Neural Machine Translation with Source Dependency Representation

Kehai Chen1*, Rui Wang2†, Masao Utiyama2, Lemao Liu3, Akihiro Tamura4, Eiichiro Sumita2 and Tiejun Zhao1

1Machine Intelligence & Translation Laboratory, Harbin Institute of Technology
2ASTREC, National Institute of Information and Communications Technology (NICT)
3Tencent AI Lab
4Graduate School of Science and Engineering, Ehime University

{khchen and tjzhao}@hit.edu.cn
{wangrui, mutiyama and eiichiro.sumita}@nict.go.jp
lemaoliu@gmail.com and tamura@cs.ehime-u.ac.jp

Abstract

Source dependency information has been successfully introduced into statistical machine translation. However, there are only a few preliminary attempts for Neural Machine Translation (NMT), such as concatenating representations of source word and its dependency label together. In this paper, we propose a novel attentional NMT with source dependency representation to improve translation performance of NMT, especially on long sentences. Empirical results on NIST Chinese-to-English translation task show that our method achieves 1.6 BLEU improvements on average over a strong NMT system.

1 Introduction

Neural Machine Translation (NMT) (Kalchbrenner and Blunsom, 2013; Bahdanau et al., 2014; Sutskever et al., 2014) relies heavily on source representations, which encode implicitly semantic information of source words by neural networks (Mikolov et al., 2013a,b). Recently, several research works have been proposed to learn richer source representation, such as multi-source information (Zoph and Knight, 2016; Firat et al., 2016), and particularly source syntactic information (Eriguchi et al., 2016; Li et al., 2017; Huadong et al., 2017; Eriguchi et al., 2017), thus improving the performance of NMT.

In this paper, we enhance source representations by dependency information, which can capture source long-distance dependency constraints for word prediction. Actually, source dependency information has been shown greatly effective in

* Kehai Chen was an internship research fellow at NICT when conducting this work.
† Corresponding author.

In this paper, we propose a novel NMT with source dependency representation to improve translation performance. Compared with the simple approach of vector concatenation, we learn the Source Dependency Representation (SDR) to compute dependency context vectors and alignment matrices in a more sophisticated manner, which has the potential to make full use of source dependency information. To this end, we create a dependency unit for each source word to capture long-distance dependency constraints. Then we design an Encoder with convolutional architecture to jointly learn SDRs (Section 3) and source dependency annotations, thus computing dependency context vectors and hidden states by a novel double-context based Decoder for word prediction (Section 4). Empirical results on NIST Chinese-to-English translation task show that the proposed approach achieves significant gains over the method by Sennrich and Haddow (2016), and thus delivers substantial improvements over the standard attentional NMT (Section 5).

2 Background

An NMT model consists of an Encoder process and a Decoder process, and hence it is often called Encoder-Decoder model (Sutskever et al., 2014; Bahdanau et al., 2014). Typically, each unit of source input $x_j \in (x_1, \ldots, x_J)$ is firstly embedded as a vector V_{x_j}, and then represented as...
Convolution layer 1
Max-pooling layer 1
Output layer VU2
Input layer
Convolution layer 2
Max-pooling layer 2

Figure 1: The CNN architecture for learning SRD.

An annotation vector \(h_j \) by

\[
h_j = f_{\text{enc}}(V_{x_j}, h_{j-1}),
\]

where \(f_{\text{enc}} \) is a bidirectional Recurrent Neural Network (RNN) (Bahdanau et al., 2014). These annotation vectors \(H = (h_1, \ldots, h_J) \) are used to generate the target word in the Decoder.

An RNN Decoder is used to compute the target word \(y_i \) probability by a softmax layer \(g \):

\[
p(y_i | y_{<i}, x) = g(\hat{y}_{i-1}, s_i, c_i),
\]

where \(\hat{y}_{i-1} \) is the previously emitted word, and \(s_i \) is an RNN hidden state for the current time step:

\[
s_i = \varphi(\hat{y}_{i-1}, s_{i-1}, c_i),
\]

and the context vector \(c_i \) is computed as a weighted sum of these source annotations \(h_j \):

\[
c_i = \sum_{j=1}^{J} \alpha_{ij} h_j,
\]

where the normalized alignment weight \(\alpha_{ij} \) is computed by

\[
\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{J} \exp(e_{ik})},
\]

where \(e_{ij} \) is an alignment which indicates how well the inputs around position \(j \) and the output at the position \(i \) match:

\[
e_{ij} = f(s_{i-1}, h_j).
\]

where \(f \) is a feedforward neural network.

3 Source Dependency Representation

In order to capture source long-distance dependency constraints, we extract a dependency unit \(U_j \) for each source word \(x_j \) from dependency tree, inspired by a dependency-based bilingual composition sequence for SMT (Chen et al., 2017). The extracted \(U_j \) is defined as the following:

\[
U_j = \langle PA_{x_j}, SI_{x_j}, CH_{x_j} \rangle,
\]

where \(PA_{x_j}, SI_{x_j}, CH_{x_j} \) denote the parent, siblings and children words of source word \(x_j \) in a dependency tree. Take \(x_2 \) in Figure 2 as an example, the blue solid box \(U_2 \) denotes its dependency unit: \(PA_{x_2} = \langle x_3 \rangle, SI_{x_2} = \langle x_1, x_4, x_7 \rangle \) and \(CH_{x_2} = \langle x, x, \epsilon \rangle \) (no child), that is, \(U_2 = \langle x_3, x_1, x_4, x_7, \epsilon \rangle \).

We design a simplified neural network following Chen et al. (2017)'s Convolutional Neural Network (CNN) method, to learn the SDR for each source dependency unit \(U_j \), as shown in Figure 1. Our neural network consists of an input layer, two convolutional layers, two pooling layers and an output layer:

- **Input layer:** the input layer takes words of a dependency unit \(U_j \) in the form of embedding vectors \(n \times d \), where \(n \) is the number of words in a dependency unit and \(d \) is vector dimension of each word. In our experiments, we set \(n \) to 10, and \(d \) is 620. For dependency units shorter than 10, we perform “/” padding at the ending of \(U_j \). For example, the padded \(U_2 \) is \(\langle x_3, x_1, x_4, x_7, \epsilon, /, /, /, / \rangle \).

\(^1\)We find that 99\% of all the source dependency units contain no more than 10 words. So if the length is more than 10, the extra words are abandoned; if the length is less than 10, the rest positions are padded with “/".
• **Convolutional layer**: the first convolution consists of one $3 \times d$ convolution kernels (the stride is 1) to output an $(n-2) \times d$ matrix; the second convolution consists of one $3 \times d$ convolution kernels to output a $\frac{n-2}{2} \times d$ matrix.

• **Max-Pooling layer**: the first pooling layer performs row-wise max over the two consecutive rows to output a $\frac{n-2}{2} \times d$ matrix; the second pooling layer performs row-wise max over the two consecutive rows to output a $\frac{n-2}{4} \times d$ matrix.

• **Output layer**: the output layer performs row-wise average based on the output of the second pooling layer to learn a compact d-dimension vector V_{U_j} for U_j. In our experiment, the output of the output layer is $1 \times d$-dimension vector.

It should be noted that the dependency unit is similar to the source dependency feature of Sennrich and Haddow (2016) and the SDR is the same to the source-side representation of Chen et al. (2017). In comparison with Sennrich and Haddow (2016), who concatenate the source dependency labels and word together to enhance the Encoder of NMT, we adapt a separate attention mechanism together with a CNN dependency Encoder. Compared with Chen et al. (2017), which expands the famous neural network joint model (Devlin et al., 2014) with source dependency information to improve the phrase pair translation probability estimation for SMT, we focus on source dependency information to enhance attention probability estimation and to learn corresponding dependency context and RNN hidden state for improving translation.

4 **NMT with SDR**

In this section, we propose two novel NMT models SDRNMT-1 and SDRNMT-2, both of which can make use of source dependency information SDR to enhance Encoder and Decoder of NMT.

4.1 **SDRNMT-1**

Compared with standard attentional NMT, the Encoder of SDRNMT-1 model consists of a convolutional architecture and an bidirectional RNN, as shown in Figure 2. Therefore, the proposed Encoder can not only learn compositional representations for dependency units but also greatly tackle the sparsity issues associated with large dependency units.

Motivated by (Sennrich and Haddow, 2016), we concatenate the V_{x_j} and V_{U_j} as input of the Encoder, as shown in the black dotted box in Figure 2. Source annotation vectors are learned based on the concatenated representation with dependency information:

$$h_j = f_{enc}(V_{x_j} : V_{U_j}, h_{j-1}),$$

where "::" denotes the operation of vectors concatenation. Finally, these learned annotation vectors are as the input of the standard NMT Decoder to jointly learn alignment and translation. The only difference between our method and (Sennrich and Haddow, 2016)’s method is that they only use dependency label representation instead of V_{U_j}.

4.2 **SDRNMT-2**

In SDRNMT-1, a single annotation, learned over concatenating word representation and SDR, is used to compute the context vector and the RNN hidden state for the current time step. To relieve more translation performance for NMT from the SDR, we propose a double-context mechanism, as shown in Figure 3.

First, the Encoder of SDRNMT-2 consists of two independent annotations h_j and d_j:

$$h_j = f_{enc}(V_{x_j}, h_{j-1}),$$
$$d_j = f_{enc}(V_{U_j}, d_{j-1}),$$

where $H = [h_1, \cdots, h_J]$ and $D = [d_1, \cdots, d_J]$ encode source sequential and long-distance dependency information, respectively.

The Decoder learns the corresponding alignment matrices and context vectors over the H and D, respectively. That is, according to eq.(6), given the previous hidden state s_{t-1}^s and s_{t-1}^d, the current alignments $e_{i,j}^s$ and $e_{i,j}^d$ are computed over source annotation vectors h_j and d_j, respectively:

$$e_{i,j}^s = f(s_{t-1}^s + h_j),$$
$$e_{i,j}^d = f(s_{t-1}^d + d_j).$$

According to eq.(5), we further compute the current alignment $\tilde{\alpha}$:

$$\tilde{\alpha}_{i,j} = \frac{\exp(\lambda e_{i,j}^s + (1 - \lambda)e_{i,j}^d)}{\sum_{j=1}^{J} \exp(\lambda e_{i,j}^s + (1 - \lambda)e_{i,j}^d)},$$
Figure 2: SDRNMT-I for the i-th time step.

Figure 3: SDRNMT-2 for the i-th time step.

where λ is a hyperparameter\(^2\) to control the importance of H and D. Note that compared with the original alignment model only depending on the sequential annotation vectors H, the alignment weight $\bar{\alpha}_{i,j}$ jointly compute statistic over source sequential annotation vectors H and dependency annotation vectors D.

The current context vector c^n_i and c^d_i are compute by eq.(4), respectively:

$$c^n_i = \sum_{j=1}^{J} \bar{\alpha}_{i,j} h_j, \quad \text{and} \quad c^d_i = \sum_{j=1}^{J} \bar{\alpha}_{i,j} d_j.$$ \hfill (12)

The current hidden state s^n_i and s^d_i are computed by eq.(3), respectively:

$$s^n_i = \varphi(s^n_{i-1}, y_{i-1}, c^n_i), \quad \text{and} \quad s^d_i = \varphi(s^d_{i-1}, y_{i-1}, c^d_i).$$ \hfill (13)

Finally, according to eq.(2), the probabilities for the next target word are computed using two hidden states s^n_i and s^d_i, the previously emitted word y_{i-1}, the current sequential context vector c^n_i and dependency context vector c^d_i:

$$p(y_i|y_{<i}, x, T) = g(y_{i-1}, s^n_i, s^d_i, c^n_i, c^d_i).$$ \hfill (14)

5 Experiment

5.1 Setting up

We carry out experiments on Chinese-to-English translation. The training dataset consists of 1.42M sentence pairs extract from LDC corpora.\(^3\) We use the Stanford dependency parser (Chang et al., 2009) to generate the dependency tree for Chinese. We choose the NIST 2002 (MT02) and the NIST 2003-2008 (MT03-08) datasets as the validation set and test sets, respectively. Case-insensitive 4-gram NIST BLEU score (Papineni et al., 2002) is used as an evaluation metric, and signtest (Collins et al., 2005) is as statistical significance test.

The baseline systems include the standard Phrase-Based Statistical Machine Translation (PBSMT) implemented in Moses (Koehn et al., 2007) and the standard Attentional NMT (AttNMT) (Bahdanau et al., 2014), where only source word representation is utilized. We also compare with a state-of-the-art syntax enhanced NMT method (Sennrich and Haddow, 2016). For a fair comparison, we only utilize dependency information for (Sennrich and Haddow, 2016), called Sennrich-deonly. We try our best to re-implement the baseline methods on Nematus toolkit \(^4\) (Sennrich et al., 2017).

For all NMT systems, we limit the source and target vocabularies to 30K, and the maximum sentence length is 80. The word embedding dimension is 620,\(^5\) and the hidden layer dimension

\(^2\)\lambda can be tuned according to a subset FBIS of training data and be set as 0.6 in the experiments.

\(^3\)LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08, and LDC2005T06.

\(^4\)https://github.com/EdinburghNLP/nematus

\(^5\)For SDRNMT-I, the 360 dimensions are from $V_{s_{d_j}}$ and the 260 dimensions are from V_{U_j}.
Table 1: Results on NIST Chinese-to-English Translation Task. “*” indicates statistically significant better than “Sennrich-deponly” at p-value < 0.05 and “**” at p-value < 0.01. AVG = average BLEU scores for test sets.

<table>
<thead>
<tr>
<th>System</th>
<th>Dev (MT02)</th>
<th>MT03</th>
<th>MT04</th>
<th>MT05</th>
<th>MT06</th>
<th>MT08</th>
<th>AVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBSMT</td>
<td>33.15</td>
<td>31.02</td>
<td>33.78</td>
<td>30.33</td>
<td>29.62</td>
<td>23.53</td>
<td>29.66</td>
</tr>
<tr>
<td>AttNMT</td>
<td>36.31</td>
<td>34.02</td>
<td>37.11</td>
<td>32.86</td>
<td>32.54</td>
<td>25.44</td>
<td>32.40</td>
</tr>
<tr>
<td>Sennrich-deponly</td>
<td>36.68</td>
<td>34.51</td>
<td>38.09</td>
<td>33.37</td>
<td>32.96</td>
<td>26.96</td>
<td>32.98</td>
</tr>
<tr>
<td>SDRNMT-1</td>
<td>36.88</td>
<td>34.98*</td>
<td>38.14</td>
<td>34.61</td>
<td>33.58</td>
<td>27.06</td>
<td>33.32</td>
</tr>
<tr>
<td>SDRNMT-2</td>
<td>37.34</td>
<td>35.91**</td>
<td>38.73*</td>
<td>34.18**</td>
<td>33.76**</td>
<td>27.64*</td>
<td>34.04</td>
</tr>
</tbody>
</table>

Table 5.2 Results and Analyses

5.2 Results and Analyses

Table 1 shows the translation performances on test sets measured in BLEU score. The AttNMT significantly outperforms PBSMT by 2.74 BLEU points on average, indicating that it is a strong baseline NMT system. The baseline Sennrich-deponly improves the performance over the AttNMT by 0.58 BLEU points on average. This indicates that the proposed source dependency constraint is beneficial for improving the performance of NMT.

Moreover, SDRNMT-1 gains improvements of 0.92 and 0.34 BLEU points on average than the AttNMT and Sennrich-deponly. These show that the proposed SDR can more effectively capture source dependency information than vector concatenation. Especially, the proposed SDRNMT-2 outperforms the AttNMT and Sennrich-deponly on average by 1.64 and 1.03 BLEU points. These verify that the proposed double-context method is effective for word prediction.

5.3 Effect of Translating Long Sentences

We follow (Bahdanau et al., 2014) to group sentences of similar lengths all the test sets (MT03-08), for example, “40” indicates that the length of sentences is between 30 and 40, and compute a BLEU score per group. As demonstrated in Figure 4, the proposed models outperform other baseline systems, especially in translating long sentences. These results show that the proposed models can effective encode long-distance dependencies to improve translation.

In this paper, we explored the source dependency information to improve the performance of NMT. We proposed a novel attentional NMT with source dependency representation to capture source long-distance dependencies. In the future, we will try to exploit a general framework for utilizing richer syntax knowledge.

6 Conclusion and Future Work

In this paper, we explored the source dependency information to improve the performance of NMT. We proposed a novel attentional NMT with source dependency representation to capture source long-distance dependencies. In the future, we will try to exploit a general framework for utilizing richer syntax knowledge.

Acknowledgments

We are grateful to the anonymous reviewers for their insightful comments and suggestions. This work is partially supported by the program “Promotion of Global Communications Plan: Research, Development, and Social Demonstration of Multilingual Speech Translation Technology” of MIC, Japan. Tiejun Zhao is supported by the National Natural Science Foundation of China (NSFC) via grant 91520204 and National High Technology Research & Development Program of China (863 program) via grant 2015AA015405.
References

