
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1734–1743,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Verb Phrase Ellipsis Resolution Using Discriminative and Margin-Infused
Algorithms

Kian Kenyon-Dean Jackie Chi Kit Cheung Doina Precup
School of Computer Science

McGill University
kian.kenyon-dean@mail.mcgill.ca, {jcheung,dprecup}@cs.mcgill.ca

Abstract

Verb Phrase Ellipsis (VPE) is an anaphoric
construction in which a verb phrase has been
elided. It occurs frequently in dialogue and
informal conversational settings, but despite
its evident impact on event coreference reso-
lution and extraction, there has been relatively
little work on computational methods for iden-
tifying and resolving VPE. Here, we present
a novel approach to detecting and resolving
VPE by using supervised discriminative ma-
chine learning techniques trained on features
extracted from an automatically parsed, pub-
licly available dataset. Our approach yields
state-of-the-art results for VPE detection by
improving F1 score by over 11%; additionally,
we explore an approach to antecedent identifi-
cation that uses the Margin-Infused-Relaxed-
Algorithm, which shows promising results.

1 Introduction

Verb Phrase Ellipsis (VPE) is an anaphoric construc-
tion in which a verbal constituent has been omitted.
In English, an instance of VPE consists of two parts:
a trigger, typically an auxiliary or modal verb, that
indicates the presence of a VPE; and an antecedent,
which is the verb phrase to which the elided element
resolves (Bos and Spenader, 2011; Dalrymple et al.,
1991). For example, in the sentence, “The govern-
ment includes money spent on residential renova-
tion; Dodge does not”, the trigger “does” resolves
to the antecedent “includes money spent on residen-
tial renovation”.

The ability to perform VPE resolution is impor-
tant for tasks involving event extraction, especially

in conversational genres such as informal dialogue
where VPE occurs more frequently (Nielsen, 2005).
Most current event extraction systems ignore VPE
and derive some structured semantic representation
by reading information from a shallow dependency
parse of a sentence. Such an approach would not
only miss many valid links between an elided verb
and its arguments, it could also produce nonsensi-
cal extractions if applied directly on an auxiliary
trigger. In the example above, a naive approach
might produce an unhelpful semantic triple such as
(Dodge, agent, do).

There have been several previous empirical stud-
ies of VPE (Hardt, 1997; Nielsen, 2005; Bos and
Spenader, 2011; Bos, 2012; Liu et al., 2016). Many
previous approaches were restricted to solving spe-
cific subclasses of VPE (e.g., VPE triggered by do
(Bos, 2012)), or have relied on simple heuristics for
some or all of the steps in VPE resolution, such as
by picking the most recent previous clause as the an-
tecedent.

In this paper, we develop a VPE resolution
pipeline which encompasses a broad class of VPEs
(Figure 1), decomposed into the following two steps.
In the VPE detection step, the goal is to determine
whether or not a word triggers VPE. The second
step, antecedent identification, requires selecting the
clause containing the verbal antecedent, as well as
determining the exact boundaries of the antecedent,
which are often difficult to define.

Our contribution is to combine the rich linguis-
tic analysis of earlier work with modern statistical
approaches adapted to the structure of the VPE res-
olution problem. First, inspired by earlier work,

1734

Figure 1: Example of the VPE resolution pipeline on an exam-

ple found in WSJ file wsj 0036.

our system exploits linguistically informed features
specific to VPE in addition to standard features
such as lexical features or POS tags. Second,
we adapt the Margin-Infused-Relaxed-Algorithm
(MIRA) (Crammer et al., 2006), which has been
popular in other tasks, such as machine translation
(Watanabe et al., 2007) and parsing (McDonald et
al., 2005), to antecedent identification. This algo-
rithm admits a partial loss function which allows
candidate solutions to overlap to a large degree. This
makes it well suited to antecedent identification, as
candidate antecedents can overlap greatly as well.

On VPE detection, we show that our approach sig-
nificantly improves upon a deterministic rule-based
baseline and outperforms the state-of-the-art system
of Liu et al. (2016) by 11%, from 69.52% to 80.78%.
For antecedent identification we present results that
are competitive with the state-of-the-art (Liu et al.,
2016). We also present state-of-the-art results with
our end-to-end VPE resolution pipeline. Finally, we
perform feature ablation experiments to analyze the
impact of various categories of features.

2 Related Work

VPE has been the subject of much work in the-
oretical linguistics (Sag, 1976; Dalrymple et al.,
1991, inter alia). VPE resolution could have a sig-

nificant impact on related problems such as event
coreference resolution (Lee et al., 2012; Bejan and
Harabagiu, 2010; Liu et al., 2014) and event ex-
traction (Ahn, 2006; Kim et al., 2009; Ritter et al.,
2012). It has, however, received relatively little at-
tention in the computational literature.

Hardt (1992) engaged in the first study of compu-
tational and algorithmic approaches for VPE detec-
tion and antecedent identification by using heuris-
tic, linguistically motivated rules. Hardt (1997) ex-
tracted a dataset of 260 examples from the WSJ cor-
pus by using an algorithm that exploited null ele-
ments in the PTB parse trees. Nielsen (2005) built a
dataset that combined sections of the WSJ and BNC;
he showed that the more informal settings captured
in the BNC corpora show significantly more fre-
quent occurrences of VPE, especially in dialogue ex-
cerpts from interviews and plays. Using this dataset,
he created a full VPE pipeline from raw input text
to a full resolution by replacing the trigger with the
intended antecedent1.

Bos and Spenader (2011) annotated the WSJ for
occurrences of VPE. They found over 480 instances
of VPE, and 67 instances of the similar phenomenon
of do-so anaphora. Bos (2012) studied do-VPE by
testing algorithmic approaches to VPE detection and
antecedent identification that utilize Discourse Rep-
resentation Theory.

Concurrently with the present work, Liu et al.
(2016) explored various decompositions of VPE res-
olution into detection and antecedent identification
subtasks, and they corrected the BNC annotations
created by Nielsen (2005), which were difficult to
use because they depended on a particular set of
preprocessing tools. Our work follows a similar
pipelined statistical approach. However, we explore
an expanded set of linguistically motivated features
and machine learning algorithms adapted for each
subtask. Additionally, we consider all forms of
VPE, including to-VPE, whereas Liu et al. only con-
sider modal or light verbs (be, do, have) as candi-
dates for triggering VPE. This represented about 7%

1e.g., the resolution of the example in Figure 1 would be
“The government includes money spent on residential renova-
tion; Dodge does not [include money spent on residential reno-
vation]”. We did not pursue this final step due to the lack of a
complete dataset that explicitly depicts the correct grammatical
resolution of the VPE.

1735

Auxiliary Type Example Frequency

Do does, done 214 (39%)
Be is, were 108 (19%)

Have has, had 44 (8%)
Modal will, can 93 (17%)

To to 29 (5%)
So do so/same3 67 (12%)

TOTAL 554
Table 1: Auxiliary categories for VPE and their frequencies in

all 25 sections of the WSJ.

of the dataset that they examined.

3 Approach and Data

We divide the problem into two separate tasks: VPE
detection (Section 4), and antecedent identification
(Section 5). Our experiments use the entire dataset
presented in (Bos and Spenader, 2011). For prepro-
cessing, we used CoreNLP (Manning et al., 2014)
to automatically parse the raw text of WSJ for fea-
ture extraction. We also ran experiments using gold-
standard parses; however, we did not find significant
differences in our results2. Thus, we only report re-
sults on automatically generated parses.

We divide auxiliaries into the six different cate-
gories shown in Table 1, which will be relevant for
our feature extraction and model training process,
as we will describe. This division is motivated by
the fact that different auxiliaries exhibit different be-
haviours (Bos and Spenader, 2011). The results we
present on the different auxiliary categories (see Ta-
bles 2 and 4) are obtained from training a single clas-
sifier over the entire dataset and then testing on aux-
iliaries from each category, with the ALL result be-
ing the accuracy obtained over all of the test data.

2An anonymous reviewer recommended that further exper-
iments could be performed by using the more informative NPs
created with NML nodes (Vadas and Curran, 2007) on the gold-
standard parsed WSJ.

3For example, “John will go to the store and Mary will do
the same/likewise/the opposite”. Do X anaphora and modals are
not technically auxiliary verbs, as noted by the annotators of our
dataset (Bos and Spenader, 2011), but for the purposes of this
study we generalize them all as auxiliaries while simultaneously
dividing them into their correct lexical categories.

4 VPE Detection

The task of VPE detection is structured as a binary
classification problem. Given an auxiliary, a, we
extract a feature vector f , which is used to predict
whether or not the auxiliary is a trigger for VPE. In
Figure 1, for example, there is only one auxiliary
present, “does”, and it is a trigger for VPE. In our
experiments, we used a logistic regression classifier.

4.1 Feature Extraction
We created three different sets of features related to
the auxiliary and its surrounding context.

Auxiliary. Auxiliary features describe the charac-
teristics of the specific auxiliary, including the fol-
lowing:
� word identity of the auxiliary
� lemma of the auxiliary
� auxiliary type (as shown in Table 1)

Lexical. These features represent:
� the three words before and after the trigger
� their part-of-speech (POS) tags
� their POS bigrams

Syntactic. We devise these features to encode the
relationship between the candidate auxiliary and its
local syntactic context. These features were deter-
mined to be useful through heuristic analysis of VPE
instances in a development set. The feature set in-
cludes the following binary indicator features (a =
the auxiliary):
� a c-commands4 a verb
� a c-commands a verb that comes after it
� a verb c-commands a
� a verb locally5 c-commands a
� a locally c-commands a verb
� a is c-commanded by “than”, “as”, or “so”
� a is preceded by “than”, “as”, or “so”
� a is next to punctuation
� the word “to” precedes a
� a verb immediately follows a
� a is followed by “too” or “the same”
4A word A c-commands another word B if A’s nearest

branching ancestor in the parse tree is an ancestor of B, fol-
lowing the definition of Carnie (2013). We use this term purely
to define a syntactic relation between two points in a parse tree.

5A word A and word B share a local structure if they have
the same closest S-node ancestor in the parse tree.

1736

4.2 Baseline
As a baseline, we created a rule-based system in-
spired by Nielsen’s (2005) approach to solving VPE
detection. The baseline algorithm required signifi-
cant experimental tuning on the development set be-
cause different linguistically hand-crafted rules were
needed for each of the six trigger forms. For exam-
ple, the following rule for modals achieved 80% F1-
accuracy (see Table 2): “assume VPE is occurring if
the modal does not c-command a verb that follows
it”. The other trigger forms, however, required sev-
eral layers of linguistic rules. The rules for be and
have triggers were the most difficult to formulate.

4.3 Experiments
We evaluate our models as usual using precision, re-
call and F1 metric for binary classification. The pri-
mary results we present in this section are obtained
through 5-fold cross validation over all 25 sections
of the automatically-parsed dataset. We use cross
validation because the train-test split suggested by
Bos and Spenader (2011) could result in highly var-
ied results due to the small size of the dataset (see
Table 1). Because the vast majority of auxiliaries do
not trigger VPE, we over-sample the positive cases
during training. Table 2 shows a comparison be-
tween the machine learning technique and a rule-
based baseline for the six auxiliary forms. Table 3
shows results obtained from using the same train-
test split used by Liu et al. (2016) in order to provide
a direct comparison.

Results. Using a standard logistic regression clas-
sifier, we achieve an 11% improvement in accuracy
over the baseline approach, as can be seen in Table 2.
The rule-based approach was insufficient for be and
have VPE, where logistic regression provides the
largest improvements. Although we improve upon
the baseline by 29%, the accuracy achieved for be-
VPE is still low; this occurs mainly because: (i) be
is the most commonly used auxiliary, so the number
of negative examples is high compared to the num-
ber of positive examples; and, (ii) the analysis of the
some of the false positives showed that there may
have been genuine cases of VPE that were missed
by the annotators of the dataset (Bos and Spenader,
2011). For example, this sentence (in file wsj 2057)
was missed by the annotators (trigger in bold, an-

Auxiliary Baseline ML Change

Do 0.83 0.89 +0.06
Be 0.34 0.63 +0.29

Have 0.43 0.75 +0.32
Modal 0.80 0.86 +0.06

To 0.76 0.79 +0.03
So 0.67 0.86 +0.19

ALL 0.71 0.82 +0.11

Table 2: VPE detection results (baseline F1, Machine Learning

F1, ML F1 improvement) obtained with 5-fold cross validation.

Test Set Results P R F1

Liu et al. (2016) 0.8022 0.6134 0.6952
This work 0.7574 0.8655 0.8078

Table 3: Results (precision, recall, F1) for VPE detection using

the train-test split proposed by Bos and Spenader (2011).

tecedent italicized) “Some people tend to ignore that
a 50-point move is less in percentage terms than it
was when the stock market was lower.”; here it is
clear that was is a trigger for VPE.

In Table 3, we compare our results to those
achieved by Liu et al. (2016) when using WSJ sets
0-14 for training and sets 20-24 for testing. We im-
prove on their overall accuracy by over 11%, due
to the 25% improvement in recall achieved by our
method. Our results show that oversampling the pos-
itive examples in the dataset and incorporating lin-
guistically motivated syntactic features provide sub-
stantial gains for VPE detection. Additionally, we
consider every instance of the word to as a potential
trigger, while they do not - this lowers their recall be-
cause they miss every gold-standard instance of to-
VPE. Thus, not only do we improve upon the state-
of-the-art accuracy, but we also expand the scope of
VPE-detection to include to-VPE without causing a
significant decrease in accuracy.

5 Antecedent Identification

In this section we assume that we are given a trig-
ger, from which we have to determine the correct
antecedent; i.e., in the example in Figure 1, our task
would be to identify “includes money spent on res-

1737

idential renovation” as the correct antecedent. Our
approach to this problem begins with generating a
list of candidate antecedents. Next, we build a fea-
ture vector for each candidate by extracting features
from the context surrounding the trigger and an-
tecedent. Lastly, we use these features to learn a
weight vector by using the Margin-Infused-Relaxed-
Algorithm.

5.1 Candidate Generation
We generate a list of candidate antecedents by first
extracting all VPs and ADJPs (and all contiguous
combinations of their constituents) from the current
sentence and the prior one. We then filter these can-
didates by predefining possible POS tags that an an-
tecedent can start or end with according to the train-
ing set’s gold standard antecedents. This method
generates an average of 55 candidate antecedents per
trigger, where triggers in longer sentences cause the
creation of a larger number of candidate antecedents
due to the larger number of VPs. This strategy ac-
counts for 92% of the gold antecedents on the val-
idation set by head match. We experimented with
a less restrictive generation filter, but performance
was not improved due to the much larger number of
candidate antecedents.

5.2 Feature Extraction
We construct a feature vector representation for each
candidate antecedent; in the example in Figure 1, for
example, we would need feature vectors that differ-
entiate between the two potential antecedents “in-
cludes money” and “includes money spent on resi-
dential renovation”.

Alignment. This feature set results from an align-
ment algorithm that creates a mapping between the
S-clause nearest to the trigger, St, and the S-clause
nearest to the potential antecedent, Sa. The purpose
of these features is to represent the parallelism (or
lack thereof) between an antecedent’s local vicinity
with that of the trigger. The creation of this align-
ment algorithm was motivated by our intuition that
the clause surrounding the trigger will have a par-
allel structure to that of the antecedent, and that an
alignment between the two would best capture this
parallelism. In the example sentence in Figure 2
(trigger in bold, antecedent italicized) “Investors can

Figure 2: Alignment algorithm example with simplified depen-

dencies.

get slightly higher yields on deposits below $50,000
than they can on deposits of $90,000 and up” a sim-
ple observation of parallelism is that both the trig-
ger and the correct antecedent are followed by the
phrase “on deposits”.

Formally, for each S ∈ {Sa, St}, we extract the
dependencies in S as chunks of tokens, where each
dependency chunk di contains all tokens between
its governor and dependent (whichever comes first).
Next, for each di ∈ Sa, if di contains any tokens that
belong to the antecedent, delete those tokens. Sim-
ilarly, for each di ∈ St, delete any token in di that
belongs to T . We then perform a bipartite match-
ing to align the di ∈ St to the dj ∈ Sa, where
each edge’s weight is determined by a scoring func-
tion s(di, dj). The scoring function we use consid-
ers the F1-similarity between the lemmas, POS-tags,
and words shared between the two chunks, as well
as whether or not the chunks share the same depen-
dency name.

1738

In the example in Figure 2 we can see that the
correct antecedent, “get slightly higher yields”, has
a stronger alignment than the incorrect one, “get
slightly higher yields on deposits”. This occurs be-
cause we remove the candidate antecedent from its
S-clause before creating the chunks; this leaves three
nodes for the correct antecedent which map to the
three nodes of the trigger’s S-clause. However, this
process only leaves two nodes for the incorrect can-
didate antecedent, thus causing one chunk to be un-
mapped, thus creating a weaker alignment.

We then use this mapping to generate a feature
vector for the antecedent, which contains: the mini-
mum, maximum, average, and standard deviation of
the scores between chunks in the mapping; the num-
ber and percentage of unmapped chunks; the depen-
dencies that have (and have not) been mapped to; the
dependency pairs that were mapped together; and
the minimum, maximum, average, and standard de-
viation of the cosine-similarity between the average
word embedding of the words in a chunk between
each di, dj pair in the mapping.

NP Relation. These features compare the Noun
Phrase (NP) closest to the antecedent to the NP clos-
est to the trigger. This is motivated by an obser-
vation of many instances of VPE where it is often
the case that the entity preceding the trigger is either
repeated, similar, or corefers to the entity preced-
ing the antecedent. The relationship between each
NP is most significantly represented by features cre-
ated with pre-trained word2vec word embeddings
(Mikolov et al., 2013). For each NP, and for each
word in the NP, we extract its pre-trained word em-
bedding and then average them all together. We then
use the cosine similarity between these two vectors
as a feature.

Syntactic. Syntactic features are based on the re-
lationship between the candidate antecedent’s parse
tree with that of the trigger. This feature set includes
the following features, with the last three being in-
fluenced by Hardt’s (1997) “preference factors” (a =
candidate antecedent, t = trigger):
� if a’s first word is an auxiliary
� if a’s head (i.e., first main verb) is an auxiliary
� the POS tag of a’s first and last words
� the frequency of each POS tag in the antecedent

� the frequency of each phrase (i.e., NP, VP,
ADJP, etc.) in a’s sentence and t’s sentence
� if “than”, “as”, or “so” is between a and t
� if the word before a has the same POS-tag or

lemma as t
� if a word in a c-commands a word in t
� if a’s first or last word c-commands the trigger
� Be-Do Form: if the lemma of the token preced-

ing a is be and the t’s lemma is do
� Recency: distance between a and t and the dis-

tance between the t’s nearest VP and a
� Quotation: if t is between quotation marks and

similarly for a

Matching. This last feature set was influenced by
the features described by Liu et al. (2016). We
only use the “Match” features described by them;
namely: whether the POS-tags, lemmas, or words
in a two-token window before the start of the an-
tecedent exactly match the two before the trigger;
and whether the POS-tag, lemma, or word of the ith
token before the antecedent equals that of the i-1th
token before the trigger (for i ∈ {1, 2, 3}, where
i = 1 considers the trigger itself).

5.3 Training Algorithm - MIRA
Since many potential antecedents share relatively
similar characteristics, and since we have many fea-
tures and few examples, we use the Margin-Infused-
Relaxed-Algorithm (MIRA) in order to identify the
most likely potential antecedent. MIRA maximizes
the margin between the best candidate and the rest
of the potential antecedents according to a loss
function. It has been used for tasks with similar
characteristics, such as statistical machine transla-
tion (Watanabe et al., 2007).

The training algorithm begins with a random ini-
tialization of the weight vector w. The training
set contains triggers, each trigger’s candidate an-
tecedents, and their gold standard antecedents; it is
reshuffled after each training epoch. We find the
K highest-scoring potential antecedents, a1, . . . , ak,
according to the current weight value. A learn-
ing rate parameter determines how much we retain
the new weight update with respect to the previous
weight vector values.

MIRA defines the update step of the standard on-
line training algorithm: it seeks to learn a weight

1739

vector that, when multiplied with a feature vector fi,
gives the highest score to the antecedent that is most
similar to the gold standard antecedent, a∗. This is
posed as an optimization problem:

minimize
wi

‖wi − wi−1‖+ C
K∑

k

ξk

subject to wi · a∗ − wi · ak + ξk ≥ L(a∗, ak),
k = 1, . . . ,K

(1)
Here, L is the loss function that controls the mar-

gin between candidates and the gold standard; it is
defined as the evaluation metric proposed by Bos
and Spenader (2011) (described in Section 5.5).

The ξ are slack variables and C ≥ 0 is a hyper-
parameter that controls the acceptable margin. This
problem is solved by converting it to its Lagrange
dual form6.

5.4 Baseline Algorithm
The baseline we created was motivated by Bos’s
(2012) baseline algorithm: given a trigger, return as
the antecedent the nearest VP that does not include
the trigger. This is a naı̈ve approach to antecedent
identification because it does not consider the re-
lationship between the context surrounding the an-
tecedent and the context surrounding the trigger.

5.5 Experiments
We evaluate our results following the proposed met-
rics of Bos and Spenader (2011), as do Liu et al.
(2016). Accuracy for antecedent identification is
computed according to n = the number of correctly
identified tokens between the candidate antecedent
and the gold standard antecedent. Precision is n
divided by the length of the candidate antecedent,
recall is n divided by the length of the correct an-
tecedent, and accuracy is the harmonic mean of pre-
cision and recall. For MIRA, final results are deter-
mined by choosing the weight vector that achieved
the best performance on a validation set that is split
off from part of the training set, as calculated after
each update step.

6In this study, the dual form was implemented by hand using
Gurobi’s python API (Gurobi Optimization Inc., 2015).

Auxiliary Baseline MIRA Change

do 0.42 0.71 +0.29
be 0.37 0.63 +0.26

modal 0.42 0.67 +0.25
so 0.15 0.53 +0.38

have 0.39 0.61 +0.22
to 0.03 0.58 +0.55

ALL 0.36 0.65 +0.29

Table 4: Results (baseline accuracy, MIRA accuracy, accuracy

improvement) for antecedent identification; obtained with 5-

fold cross validation.

End-to-end Results P R F1

Liu et al. (2016) 0.5482 0.4192 0.4751
This work 0.4871 0.5567 0.5196

Table 5: End-to-end results (precision, recall, F1) using the

train-test split proposed by Bos and Spenader (2011).

MIRA has several hyper-parameters that were
tuned through a grid search over the validation set.
The most crucial parameters were the learning rate
α, and C, while the value of K did not cause signif-
icant changes in accuracy.

Results. In Table 4, we see that MIRA improves
upon the baseline with a 29% increase in overall ac-
curacy. MIRA provides significant gains for each
form of VPE, although there is room for improve-
ment, especially when identifying the antecedents of
do-so triggers.

Liu et al. (2016) achieve an accuracy of 65.20%
with their joint resolution model for antecedent iden-
tification when using the train-test split proposed
by Bos and Spenader (2011); our model achieves
62.20% accuracy. However, their experimental de-
sign was slightly different than ours — they only
considered antecedents of triggers detected by their
oracle trigger detection method, while we use all
gold-standard triggers, meaning our results are not
directly comparable to theirs. Our cross validated
results (65.18% accuracy) paint a better picture of
the quality of our model because the small size of
the dataset (554 samples) can cause highly varied
results.

1740

Excluded P R F1

Auxiliary 0.7982 0.7611 0.7781
Lexical 0.6937 0.8408 0.7582
Syntactic 0.7404 0.7330 0.7343

NONE 0.8242 0.8120 0.8170

Table 6: Feature ablation results (feature set excluded, preci-

sion, recall, F1) on VPE detection; obtained with 5-fold cross

validation.

In Table 5 we present end-to-end results obtained
from our system when using the triggers detected by
our VPE detection model (see Section 4). We com-
pare these results to the end-to-end results of the best
model of Liu et al. (2016). Following Liu et al., we
assign partial credit during end-to-end evaluation in
the following way: for each correctly detected (true
positive) trigger, the Bos and Spenader (2011) an-
tecedent evaluation score between the trigger’s pre-
dicted antecedent and its gold antecedent is used (as
opposed to a value of 1). As can be seen from Table
5, we trade about 6 points of precision for 14 points
of recall, thus improving state-of-the-art end-to-end
accuracy from 47.51% to 51.96%.

6 Feature Ablation Studies

We performed feature ablation experiments in order
to determine the impact that the different feature sets
had on performance.

Trigger Detection. In Table 6 we can see that the
syntactic features were essential for obtaining the
best results, as can be seen by the 8.3% improve-
ment, from 73.4% to 81.7%, obtained from includ-
ing these features. This shows that notions from the-
oretical linguistics can prove to be invaluable when
approaching the problem of VPE detection and that
extracting these features in related problems may
improve performance.

Antecedent Identification. Table 7 presents the
results from a feature ablation study on antecedent
identification. The most striking observation is that
the alignment features do not add any significant im-
provement in the results. This is either because there
simply is not an inherent parallelism between the

Features Excluded Accuracy

Alignment 0.6511
NP Relation 0.6428

Syntactic 0.5495
Matching 0.6504

NONE 0.6518

Table 7: Feature ablation results (feature set excluded, preci-

sion, recall, F1) on antecedent identification; obtained with 5-

fold cross validation.

trigger site and the antecedent site, or because the
other features represent the parallelism adequately
without necessitating the addition of the alignment
features. The heuristic syntactic features provide a
large (10%) accuracy improvement when included.
These results show that a dependency-based align-
ment approach to feature extraction does not rep-
resent the parallelism between the trigger and an-
tecedent as well as features based on the lexical and
syntactic properties of the two.

7 Conclusion and Future Work

We presented an approach for the tasks of Verb
Phrase Ellipsis detection and antecedent identifica-
tion that leverages features informed both by the-
oretical linguistics and NLP, and employs machine
learning methods to build VPE detection and an-
tecedent identification tools using these features.
Our results show the importance of distinguishing
VPE triggers from each other, and highlight the im-
portance of using the notion of c-command for both
tasks.

For VPE detection, we improve upon the accu-
racy of the state-of-the-art system by over 11%, from
69.52% to 80.78%. For antecedent identification,
our results significantly improve upon a baseline al-
gorithm and we present results that are competitive
with the state-of-the-art, as well as state-of-the-art
results for an end-to-end system. We also expand the
scope of previous state-of-the-art by including the
detection and resolution of to-VPE, thus building a
system that encompasses the entirety of the Bos and
Spenader (2011) VPE dataset.

In future work, we would like to further inves-

1741

tigate other margin-based optimizations similar to
MIRA, but perhaps even more resilient to over-
fitting. We also seek to improve the antecedent iden-
tification approach by extracting stronger features.

Acknowledgments

This work was funded by McGill University and the
Natural Sciences and Engineering Research Council
of Canada via a Summer Undergraduate Research
Project award granted to the first author. We thank
the anonymous reviewers for their helpful sugges-
tions, and we thank Nielsen, Hector Liu, and Edgar
Gonzàlez for their clarifying remarks over email.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8. Association
for Computational Linguistics.

Cosmin Adrian Bejan and Sanda Harabagiu. 2010. Un-
supervised event coreference resolution with rich lin-
guistic features. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, pages 1412–1422. Association for Computational
Linguistics.

Johan Bos and Jennifer Spenader. 2011. An annotated
corpus for the analysis of VP ellipsis. Language Re-
sources and Evaluation, 45(4):463–494.

Johan Bos. 2012. Robust VP ellipsis resolution in DR
theory. In Staffan Larsson and Lars Borin, editors,
From Quantification to Conversation, volume 19 of
Tributes, pages 145–159. College Publications.

Andrew Carnie. 2013. Syntax: A generative introduc-
tion. John Wiley & Sons.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. The Journal of Machine Learn-
ing Research, 7:551–585.

Mary Dalrymple, Stuart M Shieber, and Fernando CN
Pereira. 1991. Ellipsis and higher-order unification.
Linguistics and Philosophy, 14(4):399–452.

Gurobi Optimization Inc. 2015. Gurobi optimizer refer-
ence manual.

Daniel Hardt. 1992. An algorithm for VP ellipsis. In
Proceedings of the 30th Annual Meeting on Associa-
tion for Computational Linguistics, pages 9–14. Asso-
ciation for Computational Linguistics.

Daniel Hardt. 1997. An empirical approach to VP ellip-
sis. Computational Linguistics, 23(4):525–541.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of BioNLP ’09 shared task on event extraction. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task, pages 1–9. Association for Computational Lin-
guistics.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
489–500. Association for Computational Linguistics.

Zhengzhong Liu, Jun Araki, Eduard H Hovy, and Teruko
Mitamura. 2014. Supervised within-document event
coreference using information propagation. In LREC,
pages 4539–4544.

Zhengzhong Liu, Edgar Gonzalez, and Dan Gillick.
2016. Exploring the steps of verb phrase ellipsis. In
Proceedings of the Workshop on Coreference Resolu-
tion Beyond OntoNotes (CORBON 2016), co-located
with NAACL 2016, pages 32–40.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages
91–98. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Leif Arda Nielsen. 2005. A Corpus-Based Study of Verb
Phrase Ellipsis Identification and Resolution. Ph.D.
thesis, King’s College London.

Alan Ritter, Oren Etzioni, Sam Clark, et al. 2012. Open
domain event extraction from twitter. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1104–
1112. ACM.

Ivan A Sag. 1976. Deletion and logical form. Ph.D.
thesis, Massachusetts Institute of Technology.

David Vadas and James Curran. 2007. Adding noun
phrase structure to the penn treebank. In Annual Meet-
ing - Association for Computational Linguistics, vol-
ume 45, page 240.

1742

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki
Isozaki. 2007. Online large-margin training for sta-
tistical machine translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pages 764–
773.

1743

