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Abstract

In this paper, we enhance the attention-based
neural machine translation (NMT) by adding
explicit coverage embedding models to alle-
viate issues of repeating and dropping trans-
lations in NMT. For each source word, our
model starts with a full coverage embedding
vector to track the coverage status, and then
keeps updating it with neural networks as
the translation goes. Experiments on the
large-scale Chinese-to-English task show that
our enhanced model improves the translation
quality significantly on various test sets over
the strong large vocabulary NMT system.

1 Introduction

Neural machine translation (NMT) has gained pop-
ularity in recent years (e.g. (Bahdanau et al., 2014;
Jean et al., 2015; Luong et al., 2015; Mi et al.,
2016b; Li et al., 2016)), especially for the attention-
based models of Bahdanau et al. (2014). The at-
tention at each time step shows which source word
the model should focus on to predict the next tar-
get word. However, the attention in each step only
looks at the previous hidden state and the previous
target word, there is no history or coverage infor-
mation typically for each source word. As a result,
this kind of model suffers from issues of repeating
or dropping translations.

The traditional statistical machine translation
(SMT) systems (e.g. (Koehn, 2004)) address the
above issues by employing a source side “cover-
age vector” for each sentence to indicate explicitly
which words have been translated, which parts have
not yet. A coverage vector starts with all zeros,
meaning no word has been translated. If a source
word at position j got translated, the coverage vector
sets position j as 1, and they won’t use this source

∗Work done while at IBM. To contact Abe, aitty-
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word in future translation. This mechanism avoids
the repeating or dropping translation problems.

However, it is not easy to adapt the “coverage vec-
tor” to NMT directly, as attentions are soft probabili-
ties, not 0 or 1. And SMT approaches handle one-to-
many fertilities by using phrases or hiero rules (pre-
dict several words in one step), while NMT systems
only predict one word at each step.

In order to alleviate all those issues, we borrow
the basic idea of “coverage vector”, and introduce
a coverage embedding vector for each source word.
We keep updating those embedding vectors at each
translation step, and use those vectors to track the
coverage information.

Here is a brief description of our approach. At the
beginning of translation, we start from a full cover-
age embedding vector for each source word. This
is different from the “coverage vector” in SMT in
following two aspects:
• each source word has its own coverage embed-

ding vector, instead of 0 or 1, a scalar, in SMT,
• we start with a full embedding vector for each

word, instead of 0 in SMT.
After we predict a translation word yt at time step
t, we need to update each coverage embedding vec-
tor accordingly based on the attentions in the current
step. Our motivation is that if we observe a very high
attention over xi in this step, there is a high chance
that xi and yt are translation equivalent. So the em-
bedding vector of xi should come to empty (a zero
vector) in a one-to-one translation case, or subtract
the embedding of yt for the one-to-many translation
case. An empty coverage embedding of a word xi in-
dicates this word is translated, and we can not trans-
late xi again in future. Empirically, we model this
procedure by using neural networks (gated recurrent
unit (GRU) (Cho et al., 2014) or direct subtraction).

Large-scale experiments over Chinese-to-English
on various test sets show that our method improves
the translation quality significantly over the large vo-
cabulary NMT system (Section 5).
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Figure 1: The architecture of attention-based NMT.The source sentence is x = (x1, ..., xl) with length l, the translation
is y∗ = (y∗1 , ..., y

∗
m) with lengthm.

←−
hi and

−→
hi are bi-directional encoder states. αt,j is the attention probability at time

t, position j. Ht is the weighted sum of encoding states. st is a hidden state. ot is an output state. Another one layer
neural network projects ot to the target output vocabulary, and conducts softmax to predict the probability distribution
over the output vocabulary. The attention model (in right gray box) is a two layer feedforward neural network, At,j is
an intermediate state, then another layer converts it into a real number et,j , the final attention probability at position j
is αt,j . We plug coverage embedding models into NMT model by adding an input ct−1,xj

to At,j (the red dotted line).

2 Neural Machine Translation

As shown in Figure 1, attention-based neural ma-
chine translation (Bahdanau et al., 2014) is an
encoder-decoder network. the encoder employs a bi-
directional recurrent neural network to encode the
source sentence x = (x1, ..., xl), where l is the
sentence length, into a sequence of hidden states
h = (h1, ..., hl), each hi is a concatenation of a left-
to-right

−→
hi and a right-to-left

←−
hi ,

hi =

[←−
h i−→
h i

]
=

[←−
f (xi,

←−
h i+1)−→

f (xi,
−→
h i−1)

]
,

where
←−
f and

−→
f are two GRUs.

Given the encoded h, the decoder predicts the
target translation by maximizing the conditional
log-probability of the correct translation y∗ =
(y∗1, ...y

∗
m), where m is the sentence length. At each

time t, the probability of each word yt from a target
vocabulary Vy is:

p(yt|h, y∗t−1..y∗1) = g(st, y
∗
t−1), (1)

where g is a two layer feed-forward neural network
(ot is a intermediate state) over the embedding of the
previous word y∗t−1, and the hidden state st. The st
is computed as:

st = q(st−1, y∗t−1, Ht) (2)

Ht =

[∑l
i=1 (αt,i ·

←−
h i)∑l

i=1 (αt,i ·
−→
h i)

]
, (3)

where q is a GRU, Ht is a weighted sum of h, the
weights, α, are computed with a two layer feed-
forward neural network r:

αt,i =
exp{r(st−1, hi, y∗t−1)}∑l
k=1 exp{r(st−1, hk, y∗t−1)}

(4)

3 Coverage Embedding Models

Our basic idea is to introduce a coverage embedding
for each source word, and keep updating this em-
bedding at each time step. Thus, the coverage em-
bedding for a sentence is a matrix, instead of a vec-
tor in SMT. As different words have different fertili-
ties (one-to-one, one-to-many, or one-to-zero), sim-
ilar to word embeddings, each source word has its
own coverage embedding vector. For simplicity, the
number of coverage embedding vectors is the same
as the source word vocabulary size.

At the beginning of our translation, our cover-
age embedding matrix (c0,x1 , c0,x2 , ...c0,xl) is initial-
ized with the coverage embedding vectors of all the
source words.

Then we update them with neural networks (a
GRU (Section 3.1.1) or a subtraction (Section 3.1.2))
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Figure 2: The coverage embedding model with a GRU at
time step t − 1 and t. c0,1 to c0,l are initialized with the
word coverage embedding matrix

until we translation all the source words.
In the middle of translation, some coverage em-

beddings should be close to zero, which indicate
those words are covered or translated, and can not be
translated in future steps. Thus, in the end of transla-
tion, the embedding matrix should be close to zero,
which means all the words are covered.

In the following part, we first show two updating
methods, then we list the NMT objective that takes
into account the embedding models.

3.1 Updating Methods

3.1.1 Updating with a GRU

Figure 2 shows the updating method with a GRU.
Then, at time step t, we feed yt and αt,j to the cov-
erage model (shown in Figure 2),
zt,j = σ(W zyyt +W zααt,j + U zct−1,xj )

rt,j = σ(W ryyt +W rααt,j + U rct−1,xj )

c̃t,xj = tanh(Wyt +Wααt,j + rt,j ◦ Uct−1,xj )
ct,xj = zt,j ◦ ct−1,xj + (1− zt,j) ◦ c̃t,xj ,

where, zt is the update gate, rt is the reset gate, c̃t is
the new memory content, and ct is the final memory.
The matrix W zy, W zα, U z , W ry, W rα, U r, W y,
Wα and U are shared across different position j. ◦
is a pointwise operation.

3.1.2 Updating as Subtraction

Another updating method is to subtract the em-
bedding of yt directly from the coverage embedding
ct,xj with a weight αt,j as

ct,xj = ct−1,xj − αt,j ◦ (W y→cyt), (5)

where W y→c is a matrix that coverts word embed-
ding of yt to the same size of our coverage embed-
ding vector c.

3.2 Objectives
We integrate our coverage embedding models into
the attention NMT (Bahdanau et al., 2014) by
adding ct−1,xj to the first layer of the attention
model (shown in the red dotted line in Figure 1).

Hopefully, if yt is partial translation of xj with a
probability αt,j , we only remove partial information
of ct−1,xj . In this way, we enable coverage embed-
ding c0,xj to encode fertility information of xj .

As we have mentioned, in the end of translation,
we want all the coverage embedding vectors to be
close to zero. So we also minimize the absolute val-
ues of embedding matrixes as

θ∗ = argmax
θ

N∑

n=1

{
m∑

t=1

log p(y∗nt |xn, y∗nt−1..y∗n1 )

− λ
l∑

i=1

||cm,xi ||
}
,

(6)
where λ is the coefficient of our coverage model.

As suggested by Mi et al. (2016a), we can also use
some supervised alignments in our training. Then,
we know exactly when each ct,xj should become
close to zero after step t. Thus, we redefine Equa-
tion 6 as:

θ∗ = argmax
θ

N∑

n=1

{
m∑

t=1

log p(y∗nt |xn, y∗nt−1..y∗n1 )

− λ
l∑

i=1

(

m∑

j=axi

||cj,xi ||)
}
,

(7)
where axi is the maximum index on the target sen-
tence xi can be aligned to.

4 Related Work

There are several parallel and independent related
work (Tu et al., 2016; Feng et al., 2016; Cohn et
al., 2016). Tu et al. (2016) is the most relevant one.
In their paper, they also employ a GRU to model
the coverage vector. One main difference is that
our model introduces a specific coverage embedding
vector for each source word, in contrast, their work
initializes the word coverage vector with a scalar
with a uniform distribution. Another difference lays
in the fertility part, Tu et al. (2016) add an accu-
mulate operation and a fertility function to simulate
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the process of one-to-many alignments. In our ap-
proach, we add fertility information directly to cov-
erage embeddings, as each source word has its own
embedding. The last difference is that our baseline
system (Mi et al., 2016b) is an extension of the large
vocabulary NMT of Jean et al. (2015) with candi-
date list decoding and UNK replacement, a much
stronger baseline system.

Cohn et al. (2016) augment the attention model
with well-known features in traditional SMT, in-
cluding positional bias, Markov conditioning, fertil-
ity and agreement over translation directions. This
work is orthogonal to our work.

5 Experiments

5.1 Data Preparation

We run our experiments on Chinese to English task.
We train our machine translation systems on two
training sets. The first training corpus consists of
approximately 5 million sentences available within
the DARPA BOLT Chinese-English task. The sec-
ond training corpus adds HK Law, HK Hansard and
UN data, the total number of training sentence pairs
is 11 million. The Chinese text is segmented with
a segmenter trained on CTB data using conditional
random fields (CRF).

Our development set is the concatenation of sev-
eral tuning sets (GALE Dev, P1R6 Dev, and Dev 12)
released under the DARPA GALE program. The de-
velopment set is 4491 sentences in total. Our test
sets are NIST MT06, MT08 news, and MT08 web.

For all NMT systems, the full vocabulary sizes for
thr two training sets are 300k and 500k respectively.
The coverage embedding vector size is 100. In the
training procedure, we use AdaDelta (Zeiler, 2012)
to update model parameters with a mini-batch size
80. Following Mi et al. (2016b), the output vocab-
ulary for each mini-batch or sentence is a sub-set of
the full vocabulary. For each source sentence, the
sentence-level target vocabularies are union of top
2k most frequent target words and the top 10 candi-
dates of the word-to-word/phrase translation tables
learned from ‘fast align’ (Dyer et al., 2013). The
maximum length of a source phrase is 4. In the train-
ing time, we add the reference in order to make the
translation reachable.

Following Jean et al. (2015), We dump the align-

ments, attentions, for each sentence, and replace
UNKs with the word-to-word translation model or
the aligned source word.

Our traditional SMT system is a hybrid syntax-
based tree-to-string model (Zhao and Al-onaizan,
2008), a simplified version of Liu et al. (2009) and
Cmejrek et al. (2013). We parse the Chinese side
with Berkeley parser, and align the bilingual sen-
tences with GIZA++. Then we extract Hiero and
tree-to-string rules on the training set. Our two 5-
gram language models are trained on the English
side of the parallel corpus, and on monolingual
corpora (around 10 billion words from Gigaword
(LDC2011T07)), respectively. As suggestion by
Zhang (2016), NMT systems can achieve better re-
sults with the help of those monolingual corpora. We
tune our system with PRO (Hopkins and May, 2011)
to minimize (TER- BLEU)/2 on the development set.

5.2 Translation Results

Table 1 shows the results of all systems on 5 million
training set. The traditional syntax-based system
achieves 9.45, 12.90, and 17.72 on MT06, MT08
News, and MT08 Web sets respectively, and 13.36
on average in terms of (TER- BLEU)/2. The large-
vocabulary NMT (LVNMT), our baseline, achieves
an average (TER- BLEU)/2 score of 15.74, which is
about 2 points worse than the hybrid system.

We test four different settings for our coverage
embedding models:
• UGRU : updating with a GRU;
• USub: updating as a subtraction;
• UGRU + USub: combination of two methods

(do not share coverage embedding vectors);
• +Obj.: UGRU + USub plus an additional objec-

tive in Equation 61.
UGRU improves the translation quality by 1.3

points on average over LVNMT. And UGRU + USub

achieves the best average score of 13.14, which is
about 2.6 points better than LVNMT. All the im-
provements of our coverage embedding models over
LVNMT are statistically significant with the sign-
test of Collins et al. (2005). We believe that we need
to explore more hyper-parameters of +Obj. in order
to get even better results over UGRU + USub.

1We use two λs for UGRU and USub separately, and we test
λGRU = 1× 10−4 and λSub = 1× 10−2 in our experiments.
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single system
MT06

MT08
avg.

News Web
BP BLEU T-B BP BLEU T-B BP BLEU T-B T-B

Tree-to-string 0.95 34.93 9.45 0.94 31.12 12.90 0.90 23.45 17.72 13.36
LVNMT 0.96 34.53 12.25 0.93 28.86 17.40 0.97 26.78 17.57 15.74

O
ur

s

UGRU 0.92 35.59 10.71 0.89 30.18 15.33 0.97 27.48 16.67 14.24
USub 0.91 35.90 10.29 0.88 30.49 15.23 0.96 27.63 16.12 13.88

UGRU+USub 0.92 36.60 9.36 0.89 31.86 13.69 0.95 27.12 16.37 13.14
+Obj. 0.93 36.80 9.78 0.90 31.83 14.20 0.95 28.28 15.73 13.24

Table 1: Single system results in terms of (TER-BLEU)/2 (the lower the better) on 5 million Chinese to English
training set. NMT results are on a large vocabulary (300k) and with UNK replaced. UGRU : updating with a GRU;
USub: updating as a subtraction; UGRU + USub: combination of two methods (do not share coverage embedding
vectors); +Obj.: UGRU + USub with an additional objective in Equation 6, we have two λs for UGRU and USub

separately, and we test λGRU = 1× 10−4 and λSub = 1× 10−2.

single system MT06 MT08 avg.News Web
BP T-B BP T-B BP T-B T-B

Tree-to-string 0.90 8.70 0.84 12.65 0.84 17.00 12.78
LVNMT 0.96 9.78 0.94 14.15 0.97 15.89 13.27

UGRU 0.97 8.62 0.95 12.79 0.97 15.34 12.31

Table 2: Single system results in terms of (TER-BLEU)/2
on 11 million set. NMT results are on a large vocabulary
(500k) and with UNK replaced. Due to the time limita-
tion, we only have the results of UGRU system.

Table 2 shows the results of 11 million sys-
tems, LVNMT achieves an average (TER-BLEU)/2
of 13.27, which is about 2.5 points better than 5
million LVNMT. The result of our UGRU cover-
age model gives almost 1 point gain over LVNMT.
Those results suggest that the more training data we
use, the stronger the baseline system becomes, and
the harder to get improvements. In order to get a rea-
sonable or strong NMT system, we have to conduct
experiments over a large-scale training set.

5.3 Alignment Results

Table 3 shows the F1 scores on the alignment test set
(447 hand aligned sentences). The MaxEnt model
is trained on 67k hand-aligned data, and achieves
an F1 score of 75.96. For NMT systems, we dump
alignment matrixes, then, for each target word we
only add the highest probability link if it is higher
than 0.2. Results show that our best coverage model,
UGRU + USub, improves the F1 score by 2.2 points
over the sorce of LVNMT.

We also check the repetition statistics of NMT
outputs. We simply compute the number of repeated

system pre. rec. F1
MaxEnt 74.86 77.10 75.96
LVNMT 47.88 41.06 44.21

O
ur

s

UGRU 51.11 41.42 45.76
USub 49.07 42.49 45.55

UGRU+USub 49.46 43.83 46.47
+Obj. 49.78 41.73 45.40

Table 3: Alignment F1 scores of different models.

phrases (length longer or equal than 4 words) for
each sentence. On MT06 test set, the 5 million
LVNMT has 209 repeated phrases, our UGRU sys-
tem reduces it significantly to 79, UGRU+USub and
+Obj. only have 50 and 47 repeated phrases, re-
spectively. The 11 million LVNMT gets 115 re-
peated phrases, and UGRU reduces it further down to
16. Those trends hold across other test sets. Those
statistics show that a larger training set or coverage
embedding models alleviate the repeating problem
in NMT.

6 Conclusion

In this paper, we propose simple, yet effective, cov-
erage embedding models for attention-based NMT.
Our model learns a special coverage embedding vec-
tor for each source word to start with, and keeps up-
dating those coverage embeddings with neural net-
works as the translation goes. Experiments on the
large-scale Chinese-to-English task show significant
improvements over the strong LVNMT system.
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