent sampling
processes are involved. For simplicity, we further
express the same sampling using only one sam-
pling process from the entire graph as follows:

• For every round, we sample words uniformly
randomly from the remaining words of the
groups where the number of samples selected
in previous rounds is least.

Figure 2 shows an example of this sampling
process. Here, the second and third groups from
the left are the groups in which the number of pre-
viously selected nodes is the least. This is because
they have only two previously selected nodes,
while the others have three. Thus, in the figure, the
remaining words of the groups are the nodes with
red rectangles. Randomly sampling one node from
the nodes with red rectangles means sampling a
node from the second or third group. We call the
set of nodes in a graph from which samples will be
taken in the next round a seed pool. Thus, in Fig-
ure 2, the set of nodes with red rectangles is the
seed pool. Nodes that have already been sampled
are taken out of the current seed pool.

Next, we more formally explain the seed pool
concept. We start sampling nodes from a multiple
complete graph via the algorithm presented by Gu
and Han. The initial seed pool is set to all nodes
in the graph, i.e., V . We sample one node in each
round; thus, k ≤ |V| nodes are selected by the k-
th round. Let t ≤ T be the index of the complete
graph in the multiple complete graph. Then, the
following theorem holds with ε being a small pos-
itive value that substitutes the 0 eigenvalues in the
eigen decomposition.

Theorem 3.1 Let 0 < ε < 1 and n ∈
{2, 3, 4, . . .}. Then, among T complete graphs,
k mod T complete graphs have b kT c + 1 sam-
ples, and the remaining graphs have b kT c sam-
ples3. Moreover, the (k + 1)-th sample is taken
uniformly randomly from the remaining complete
graphs.

In Theorem 3.1, ε > 0 is a substitute for the
0 eigenvalue of LW

4. Since ε is a substitute for
the 0 eigenvalue, it is rational to assume 1 > ε.
Also, remember that n is the number of nodes in
one complete graph. The algorithm stops when
k = Tn0 + 1, i.e., at the Tn0 + 1-th round when
there are no remaining nodes to sample. Figure 2
shows an example of Theorem 3.1.

A proof of this theorem is presented in the sup-
plementary material. Briefly, in a multiple com-
plete graph, the score of a node depends only on
the complete graph or the cluster that the node
belongs to. Thus, we only have to consider one
complete graph in which k is the number of nodes
that have been already chosen. Then, mathe-
matical induction proves that, within one com-
plete graph, all the not-yet-chosen nodes have the
same score(k, i). Second, we have to show that
the score always decreases by taking a sample,
i.e., score(k, i) > score(k + 1, i). By a long
but straightforward calculation, we can express
score(k, i) by using only µ, ε, n, and k. Then, by
substituting the formula to score(k, i), we obtain
score(k, i)− score(k + 1, i) > 0.

4 Extending Graphs

In the previous section, we explained how to for-
malize heuristic word sampling as active learn-
ing on multiple complete graphs. This formaliza-

3Here, both k and T are non-negative integers. Thus,
k%T denotes the remainder of the division of k by T , and
b k

T
c is the quotient of the division.
4In Gu and Han’s algorithm, they substitute the 0 eigen-

value with a small positive value ε, and they set ε = 10−6.
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Figure 3: Example of merging two graphs.

tion can lead to better active learning by extend-
ing these graphs. In this section, we describe such
graph extensions.

We extend graphs by merging graphs. Figure 3
shows how to merge graphs. We define “merging”
two weighted graphs as creating a weighted graph
whose adjacency matrix is the sum of the two ad-
jacency matrices of the two weighted graphs. This
suggests that an edge of the merged graph is sim-
ply the sum of the corresponding edges of the two
weighted graphs.

The merged graph is expected to inherit the
characteristics of its original graphs. Thus, ap-
plying graph-based active learning to the merged
graph is expected to sample nodes in accordance
with the characteristics of its original graphs.
For example, if we merge a graph representing
domain-specific relations and a multiple complete
graph representing difficulty grouping of words,
active learning from the resulting merged graph
is expected to sample words considering both do-
main specificity and difficulty grouping of words.

For another example, suppose we merge two
multiple complete graphs created from frequency
lists from two different corpora. Then, active
learning from the resulting merged graph is ex-
pected to sample words taking into account fre-
quency lists from both corpora.

5 Evaluation

We evaluate our proposed method both quantita-
tively and qualitatively. In the quantitative eval-
uation, we measure the prediction accuracy of
graphs. Note that the heuristic word sampling
method is identical to using Gu and Han’s algo-
rithm with a multiple complete graph; however,
our proposed graphs have enriched relations be-
tween words. In the qualitative evaluation, we ex-
plain in detail what words are appropriate as train-
ing examples for vocabulary prediction by pre-

senting sampled examples.

5.1 Quantitative evaluation

To evaluate the accuracy of vocabulary prediction,
we used the dataset that Ehara et al. (2010) and
Ehara et al. (2012) used. This dataset was gleaned
from questionnaires answered by 15 English as a
second language (ESL) learners. Every learner
was asked to answer how well he/she knew 11,999
English words. The data was collected in January
2009. One learner was unpaid, whereas the other
15 learners were paid. We used the data from the
15 paid learners since the data from the unpaid
learner was noisy. Most of the learners were na-
tive Japanese speakers and graduate students. Be-
cause most of the learners in this dataset were na-
tive Japanese speakers, words from SVL 12,000
(SPACE ALC Inc., 1998) were used for the learn-
ers in this dataset. Note that SVL 12,000 is a col-
lection of 12,000 words that are deemed important
for Japanese learners of English, as judged by na-
tive English teachers.

Next, we required frequency lists for the words
that appeared in the dataset. To create frequency
lists, lemmatization is important because the num-
ber of word types depends on the method used
to lemmatize the words. Note that in the field of
vocabulary measurement, lemmatization is mainly
performed by ignoring conjugation (Nation and
Beglar, 2007). Lemmatizing the dataset resulted
in a word list of 8,463 words. We adjusted the size
of the word list to a round 8,000 by removing 463
randomly chosen words. Note that all constituent
words were labeled by the 15 ESL learners.

We created the following four graphs by span-
ning edges among the 8, 000 words.

BNC multi-complete This graph corresponds to
heuristic word sampling and served as our
baseline. It is a multiple complete graph
comprising eight complete graphs, each of
which consisted of 1,000 words based on the
sorted frequency list from the British Na-
tional Corpus (BNC). We chose the BNC be-
cause the method presented by Nation and
Beglar was based on it (Nation and Beglar,
2007). Note that all edge weights are set to 1.

BNC+domain To form this graph, edges rep-
resenting domain specificity are added to
the “BNC multi-complete” graph. For do-
main specificity, we used domain information
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from WordNet 3.0.5 First, we extracted 102
domain-specific words under the “computer”
domain among the 8,000 words and created
a complete graph consisting of these domain-
specific words. The edge weights of the com-
plete graph were set to 1. Next, we simply
merged6 the complete graph consisting of the
domain-specific words with the “BNC multi-
complete” graph.

BNC+COCA In addition to the “BNC multi-
complete” graph, edges based on another cor-
pus, the Corpus of Contemporary American
English (COCA), were introduced. We first
created the COCA multi-complete graph, a
multiple complete graph consisting of eight
complete graphs, each of which consisted of
1,000 words based on the sorted frequency
list using COCA. The edge weights of the
COCA multi-complete graph were set to 1.
Next, we merged the BNC multi-complete
and COCA multi-complete graphs to form
the “BNC + COCA graph”.

BNC+domain+COCA This graph is the graph
produced by merging the “BNC + domain”
and “BNC + COCA” graphs.

Note that our experiment setting differed from
the usual label propagation setting used for semi-
supervised learning because the purpose of our
task differed. In the usual label propagation set-
ting, the “test” nodes (data) are prepared sepa-
rately from the training nodes to determine how
accurately the algorithm can classify forthcoming
or unseen nodes. However, in our setting, there
were no such forthcoming words. Of course, there
will always be words that do not emerge, even in a
large corpus; however, such rare words are too dif-
ficult for language learners to identify, and many
are proper nouns, which are not helpful for mea-
suring the vocabulary of second language learners.

Therefore, our focus here is to measure how
well the learners know a fixed set of words, that
is, the given 8,000 words. Even if an algorithm
can achieve high accuracy for words outside this
fixed set, we have no way of evaluating it using
the pooled annotations. Here, we want to measure,
from a fixed number of samples (e.g., 50), how ac-
curately an algorithm can predict a learner’s vo-

5We used the NLTK toolkit http://nltk.org/ to extract the
domain information.

6Definition of how to merge two graphs is in §4.

Figure 4: Results of our quantitative experiments.
Vertical axis denotes accuracy, and horizontal axis
shows number of samples, i.e., training words.

cabulary for the entire 8,000 words. Thus, we
define accuracy to be the number of words that
each algorithm finds correctly divided by the vo-
cabulary size. We set hyper-parameter µ to 0.01
as Gu and Han (2012) did. Note that this hyper-
parameter is reportedly not sensitive to accuracy
(Zhou et al., 2011).

Figure 4 and Table 1 show the results of the
experiment over the different datasets. The ver-
tical axis in the figure denotes accuracy, whereas
the horizontal axis denotes the number of samples,
i.e., training words. Note that the accuracy is av-
eraged over 15 learners and that LLGC is used for
classification unless otherwise specified. For ex-
ample, “BNC multi-complete” indicates that sam-
ples taken from the BNC multi-complete graph are
used for training, and LLGC is used for classifica-
tion. Note that “BNC + domain + COCA (SVM)”
uses a support vector machine (SVM) for classifi-
cation, and “BNC + domain + COCA (LR)” uses
logistic regression (LR) for classification. Among
many supervised machine learning methods, we
chose SVM and LR because SVM is widely used
in the NLP community, and LR was used for the-
oretical reasons (Ehara et al., 2012; Ehara et al.,
2013).

SVM and LR require features of a word
for classification while LLGC requires a
weighted graph of words. Since the graph
“BNC+domain+COCA” is made from three
features, namely the word frequencies of BNC
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Table 1: Results of our quantitative experiments. LLGC is used for classification unless otherwise spec-
ified. Bold letters indicate top accuracy. Asterisks (*) indicate that values are statistically significant
against baseline, heuristic sampling, i.e., “BNC multi-complete” (using sign test p < 0.01).

10 15 20 30 40 50
BNC multi-complete 64.15 (%) 67.54 73.73 73.66 74.92 74.82
BNC+domain 65.27 71.88 72.88 75.02 76.03 * 75.95
BNC+COCA 73.45 74.10 74.57 74.90 74.96 75.29
BNC+domain+COCA 75.23 * 75.71 * 75.18 * 75.35 * 75.47 76.44 *
BNC+domain+COCA (SVM) 58.99 57.74 60.44 70.79 69.29 74.46
BNC+domain+COCA (LR) 60.29 61.74 59.27 69.17 70.63 73.42

and COCA corpora and whether a word is in the
computer domain, we used these features for the
features of SVM and LR in this experiment for a
fair comparison. When using word frequencies for
features, we used the logarithm of raw frequencies
since it is reported to work well (Ehara et al.,
2013). SVM and LR are also known to heavily
depend on a hyper-parameter called C, which
determines the strength of regularization. We
tried C = 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0,
and 100.0 for each of SVM and LR where the size
of training data is 50 and chose the C value that
performs best. As a result, we set C = 5.0 for
SVM and C = 50.0 for LR. Note that this setting
is advantageous for SVM and LR compared to
LLGC because the hyper-parameters of SVM
and LR are tuned while LLGC’s hyper-parameter
remains untuned. For the implementation of SVM
and LR, we used the “scikit-learn” package in
Python 7.

We first observed that our proposed methods
constantly outperform the baseline, heuristic word
sampling, i.e., “BNC multi-complete” in Table 1.
This indicates that we successfully obtained bet-
ter accuracy by formalizing heuristic word sam-
pling as active learning and extending graphs. In
Table 1, the accuracy of the top-ranked methods
(shown using bold letters) is statistically signif-
icantly better than the accuracy of “BNC multi-
complete” (using the sign test p < 0.01).

We then observed that “BNC multi-complete”
and “BNC + domain” show competitive accuracy
with sample sizes from 10 to 20; furthermore,
“BNC + domain” is slightly better than “BNC
multi-complete” with sample sizes ranging from
30 to 50 (statistically significant p < 0.01 using
sign test). Next, we note that there is a trade-off
between domain and word frequency when choos-

7http://scikit-learn.org/stable/

ing samples. More specifically, if we select too
many words from the domain, the measurement of
the general English ability of learners can be in-
accurate; conversely, if we select too many words
from the corpus-based word frequency list, while
the general English ability of learners is accu-
rately measured, we may obtain no information
on the learner’s vocabulary for the targeted do-
main. The competitive or slightly better accuracy
of “BNC + domain” over “BNC multi-complete”
shows that “BNC + domain” could successfully
integrate domain information into the frequency-
based groups without deteriorating measurements
of general English ability.

We also observe that “BNC + COCA” greatly
outperforms “BNC multi-complete” when the
number of samples is 10. This shows that the inte-
gration of the two corpora, BNC and COCA (i.e.,
“BNC + COCA”), successfully increases the accu-
racy when there are only a small number of sam-
ples.

“BNC + domain + COCA” achieves the best ac-
curacy of all the graphs except when the number
of samples is 40. This indicates that the domain
information and the information from the COCA
corpus helped one another to improve the accuracy
because “BNC + domain” and “BNC + COCA” in-
troduce different types of domain information into
“BNC multi-complete.”

Finally, we observe that “BNC + domain +
COCA (SVM)” and “BNC + domain + COCA
(LR)” perform worse than LLGC over the same
dataset for all sample sizes, particularly when the
size of the training data is small. Since LLGC is
a semi-supervised classifier while SVM and LR
are not, SVM and LR perform poorly for small
amounts of training data. This result shows that
LLGC is appropriate for this task compared to
SVM because, in this task, an increase in the size
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Table 2: Computer-related samples in top 30 sam-
ples.

Name Num. of
Samples

Examples

BNC multi-
complete

0 -

BNC+domain 5 input, client, field,
background, regis-
ter

BNC+COCA 0 -

BNC+domain
+COCA

3 drive, client, com-
mand

of training data directly leads to an increased bur-
den on the human learners.

5.2 Qualitative evaluation

In this subsection, we qualitatively evaluate our
results to determine the types of nodes that are
sampled when domain specificity is introduced.
Specifically, we evaluate what words are selected
as samples in the “BNC + domain” graph.

As noted above, in the “BNC + domain” graph,
the computer science domain is introduced into
“BNC multi-complete” to measure learners’ vo-
cabulary with a specific emphasis on the computer
science domain. Thus, it is desirable that some
words in the computer science domain are sam-
pled from the “BNC + domain” graph; otherwise,
we need to predict the learners’ vocabulary for
the computer science domain from general words
rather than those in the computer science domain,
which is extremely difficult.

Table 2 shows the number of words in the com-
puter science domain sampled in the first 30 sam-
ples. Note that only “BNC + domain” and “BNC
+ domain + COCA” select samples from the com-
puter science domain. This indicates that in the
other two methods, to measure vocabulary with
an emphasis on the computer science domain, we
need to predict learners’ vocabulary from the gen-
eral words, which is almost impossible with only
30 samples. Furthermore, it is interesting to note
that “BNC + domain” and “BNC + domain +
COCA” select different samples from the com-
puter science domain, except for the word “client,”
although originally the same computer science do-
main wordlist was introduced to both graphs.

Since “BNC + domain” achieves competitive
or slightly better accuracy than “BNC multi-
complete” in the quantitative analysis and the

qualitative analysis, we conclude that our method
can successfully introduce domain specificity into
the sampling methodology without reducing accu-
racy.

6 Conclusion

In this study, we propose a novel sampling frame-
work that measures the vocabulary of second lan-
guage learners. We call existing sampling meth-
ods heuristic sampling. This approach to sampling
ranks words from a single corpus by frequency and
creates groups of 1,000 words. Next, tens of words
are sampled from each group. This method as-
sumes that the relative difficulty of all 1,000 words
is the same.

In this paper, we introduce a novel sampling
method by showing that the existing heuristic sam-
pling approach is simply a special case of a graph-
based active learning algorithm by Gu and Han
(2012) applied to a special graph. We also pro-
pose a method to extend this graph to enable us to
handle domain specificity of words and multiple
corpora, which are difficult or impossible to han-
dle using current methods.

We evaluate our method both quantitatively and
qualitatively. In our quantitative evaluation, the
proposed method achieves higher prediction accu-
racy compared with the current approach to vo-
cabulary prediction. This suggests that our pro-
posed method can successfully make use of do-
main specificity and multiple corpora for pre-
dicting vocabulary. In our qualitative evaluation,
we examine the words sampled by our proposed
method and observe that targeted domain-specific
words are successfully sampled.

For our future work, because the graph used
in this paper was constructed manually, we plan
to automatically create a graph suitable for active
learning and classification. There are several algo-
rithms that create graphs from feature-based rep-
resentations of words, but these have never been
used for active learning of this task.
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