
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 795–804
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Beyond Sentential Semantic Parsing: Tackling the Math SAT with a
Cascade of Tree Transducers

Mark Hopkins, Cristian Petrescu-Prahova, Roie Levin,
Ronan Le Bras, Alvaro Herrasti, and Vidur Joshi

Allen Institute for Artificial Intelligence
Seattle, WA

{markh,cristipp,roiel,rlebras,alvaroh,vidurj}@allenai.org

Abstract

We present an approach for answering
questions that span multiple sentences
and exhibit sophisticated cross-sentence
anaphoric phenomena, evaluating on a rich
source of such questions – the math por-
tion of the Scholastic Aptitude Test (SAT).
By using a tree transducer cascade as its
basic architecture, our system (called EU-
CLID) propagates uncertainty from multi-
ple sources (e.g. coreference resolution
or verb interpretation) until it can be con-
fidently resolved. Experiments show the
first-ever results (43% recall and 91% pre-
cision) on SAT algebra word problems.
We also apply EUCLID to the public Dol-
phin algebra question set, and improve
the state-of-the-art F1-score from 73.9%
to 77.0%.

1 Introduction

Math word problems pose questions that are chal-
lenging for current question answering (QA) sys-
tems to solve. Consider the following question
originating from a study guide for the Math SAT1:

Example 1: Suppose 3x + y = 15,
where x is a positive integer. What is
the difference between the largest possi-
ble value of y and the smallest possible
value of x, assuming that y is also a pos-
itive integer?

The correct response is 11; however its relation-
ship with the other numbers in the question (3 and
15) is oblique and not easily mapped to an opera-
tor tree or equation template. This encourages us
to build a semantic parser that produces an explicit

1The Math SAT is a standardized exam administered to
college-bound high school students in the United States.

representation of what the question is asking, if we
want to make quantitative progress on the question
set. However, while it is not hard to formalize the
semantics:

X × Y = {(x, y) | 3x+ y = 15, x, y ∈ Z+}
X = {x | (x, y) ∈ X × Y }
Y = {y | (x, y) ∈ X × Y }

solve: maxY −minX

it is not clear how to devise a compositional trans-
formation from the original question to the formal
semantics, since the meaning is dispersed through-
out the discourse, such that neither the maximiza-
tion nor the minimization can be locally derived
from some subtree of the syntactic structure.

Moreover, SAT questions quickly reach the lim-
its of preprocessing tools like anaphora resolution:

Example 2: 〈r, s, t〉 In the sequence
above, if each term after the first is x
more than the previous term, what is the
average of r, s, and t in terms of r and x?

Understanding this question requires a nuanced
resolution of each term after the first to the subse-
quence 〈s, t〉, a coreference resolution beyond the
grasp of the current state of the art.

Generally speaking, question discourse (with its
complex cross-sentence semantics and anaphora)
has not been a major focus of QA research. In
this paper, we use math SAT questions to develop
an approach to handling question discourse. Our
parser uses an intermediate semantic language that
allows complex semantics (like those of Example
1) to be compositionally constructed from a multi-
sentence question passage (Section 5.1). By archi-
tecting our semantic parser as a cascade of nonde-
terministic tree transducers (Gécseg and Steinby,
1997), we can propagate uncertainty until it can be

795



Figure 1: High-level view of EUCLID’s architecture.

confidently resolved – sometimes as late as during
program interpretation (Section 6). The integrated
approach also allows us to handle novel classes of
anaphoric phenomena by framing anaphora reso-
lution as an operation on a parse forest decorated
with implicits (Section 5.2).

Ultimately we produce an end-to-end system
(called EUCLID) that achieves 43% recall and 91%
precision on SAT closed-vocabulary algebra ques-
tions, a subset (described in more detail in the next
section) that constitutes approximately 45% of a
typical math SAT. We also achieve state-of-the-art
results on the publicly released Dolphin question
set (Shi et al., 2015), a set of more than 1500 al-
gebra questions released by Microsoft Research.
Finally, we provide a look at our early progress on
extending the system to tackle the math SAT in its
entirety.

2 Anatomy of a Math SAT

To assess our semantic parser, we compiled three
question sets. Two question sets were created from
sample SAT exams found in study guides (pub-
lished by Kaplan and McGraw-Hill). We used
the Kaplan set (12 exams, 648 total questions) for
training/development and the McGraw-Hill set (13
exams2, 686 total questions) for devtest. We re-
served official practice exams (8 exams, 396 total
questions) released by the College Board for final
testing. We did not subselect questions from the
exams, rather we used them in their entirety.3 We
encoded mathematical formatting using LATEX.

During the compilation of these questions, they
were split into 4 broad categories:

1. Algebra (closed vocabulary) (e.g. Exam-
ples 1 and 2) : Algebra questions drawn

212 full exams + 1 PSAT
3One exception: we exclude the “comparison”-style ques-

tions (discontinued in 2005) from pre-2005 exams.

from a limited mathematical vocabulary.

2. Algebra (open vocabulary) (e.g. “At a bas-
ketball tournament involving 8 teams, each
team played 4 games with each of the other
teams. How many games were played at this
tournament?”) : Algebra questions drawn
from an open-ended vocabulary.

3. Geometry: Geometry questions, typically
involving a diagram.

4. Other A catch-all for questions that do not
fall neatly into the above categories.

In this paper, we focus our attention on closed-
vocabulary algebra, which constitutes approxi-
mately 45% of the questions.

3 Related Work

Most of the recent work on math questions has
focused on open-vocabulary algebra problems,
also known as math story problems. Benchmark
datasets include Alg514 (Kushman et al., 2014),
AI2 (Hosseini et al., 2014), Illinois and Common-
core (Roy and Roth, 2015), and DRAW (Upad-
hyay and Chang, 2016). A common property of
these datasets is that they have been curated such
that any given question can be solved by a limited-
depth operator tree (AI2, Illinois, Commoncore)
or a limited set of equation templates (Alg514
and DRAW). Because of this, it is feasible to use
discriminative approaches (Kushman et al., 2014;
Hosseini et al., 2014; Roy and Roth, 2015; Zhou
et al., 2015; Koncel-Kedziorski et al., 2015; Mitra
and Baral, 2016) that extract the quantities, fea-
turize the question, and then perform a weighted
search over the space of instantiated operator trees
or equation templates. However it is not clear how
one can extend these discriminative techniques to

796



handle the complex semantics found in Examples
1 and 2.

Very recently, (Matsuzaki et al., 2017) pub-
lished a paper about their semantic parsing ap-
proach to pre-university math problems (harvested
from Japanese exams rather than the Math SAT).
It is challenging to do a direct comparison, since
they report results only on the Japanese-language
exams. They report end-to-end system results of
11% recall and 50% precision.

(Shi et al., 2015) harvested a fairly diverse set of
closed-vocabulary algebra problems (called Dol-
phin) from the web and provided the first results
on that dataset. Here, we demonstrate how to
handle the more complex discourse semantics and
anaphoric phenomena found in Math SAT ques-
tions, and establish a new state-of-the-art result on
the Dolphin benchmark.

4 System Overview

Figure 1 shows a high-level view of our QA sys-
tem. We will give a general overview in this sec-
tion, and then explore more advanced concepts
and examples in the subsequent section.

4.1 Intermediate Languages

Our QA system has two basic languages that me-
diate the transformation from the question passage
to the answer: a syntactic language A and a se-
mantic language B.

Syntactic language A has a constituent-style
syntax convenient4 for the tree transducers in our
cascade. In Figure 2, we show an example. We
have three basic node types: clauses, entities
(these correspond to noun phrases), and details
(these correspond to adjectival and adverbial mod-
ifiers). Each node has a table of fields (key-value
pairs) that store child relationships and auxiliary
information like tense and number. For brevity,
this additional structure is omitted from Figure 2,
but a more explicit visualization can be found in
Figure 4 (top).

A program in semantic language B is a set of
constraint declarations. For instance, the question
from Figure 2 (“Letm+3 < 15. Ifm is a positive
integer, what is the sum of all values ofm?”) com-
piles to the semantic program in Figure 3. When

4We experimented with adopting an existing syntax, like
the Penn Treebank Syntax or the Stanford Dependency Syn-
tax, but it turned out to be easier to develop the syntax in
parallel with the needs of our system. Having said that, it is
not intended to be wildly different from those formalisms.

Figure 4: Example XTOPs transducer rules (bot-
tom) used to derive a syntactic parse from the noun
phrase “a positive integer” (via backward applica-
tion of the transducer).

the form of the tree is unimportant, it will be con-
venient to use a more legible LISP-style format,
e.g.

(< (+ m 3) 15)
(> m 0)
(int m)
(proto mM )
(= ?q (sum M ))

Every constraint in this program should be easily
understandable, except for (proto m M ), which
loosely means that M is the set of all possible val-
ues of m. In Section 5.1, we discuss the proto
directive in more detail.

797



Figure 2: Example syntactic parse. For convenience, we show the correspondence of the nodes of
our syntactic parse (top) to the original question passage (bottom). In the parse tree, “E” stands for
“ENTITY”.

Figure 3: Example semantic program for the question “Let m+ 3 < 15. If m is a positive integer, what
is the sum of all values of m?”

4.2 Syntactic Parsing

The first stage of our QA system parses the ques-
tion passage into language A5. We implemented
the parser as the backward application of an ex-
tended top-down tree-to-string (XTOPs) trans-
ducer6.

We refer the reader to (Maletti et al., 2009) for
a theoretical presentation of XTOPs, and instead
give a brief intuitive presentation of the device. An
XTOPs transducer defines a top-down transforma-
tion from a tree language to a string language, via
a set of stateful rewrite rules. For instance, rules
(i) through (v) of Figure 4 can generate the string
“a positive integer” from theA-tree pictured at the
top of the figure, given start state qNP.

Given an XTOPs transducer M , we can parse
string s through backward application of the trans-
ducer, i.e. compute the set of trees M−1(s)
that could have generated string s from the start

5Recall: language A is the syntactic language described
in the previous section. An example is shown in Figure 2.

6We chose to implement the parsing step by engineering a
transducer rather than using an off-the-shelf statistical parser.
While we tried to retrofit a parser – e.g. as done by (Seo et al.,
2015) – to serve our needs, it turned out to be somewhat more
robust (and relatively simple) to engineer our own.

state. Efficient backward application of XTOPs
transducers is supported by packages like Tiburon
(May and Knight, 2006).

Our XTOPs transducer has approximately 140
states and 550 engineered rules (approximately
200 of these rules are used for parsing formal
mathematics and a subset of LaTeX). Most lexical
rules are automatically generated on-the-fly from
WordNet (Miller, 1995).

4.3 Compilation

We then compile the parses of the question pas-
sage, by running them forward through a cas-
cade of bottom-up tree transducers (Engelfriet,
1975). Again we refer the reader to the literature
(Maletti, 2011, 2014) for a theoretical presentation
of bottom-up tree transducers, and use Figure 5
to provide intuition about the device. A bottom-
up tree transducer defines a transformation from
a tree language to a (possibly different) tree lan-
guage, via a set of stateful bottom-up rewrite rules.

In Figure 5, we show how this transformation
works in the context of the semantic translation
step, which uses a multi bottom-up transducer
(MBOT) to map our syntactic languageA into our

798



semantic language B. There is a single state (in-
dicated by a gray shaded rectangle) that has two
children: (i) a return value, and (ii) a set of side-
effect statements.

The first rule application transforms “all values
of m” into a return value of M (a new variable
introduced to indicate the set of all values of vari-
able m) and a side-effect (proto mM ), indicating
that M equals the set of all possible values of m.
The second rule application transforms “the sum
of M” into a return value of (sumM ), and propa-
gates upward the accumulated side-effects.

We implemented all three compilation steps
from Figure 1 (anaphora resolution, semantic
translation, and semantic analysis) as the for-
ward application of a bottom-up tree transducer.
Anaphora resolution resolves any nodes that refer
to other nodes in the tree. Semantic translation
translates syntactic language A into semantic lan-
guage B. Semantic analysis type-checks the trees
for internal consistency.

4.4 Interpretation
Finally, each derived B-tree is sent to an evalu-
ator to obtain an answer. Our main evaluator is
a wrapped version of Z3 (de Moura and Bjorner,
2008), a widely used Satisfiability Modulo Theo-
ries (SMT) solver. If it does not find an answer, we
fall back to a numeric optimization solver similar
to one used by (Seo et al., 2015).

5 Spotlights

Having provided a bird’s eye view in the last sec-
tion, we now spotlight some key details of our QA
system.

5.1 Spotlight: Complex Aggregations
A core challenge of semantic parsing is how best
to read complex semantic phenomena from a syn-
tactic representation. Two such phenomena are
superlatives and counting. GeoQuery (Zelle and
Mooney, 1996) has examples7 of these, as does8

WebQuestions (Berant et al., 2013). Unfortu-
nately, it is not clear how existing strategies for
dealing with aggregative constructs (e.g. (Liang
et al., 2011)) can be extended to the more complex
multi-sentence questions found on the SATs. For
instance, the basic semantics of Example 1 (enu-
merated in Section 1) is dispersed throughout the

7e.g. “What is the capital of the state that borders the most
states?”

8e.g. “How many pets did John F. Kennedy own?”

Figure 6: Understanding complex aggregations
by decomposing them into order-independent
atoms.

question passage, such that neither the maximiza-
tion nor the minimization can be locally derived
from some subtree of the dependency structure.

To deal with this challenge, we designed our se-
mantic language B to decompose the semantics
of aggregative constructs into order-independent
atoms. Consider the following restatement of the
semantics of Example 1:

proto(ẋ, X)
proto(ẏ, Y )
3ẋ+ ẏ = 15

ẋ > 0
ẏ > 0
ẋ ∈ Z
ẏ ∈ Z

solve: maxY −minX

where proto(ż, Z) designates that a variable ż
should be treated as the prototype variable of a
statement in set-builder notation, i.e. Z = {ż |
...}. We treat any other statement featuring pro-
totype variable ż as a constraint appearing on the
right side of the set-builder statement. If there are
multiple prototype statements, they are grouped
into a single set-builder statement (as occurs with
ẋ and ẏ in our example).

The power of this decomposition is that it can be
reconstructed piecemeal from an arbitrarily com-
plex passage. The atomic statements can be inter-
preted locally in an arbitrary order, as in Figure 6,
then synthesized into set-builder notation during
evaluation.

799



Figure 5: Example semantic translation using an MBOT.

5.2 Spotlight: Complex Anaphoric
Phenomena

The anaphora resolution task (Ge et al., 1998) is
typically defined at the lexical level. For instance,
in the sentence “c is equal to its square,” a tra-
ditional evaluation like the CoNLL-2011 Shared
Task (Pradhan et al., 2011) would ask whether the
string “its” is aligned to the string “c”. These eval-
uations also assume that both the reference and the
referent (a.k.a. antecedent) are contiguous strings
in the text.

Math SAT problems exhibit a host of new chal-
lenges that fall outside traditionally studied defini-
tions of anaphora resolution:

• One-to-many coreference9 (One integer is
5 more than another. What is the sum of the
numbers?): “The numbers” refers to two dis-
contiguous strings: “one integer” and “an-
other”.

• Implicit set reference (Two numbers sum to
5. If the first is 2, what is the second?): “The
second” implies a latent set that needs to be
resolved (to “two numbers”) in order to un-
derstand the sentence. This phenomenon is
shown in Figure 7.

9A recent ACL paper (Vala et al., 2016) has provided a
preliminary treatment of this phenomenon.

• Implicit clausal reference (If 7 is divided by
3, what is the remainder?): “The remainder”
implies a latent clause that needs to be re-
solved (to “7 is divided by 3”) in order to un-
derstand the sentence.

We address this broader class of anaphora by a
two-pass process:

1. First, we introduce implicit sets and clauses
when appropriate. For instance, implicit sets
are introduced for superlative and ordinal
constructions, while implicit clauses are in-
troduced for functional nouns like “remain-
der.” In Figure 7, these implicits are depicted
as bracketed phrases (i.e. [of a set]).

2. Anaphora resolution then proceeds as a
bottom-up tree-labeling process, shown in
Figure 7. For each subtree, a resolution func-
tion ρ partially maps subtree entities to sub-
tree nodes. Note that ancestors can overwrite
the resolutions of their descendants. This oc-
curs in the second example of Figure 7, where
the implicit set E7 is initially resolved to im-
plicit set E4, but is later resolved to the en-
tity E1 (“two numbers”) once it comes into
scope.

In our initial system, the resolution function ρ was

800



Figure 7: Bottom-up anaphora resolution in our QA system. For convenience, we show the correspon-
dence of the nodes of our syntactic parse (top) to the original question passage (bottom). In the parse
tree, “E” is an abbreviation for ENTITY.

engineered heuristically. We later replaced this
with a learned version (by using our system to gen-
erate training data). Due to space considerations,
details are omitted.

6 Results with the Unweighted
Nondeterministic Cascade

In the basic cascade from Section 4, the number of
trees passed from module to module can expand,
but it can also contract (for instance, in the seman-
tic translation step, there can be multiple ways of
translating a parse, or none at all). This allows the
QA system to disambiguate question passages by
eliminating parses for which there is no consistent
semantics. On the subset of the Kaplan questions
for which at least one parse exists, the average
number of trees after the parsing step is 7.5. The
average number of trees after the semantic analy-
sis step goes down to only 2.4. At that point, ob-
viously we need to choose some priority in which
to feed these finalized programs to the evaluation
module. Using a simple heuristic (process smaller
programs first), we obtain 70.2% recall and 95.8%
precision on the Kaplan closed-vocabulary algebra
questions10.

This high precision can be partially attributed
to the fact that most SAT questions are multiple-
choice (thus we can sequentially evaluate the fi-
nalized programs until we find a viable answer).
We do not have that luxury on the Dolphin dataset,
a set of direct-answer algebra questions curated
by Microsoft Research (split into a development
set of 374 questions and a test set of 1504 ques-

10Recall and precision numbers are computed over the en-
tire set of questions, regardless of whether they have a valid
parse.

tions). On the subset of the development ques-
tions for which at least one parse exists (90.3%
of the questions), the average number of trees af-
ter the parsing step is 4.3. The average number of
trees after the semantic analysis step goes down to
1.5. Our basic system obtains 66.3% recall on the
development questions. Naturally the precision is
not as high as on the multiple choice questions, but
surprisingly we still obtain 85.5% precision, even
with an unweighted cascade.

7 Introducing a Parse Ranker

Most of this precision loss is due to legitimate
parse ambiguity that cannot be resolved through
semantic interpretability alone. Rather, the dis-
ambiguation requires some additional pragmatic
convention. Consider the example: “When the
reciprocal of three times a number is subtracted
from the reciprocal of the number, the result is one
sixth. Find the number.” By interpreting “the re-
ciprocal of three” as 1

3 , the meaning of this ques-
tion becomes “When 1

3 times a number is sub-
tracted from the reciprocal of the number, the re-
sult is one sixth. Find the number.” This is not
however the most human-intuitive interpretation
of the question. Somehow the system must iden-
tify the pragmatic cues that cause humans to dis-
prefer this interpretation.

To identify these cues, we insert a parse rank-
ing module between the parsing module and the
anaphora resolution module (see Figure 1 for a
reminder of the system components). The goal
of the parse ranker is to associate a lower cost
to “more intuitive” interpretations when there are
multiple plausible syntactic interpretations. The

801



recall prec. F1
Kaplan (non-blind) 70.2 95.8 81.0

McGraw-Hill (blind) 41.0 91.8 56.7
Official (blind) 43.1 90.8 58.5

Table 1: Results on the closed-vocabulary algebra
subsets of our Math SAT question sets.

EUCLID (Shi et al., 2015)
rec prec F1 rec prec F1

dev 78.1 97.0 86.5 - - -
test 65.1 94.1 77.0 60.3 95.4 73.9

Table 2: Results on the Dolphin question sets.
The increase in recall is statistically significant
with a P -value < 0.01.

rest of the cascade propagates these costs. Simi-
lar to existing work, e.g. (Charniak and Johnson,
2005), we implement the cost function as an L1-
regularized logistic regression model.

Adding the trained parse ranker module im-
proves performance on the Dolphin development
set to 75.7% recall and 97.3% precision (from
66.3% recall and 85.5% precision).

8 Final Results

Results from our final system are shown in Table 1
(for the closed-vocabulary algebra subsets of our
math SAT question sets) and Table 2 (for the Dol-
phin question sets). EUCLID generalizes reason-
ably well to the blind SAT questions, achieving
approximately 60% of the system’s recall on the
training questions, at a precision of approximately
91%. To give a sense of the extent of the gen-
eralization from training to test, Table 3 offers a
couple of correctly answered questions from the
blind11 McGraw-Hill set, plus their closest analog
in the training questions (by edit distance). The
performance on the blind test sets (including all
questions, not just closed-vocabulary algebra) cor-
responds to an SAT score of approximately 350
(out of 800). A random-guessing baseline has an
expected score of 200.

Table 4 provides a failure analysis on the
McGraw-Hill data, categorizing a sample of 50
questions. Half of the questions failed to have a

11Apart from harvesting a sample of correctly answered
questions for this analysis, the McGraw-Hill set was kept
completely blind. The official set was left completely un-
touched.

development (blind) training
Set M consists of the If the sum of the
consecutive integers consecutive integers
from -15 to y, inclusive. from -15 to x,
If the sum of all of the inclusive, is 51,
integers in set M is 70, what is the value
how many numbers are of x?
in the set?
If a, b, and c are If x and y are
positive even integers different positive
such that a < b < c integers and
and a+ b+ c = 60, 3x+ y = 17, the
then the greatest difference between
possible value of c is the largest possible

value of y
and the smallest
possible value
of x is

Table 3: Some correctly answered questions on
the blind McGraw-Hill set, and their closest paral-
lel (by edit distance) in the training set (Kaplan).

development (blind) training
failed to parse 50%
failed to map parse
into a semantic program 24%
failed to produce an answer
from any semantic program 18%
produced an incorrect answer 8%

Table 4: Error analysis on the blind McGraw-Hill
set, surveying the first point of failure for a sample
of 50 incorrectly answered questions.

valid parse. Roughly a quarter of the questions had
at least one valid parse, but none of these resulted
in a semantic program. 18% of the questions com-
piled into at least one semantic program, but none
of these produced an answer when fed to the in-
terpreter. 8% of the questions compiled into a se-
mantic form that produced an incorrect answer.

Besides the Math SAT datasets, EUCLID also
has state-of-the-art performance on the public
Dolphin question set, achieving an absolute recall
improvement12 of nearly 5% with a small loss in
precision. This raises the state-of-the-art F1-score
on this data set from 73.9% to 77.0%.

12This improvement is statistically significant with a P-
value < 0.01.

802



genre dataset blind? recall precision F1-score
closed algebra Kaplan no 70.2 95.8 81.0

McGraw-Hill yes 41.0 91.8 56.7
official yes 43.1 90.8 58.5

geometry Kaplan no 11.7 95.0 20.8
McGraw-Hill yes 5.6 76.9 10.4

open algebra hosseini-ma2 no 34.7 57.5 43.3
hosseini-ma1 yes 29.9 45.4 36.1

Table 5: Snapshot of early progress across several subgenres of the Math SAT. In our early stages,
we are hillclimbing on the hosseini datasets from (Hosseini et al., 2014), which are simpler than the
open-vocabulary algebra questions from the Math SAT.

9 Towards a Broad-Coverage SAT solver

This paper reports on the first steps of a longer-
term initiative to build a unified system that can
pass the math SAT. We have made some prelimi-
nary forays into extending the system to handle the
more complex subdomains described in Section
2, namely open-vocabulary algebra and geometry.
Key research challenges presented by these new
domains are:

• Mapping into richer semantic languages:
The math story problems of open-vocabulary
algebra require languages that reason about
state change and can introduce assumptions
not explicitly represented in the text.

• Robustly synthesizing diagram and text in-
formation: For geometry questions, we are
building on key early work in this area per-
formed by (Seo et al., 2014, 2015).

• Extending the system in a scalable way:
Writing new transducer rules for each new
domain is not a sustainable way to extend our
system. We are exploring how to use natural
language to “program” our system, e.g. by
automatically inducing transducer rules for
paraphrase text.

A snapshot of our current progress is shown in Ta-
ble 5.

10 Discussion

In the process of creating a QA system for math
SAT questions, this project has yielded several
general strategies for beyond-sentential semantic
parsing. For instance:

• One can modularize the parser as a cascade of
tree transducers, allowing uncertainty about

anaphora resolution and lexical interpretation
to be propagated until it can be confidently
resolved, sometimes as late as program inter-
pretation (see Section 6).

• One can atomize complex semantic phenom-
ena (e.g. aggregrative constructs) into small
order-independent pieces. This allows a sim-
pler transformation from a syntactic form,
because these atoms can be locally recog-
nized, incrementally composed, and globally
reconstituted into a structured semantics (see
Section 5.1).

• One can reframe bread-and-butter NLP tasks
(e.g. anaphora resolution) to fit better within
(and take advantage of) the context of the
transducer cascade (see Section 5.2)

An important focus of this paper has been issues
of representation, namely how to develop interme-
diate structured languages that facilitate the auto-
matic transformation of question discourse into a
response. Because we can use the resulting QA
system to generate gold intermediate trees for any
correctly answered question in our dataset, one
way to view this work is as a data annotation
project. One distinguishing advantage is that our
intermediate languages come with a “proof of use-
fulness.” They are not designed based on specula-
tive utility – rather, they have already proven use-
ful in the context of a functioning QA system.

Acknowledgments

The authors would like to thank Luke Zettle-
moyer, Jayant Krishnamurthy, Oren Etzioni, and
the anonymous reviewers for valuable feedback on
earlier drafts of the paper.

803



References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In EMNLP.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
pages 173–180. Association for Computational Lin-
guistics.

Joost Engelfriet. 1975. Bottom-up and top-down tree
transformationsa comparison. Mathematical sys-
tems theory, 9(2):198–231.

Niyu Ge, John Hale, and Eugene Charniak. 1998. A
statistical approach to anaphora resolution.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In Handbook of formal languages, pages
1–68. Springer.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In EMNLP.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. TACL, 3:585–597.

Nate Kushman, Luke S. Zettlemoyer, Regina Barzilay,
and Yoav Artzi. 2014. Learning to automatically
solve algebra word problems. In ACL.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In ACL.

Andreas Maletti. 2011. How to train your multi
bottom-up tree transducer. In ACL.

Andreas Maletti. 2014. The power of regularity-
preserving multi bottom-up tree transducers. In
CIAA.

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and
Kevin Knight. 2009. The power of extended top-
down tree transducers. SIAM J. Comput., 39:410–
430.

Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hi-
rokazu Anai, and Noriko H. Arai. 2017. Semantic
parsing of pre-university math problems. In ACL.

Jonathan May and Kevin Knight. 2006. Tiburon: A
weighted tree automata toolkit. In CIAA.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Arindam Mitra and Chitta Baral. 2016. Addressing a
question answering challenge by combining statisti-
cal methods with inductive rule learning and reason-
ing. In AAAI.

Leonardo Mendona de Moura and Nikolaj Bjorner.
2008. Z3: An efficient smt solver. In TACAS.

Sameer Pradhan, Lance A. Ramshaw, Mitchell P. Mar-
cus, Martha Palmer, Ralph M. Weischedel, and Ni-
anwen Xue. 2011. Conll-2011 shared task: Model-
ing unrestricted coreference in ontonotes. In CoNLL
Shared Task.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In EMNLP.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and
Oren Etzioni. 2014. Diagram understanding in ge-
ometry questions. In AAAI.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geome-
try problems: Combining text and diagram interpre-
tation. In EMNLP.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In EMNLP.

Shyam Upadhyay and Ming-Wei Chang. 2016. An-
notating derivations: A new evaluation strategy
and dataset for algebra word problems. CoRR,
abs/1609.07197.

Hardik Vala, Andrew Piper, and Derek Ruths. 2016.
The more antecedents, the merrier: Resolving multi-
antecedent anaphors. In ACL.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In AAAI/IAAI, Vol. 2.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using
quadratic programming. In EMNLP.

804


