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Abstract

This paper investigates redundancy detec-
tion in ESL writings. We propose a mea-
sure that assigns high scores to words and
phrases that are likely to be redundant
within a given sentence. The measure is
composed of two components: one cap-
tures fluency with a language model; the
other captures meaning preservation based
on analyzing alignments between words
and their translations. Experiments show
that the proposed measure is five times
more accurate than the random baseline.

1 Introduction

Writing concisely is challenging. It is especially
the case when writing in a foreign language that
one is still learning. As a non-native speaker, it
is more difficult to judge whether a word or a
phrase is redundant. This study focuses on auto-
matically detecting redundancies in English as a
Second Language learners’ writings.

Redundancies occur when the writer includes
some extraneous word or phrase that do not add
to the meaning of the sentence but possibly make
the sentence more awkward to read. Upon re-
moval of the unnecessary words or phrases, the
sentence should improve in its fluency while main-
taining the original meaning. In the NUCLE
corpus (Dahlmeier and Ng, 2011), an annotated
learner corpus comprised of essays written by pri-
marily Singaporean students, 13.71% errors are
tagged as “local redundancy errors”, making re-
dundancy error the second most frequent prob-
lem.1

Although redundancies occur frequently, it has
not been studied as widely as other ESL errors. A

1The most frequent error type is Wrong collocation/idiom
preposition, which comprises 15.69% of the total errors.

major challenge is that, unlike mistakes that vio-
late the grammaticality of a sentence, redundan-
cies do not necessarily “break” the sentence. De-
termining which word or phrase is redundant is
more of a stylistic question; it is more subjective,
and sometimes difficult even for a native speaker.

To the best of our knowledge, this paper reports
a first study on redundancy detection. In particu-
lar, we focus on the task of defining a redundancy
measure that estimates the likelihood that a given
word or phrase within a sentence might be extrane-
ous. We propose a measure that takes into account
each word’s contribution to fluency and meaning.
The fluency component computes the language
model score of the sentence after the deletion of a
word or a phrase. The meaning preservation com-
ponent makes use of the sentence’s translation into
another language as pivot, then it applies a statis-
tical machine translation (SMT) alignment model
to infer the contribution of each word/phrase to the
meaning of the sentence. As a first experiment, we
evaluate our measures on their abilities in picking
the most redundant phrase of a given length. We
show that our measure is five times more accurate
than a random baseline.

2 Redundancies in ESL Writings

According to The Elements of Style (Strunk,
1918): concise writing requires that “every word
tell.” In that sense, words that “do not tell”
are redundant. Determining whether a certain
word/phrase is redundant is a stylistic question,
which is difficult to quantify. As a result, most an-
notation resources do not explicitly identify redun-
dancies. One exception is the NUCLE corpus. Be-
low are some examples from the NUCLE corpus,
where the bold-faced words/phrases are marked as
redundant.

Ex1: First of all , there should be a careful con-
sideration about what are the things that gov-
ernments should pay for.
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Ex2: GM wishes to reposition itself as an inno-
vative company to the public.
Ex3: These findings are often unpredictable and
uncertain.
Ex4: . . . the cost incurred is not only just large
sum of money . . .

These words/phrases are considered redundant be-
cause they are unnecessary (e.g. Ex1, Ex2) or
repetitive (e.g. Ex3, Ex4).

However, in NUCLE’s annotation scheme,
some words that were marked redundant are re-
ally words that carry undesirable meanings. For
example:

Ex5: . . . through which they can insert a special
. . .
Ex6: . . . the analysis and therefore selection of
a single solution for adaptation. . .

Note that unlike redundancies, these undesirable
words/phrases change the sentences’ meanings.
Despite the difference in definitions, our exper-
imental work uses the NUCLE corpus because
it provides many real world examples of redun-
dancy.

While redundancy detection has not yet been
widely studied, it is related to several areas of ac-
tive research, such as grammatical error correction
(GEC), sentence simplification and sentence com-
pression.

Work in GEC attempts to build automatic sys-
tems to detect/correct grammatical errors (Lea-
cock et al., 2010; Liu et al., 2010; Tetreault et al.,
2010; Dahlmeier and Ng, 2011; Rozovskaya and
Roth, 2010). Both redundancy detection and GEC
aim to improve students’ writings. However, be-
cause redundancies do not necessarily break gram-
maticality, they have received little attention in
GEC.

Sentence compression and sentence simplifica-
tion also consider deleting words from input sen-
tences. However, these tasks have different goals.

Automated sentence simplification (Coster and
Kauchak, 2011) systems aim at reducing the gram-
matical complexity of an input sentence. To il-
lustrate the difference, consider the phrase “crit-
ical reception.” A sentence simplification sys-
tem might rewrite it into “reviews”; but a sys-
tem that removes redundancy should leave it un-
changed because neither “critical” nor “reception”
is extraneous. Moreover, consider the redundant
phrase “had once before” in Ex4. A simplification
system does not need to change it because these
words do not add complexity to the sentence.

…	  and	  the	  cost	  incurred	  is	  not	  only	  just	  large	  sum	  of	  money	  … 

Figure 1: Among the three circled words, “just”
is more redundant because deleting it hurts nether
fluency nor meaning.

Sentence compression systems (Jing, 2000;
Knight and Marcu, 2000; McDonald, 2006;
Clarke and Lapata, 2007) aim at shortening a
sentence while retaining the most important in-
formation and keeping it grammatically correct.
This goal distinguishes these systems from ours
in two major aspects. First, sentence compres-
sion systems assume that the original sentence is
well-written; therefore retaining words specific to
the sentence (e.g. “uncertain” in Ex3) can be a
good strategy (Clarke and Lapata, 2007). In the
ESL context, however, even specific words could
still be redundant. For example, although “un-
certain” is specific to Ex3, it is redundant, be-
cause its meaning is already implied by “unpre-
dictable”. Second, sentence compression systems
try to shorten a sentence as much as possible, but
an ESL redundancy detector should leave as much
of the input sentences unchanged, if possible.

One challenge involved in redundancy detection
is that it often involves open class words (Ex3), as
well as multi-word expressions (Ex1, Ex4). Cur-
rent GEC systems dealing with such error types
are mostly MT based. MT systems tend to ei-
ther require large training corpora (Brockett et al.,
2006; Liu et al., 2010), or provide whole sentence
rewritings (Madnani et al., 2012). Hermet and
Désilets (2009) attempted to extract single prepo-
sition corrections from whole sentence rewritings.
Our work incorporates alignments information to
handle complex changes on both word and phrase
levels.

In our approximation, we consider MT out-
put as an approximation of word/phrase mean-
ings. Using words in other languages to repre-
sent meanings has been explored in Carpuat and
Wu (2007), where the focus is the aligned words’
identities. Our work instead focuses more on how
many words each word is aligned to.

3 A Probabilistic Model of Redundancy

We consider a word or a phrase to be redundant
if deleting it results in a fluent English sentence
that conveys the same meaning as before. For
example, “not” and “the” are not considered re-
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(a) Unaligned English
words are considered
redundant.

(b) Multiple English words
aligned to the same meaning
unit. These words are con-
sidered redundant.

Figure 2: Configurations our system consider as
redundant. In each figure, the shaded squares are
the words considered to be more redundant than
other words in the same figure.

dundant in Figure 1. This is because discarding
“not” would flip the sentence’s meaning; discard-
ing “the” would lose a necessary determiner be-
fore a noun. In contrast, discarding “just” would
hurt neither fluency nor meaning. It is thus con-
sidered to be more redundant.

Therefore, our computational model needs to
consider words’ contributions to both fluency and
meaning. Figure 2 illustrates words’ contribution
to meaning. In those two examples, each sub-
graph visualizes a sentence: English words corre-
spond to squares in the top row, while their mean-
ings correspond to circles in the bottom row. The
knowledge of which word represents what mean-
ing helps in evaluating its contribution. In partic-
ular, if a word does not connote any significant
meaning, deleting it would not affect the overall
sentence; if several words express the same mean-
ing, then deleting some of them might not affect
the overall sentence either. Also, deleting a more
semantically meaningful word (or phrase) is more
likely to cause a loss of meaning of the overall sen-
tence (e.g. uncertain v.s. the).

Our model computes a single probabilistic value
for both fluency judgment and meaning preserva-
tion – the log-likelihood that after deleting a cer-
tain word or phrase of a sentence, the new sen-
tence is still fluent and conveys the same meaning
as before. This value reflects our definition of re-
dundancy – the higher this probability, the more
redundant the given word/phrase is.

More formally, suppose an English sentence e
contains le words: e = e1e2 . . . ele ; after some
sub-string es,t = es . . . et(1 ≤ s ≤ t ≤ le) is
deleted from e, we obtain a shorter sentence, de-
noted as es,t− . We wish to compute the quantity
R(s, t; e), the chance that the sub-string es,t is re-
dundant in sentence e. We propose a probabilistic

model to formalize this notion.
LetM be a random variable over some meaning

representation; Pr(M |e) is the likelihood that M
carries the meaning of e. If the sub-string es,t is
redundant, then the new sentence es,t− should still
express the same meaning; Pr(es,t− |M) computes
the likelihood that the after-deletion sentence can
be generated from meaning M .

R(s, t; e)

= log
∑

M=m

Pr(m|e) Pr(es,t− |m)

= log
∑

M=m

Pr(m|e) Pr(es,t− ) Pr(m|es,t− )
Pr(m)

= log Pr(es,t− ) + log
∑

M=m

Pr(m|es,t− ) Pr(m|e)
Pr(m)

= LM(es,t− ) + AGR(M |es,t− , e) (1)

The first term LM(es,t− ) is the after-deletion sen-
tence’s log-likelihood, which reflects its fluency.
We calculate the first term with a trigram language
model (LM).

The second term AGR(M |es,t− , e) can be inter-
preted as the chance that e and es,t− carry the same
meaning, discounted by “chance agreement”. This
term captures meaning preservation.

The two terms above are complementary to each
other. Intuitively, LM prefers keeping common
words in es,t− (e.g. the, to) while AGR prefers
keeping words specific to e (e.g. disease, hyper-
tension).

To make the calculation of the second term
practical, we make two simplifying assumptions.

Assumption 1 A sentence’s meaning can be rep-
resented by its translations in another language; its
words’ contributions to the meaning of the sen-
tence can be represented by the mapping between
the words in the original sentence and its transla-
tions (Figure 3).

Note that the choice of translation language may
impact the interpretation of words’ contributions.
We will discuss about this issue in our experiments
(Section 5).

Assumption 2 Instead of considering all possi-
ble translations f for e, our computation will make
use of the most likely translation, f∗.
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创建 一个 新 通过想法 研究 结果过程严谨 中， 。的的的

a new idea is created through results from rigorous process of research .

Figure 3: Illustration of Assumption 1 and Approximation 1. An English sentence’s meaning is presented
as a Chinese translation. Meanwhile, each (English) word’s contribution to the sentence meaning is
realized as a word alignment. For Approximation 1, note that sentence alignments normally won’t be
affected before/after deleting words (e.g. “results from”) from the source sentence.

With the two approximations:

AGR(M |es,t− , e) ≈ log
Pr(f∗|es,t− ) Pr(f∗|e)

Pr(f∗)
= log Pr(f∗|es,t− ) + C1(e)

(We use Ci(e) to denote constant numbers within
sentence e throughout the paper.)

We now rely on a statistical machine translation
model to approximate the translation probability
log Pr(f∗|es,t− ).

One naive way of calculating this probabil-
ity measure is to consult the MT system. This
method, however, is too computationally expen-
sive for one single input sentence. For a sentence
of length n, calculating the redundancy measure
for all chunks in it would require issuing O(n2)
translation queries. We propose an approximation
that instead calculates the difference of translation
probability caused by discarding es,t, based on an
analysis on the alignment structure between e and
f∗. We show the measure boils down to sum-
ming the expected number of aligned words for
each ei(s ≤ i ≤ t), and possibly weighting these
numbers by ei’s unigram probability. This method
requires one translation query, and O(n2) queries
into a language model, which is much more suit-
able for practical applications. Our method also
sheds light on the role of alignment structures in
the redundancy detection context.

3.1 Alignments Approximation

One key insight in our approximation is that the
alignment structure a between es,t− and f∗ would
be largely similar with the alignment structure be-
tween e and f∗. We illustrate this notion in Fig-
ure 3. Note that after deleting two words “results
from” from the source sentence in Figure 3, the
alignment structure remains unchanged elsewhere.
Also, “结果”, the word once connected with “re-
sults”, can now be seen as connected to blanks.

We hence approximate log Pr(f∗|es,t− ) by
reusing the alignment structure between e
and f∗. To make the alignment structures
compatible, we start with redefining es,t− as
e1, e2, . . . , es−1,�, . . . ,�, et+1, . . . , ele , where
the deleted words are left blank.

Let Pr(a|f, e) be the posterior distribution of
alignment structure between sentence pair (f, e).

Approximation 1 We formalize the similarity
between the alignment structures by assuming the
KL-divergence between their alignment distribu-
tions to be small.

DKL(a|f∗, e; a|f∗, es,t− ) ≈ 0

This allows using Pr(a|f∗, e) to help approximate
log Pr(f∗|es,t− ):

log Pr(f∗|es,t− )

= log
∑

a

Pr(a|f∗, e)
Pr(f∗, a|es,t− )
Pr(a|f∗, e)

=
∑

a

Pr(a|f∗, e) log
Pr(f∗, a|es,t− )
Pr(a|f∗, e)

+
∑

a

Pr(a|f∗, e) log

(
Pr(f∗|es,t− )/

Pr(f∗, a|es,t− )
Pr(a|f∗, e)

)
︸ ︷︷ ︸

DKL(a|f∗,e;a|f∗,es,t
− )≈0

≈
∑

a

Pr(a|f∗, e) log Pr(f∗|es,t− , a) + C2(e)

We then use an SMT model to calculate
log Pr(f∗|es,t− , a), the translation probability under
a given alignment structure.

3.2 The Translation Model
Approximation 2 We will use IBM
Model 1 (Brown et al., 1993) to calculate
log Pr(f∗|es,t− , a)

IBM Model 1 is one of the earliest statisti-
cal translation models. It helps us to compute
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log Pr(f∗|es,t− , a) by making explicit how each
word contributes to words it aligns with. In partic-
ular, to compute the probability that f is a transla-
tion of e, Pr(f |e), IBM Model 1 defined a gener-
ative alignment model where every word fi in f is
aligned with exactly one word eai in e, so that fi

and eai are word level translations of each other.

∑
a

Pr(a|f∗, e) log Pr(f∗|es,t− , a)

=
∑

a

Pr(a|f∗, e)
∑

1≤i≤lf∗

log Pr(f i
∗|es,t−ai

)

=
∑

a

Pr(a|f∗, e)
∑

1≤i≤lf∗

log
Pr(f i∗|es,t−ai

)
Pr(f i∗|eai)

+ C3(e)

Note that

log
Pr(f i∗|es,t−ai

)
Pr(f i∗|eai)

=

{
0 , for ai /∈ {s . . . t}
log Pr(f i∗|�)

Pr(f i∗|eai )
, otherwise

∑
a

Pr(a|f∗, e)
∑

1≤i≤lf∗

log
Pr(f i∗|es,t−ai

)
Pr(f i∗|eai)

=
∑

a

Pr(a|f∗, e)
∑

1≤i≤lf∗

∑
s≤j≤t

Iai=j log
Pr(f i∗|�)
Pr(f i∗|ej)

=
∑

s≤j≤t

∑
1≤i≤lf∗

Pr(ai = j|f∗, e)︸ ︷︷ ︸
Ai,j

log
Pr(f i∗|�)
Pr(f i∗|ej)︸ ︷︷ ︸

DIFF(es,t
− ,e)

Here Ai,j = Pr(ai = j | f∗, e), which is the
probability of the i-th word in the translation being
aligned to the j-th word in the original sentence.

3.3 Per-word Contribution

Through deductions,

R(s, t; e) = LM(es,t− ) + DIFF(es,t− , e)
+C1(e) + C2(e) + C3(e)

the redundancy measure boils down to how we
define Pr(f i∗|�j), which is: when we discard ej ,
how do we generate the word it aligns f i∗ with in
its translation. This value reflects ej’s contribution
in generating f i∗.

We approximate Pr(f i∗|�j) in two ways.

1. Suppose that all words in the translation
are of equal importance. We assume

log Pr(f i∗|�)
Pr(f i∗|ej)

= −Cc, where Cc is a constant
number. A larger Cc value indicates a higher
importance of ej during the translation.

DIFF(es,t− , e) = −Cc

∑
s≤j≤t

∑
1≤i≤lf∗

Ai,j

= −Cc

∑
s≤j≤t

A(j) (2)

Here A(j) is the expected number of align-
ments to ej . This metric demonstrates the in-
tuition that words aligned to more words in
the translation are less redundant.

2. We note that rare words are often more im-
portant, and therefore harder to be generated.
We assume Pr(f i∗|�) = Pr(ej |�) Pr(f i∗|ej).

DIFF(es,t− , e)

=
∑

s≤j≤t

∑
1≤i≤lf∗

Ai,j log
Pr(ej |�) Pr(f i∗|ej)

Pr(f i∗|ej)

=
∑

s≤j≤t

A(j) log Pr(ej |�) (3)

This gives us counts on how likely each
word is aligned with Chinese words ac-
cording to Pr(a|f∗, e), where each word is
weighted by its importance log Pr(ej |�). We
use ej’s unigram probability to approximate
log Pr(ej |�).

When estimating the alignment probabilities
Ai,j , we smooth the alignment result from Google
translation using Dirichlet-smoothing, where we
set α = 0.1 empirically based on experiments in
the development dataset.

4 Experimental Setup

A fully automated redundancy detector has to de-
cide (1) whether a given sentence contains any re-
dundancy errors; (2) how many words constitute
the redundant part; and (3) which exact words are
redundant. In this paper, we focus on the third part
while assuming the first two are given. Thus, our
experimental task is: given a sentence known to
contain a redundant phrase of a particular length,
can that redundant phrase be accurately identified?
For most sentences in our study, this results in
choosing one from around 20 words/phrases.

While the task has a somewhat limited scope, it
allows us to see how we could formally measure
the difference between redundant words/phrases
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and non-redundant ones. For each measure, we
observe whether it has assigned the highest score
to the redundant part of the sentence. We compare
the proposed redundancy model described in Sec-
tion 3 against a set of baselines and other potential
redundancy measures (to be described shortly).

To better understand different measures’ perfor-
mance on function words vs. content words, we
also calculate the percentage of redundant func-
tion/content words that are detected successfully –
accuracy in both categories. In our experiments,
we consider prepositions and determiners as func-
tion words; and we consider other words/phrases
as content words/phrases.

4.1 Redundancy Measures
To gain insight into redundancy error detection’s
difficulty, we first consider a random baseline.

random The random baseline assigns a random
score to each word/phrase. The resulting system
will pick one word/phrase of the given length at
random.

We consider relying on large scale language
models to decide redundancy.

trigram We use a trigram language model to
capture fluency, by calculating the log-likelihood
of the whole sentence after discarding the given
word/phrase. A higher probability indicates a
higher fluency.

round-trip Inspired by Madnani et al. (2012;
Hermet and Désilets (2009), an MT system may
eliminate grammar errors with the help of large
scale language models. In this method, we analyze
which parts are considered redundant by an MT
system by comparing the original sentence with
its round-trip translation. We use Google trans-
late to first translate one sentence into a pivot lan-
guage, and then back to English. We measure one
phrase’s redundancy by the number of words that
disappeared after the round-trip. We determine if
one word disappeared in two ways:

extract word match: one word is considered
disappeared if the same word does not occur
in the round-trip.

aligned word: we use the Berkeley
aligner (DeNero and Klein, 2007) to
align original sentences with their round-trip
translations. Unaligned words are considered
to have disappeared.

We consider measures for words/phrases’ con-
tributions to sentence meaning.

sig-score This measure accounts for whether
one word wi is capturing the gist of a sen-
tence (Clarke and Lapata, 2007)2. It was shown to
help decide whether one part should be discarded
during sentence compression.

I(wi) = − l

N
· fi log

Fa

Fi

fi and Fi are the frequencies of wi in the current
document and a large corpus respectively; Fa is
the number of all word occurrences in the corpus;
l is the number of clause constituents above wi;
N is the deepest level of clause embeddings. This
measure assigns low scores to document specific
words occurring at deep syntax levels.

align # We use the number of alignments that a
word/phrase has in the translation to measure its
redundancy, as deducted in Equation 2.

contrib We compute the word/phrase’s contri-
bution to meaning, according to Equation 3.

We consider the combinations of measures.

trigram + Ccalign # We use a linear combina-
tion between language model and align # (Equa-
tion 2). We tune Cc on development data.

trigram+contrib This measure (as we proposed
in Section 3) is the sum of the trigram lan-
guage model component and the contrib compo-
nent which represents the phrase’s contribution to
meaning.

trigram+α round-trip/sig-score We combine
language model with round-trip and sig-score
linearly (McDonald, 2006; Clarke and Lapata,
2007). To obtain baselines that are as strong as
possible, we tune the weight α on evaluation data
for best accuracy.

4.2 Pivot Languages
Our proposed model uses machine translation out-
puts from different pivot languages. To see which
language helps measuring redundancy, we com-
pare 52 pivot languages available at Google trans-
late3 for meaning representation4.

2We extend this measure, which was only defined for con-
tent words in Clarke and Lapata (2007), to include all English
words.

3http://translate.google.com
4These languages include Albanian (sq), Arabic (ar),

Azerbaijani (az), Irish (ga), Estonian (et), Basque (eu),
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length count percentage
1 356 67.55%
2 80 15.18%
3 40 7.59%
4 18 3.42%
other 33 6.26%

Table 1: Length distribution of redundant chunks’
lengths in the evaluation data.

4.3 Data and Tools

We extract instances from the NUCLE cor-
pus (Dahlmeier and Ng, 2011), an error annotated
corpus mainly written by Singaporean students,
to conduct this study. The corpus is composed
of 1,414 student essays on various topics. An-
notations in NUCLE include error locations, er-
ror types, and suggested corrections. Redundancy
errors are marked by annotators as Rloc. In this
study, we only consider the cases where the sug-
gested correction is to delete the redundant part
(97.09% among all Rloc errors).

To construct our evaluation dataset, we
pick sentences with exactly one redundant
word/phrase. This is the most common case
(81.18%) among sentences containing redundant
words/phrases. We use 10% of the essays (336
sentences) for development purposes, and an-
other 200 essays as the evaluation corpus (527
sentences). A distribution of redundant chunks’
lengths in evaluation corpus is shown in Table 1.

We train a trigram language model using the
SRILM toolkit (Stolcke, 2002) on the Agence
France-Presse (afp) portion of the English Giga-
words corpus.

5 Experiments

The experiment aims to address the following
questions: (1) Does a sentence’s translation serve
as a reasonable approximation for its meaning? (2)

Byelorussian (be), Bulgarian (bg), Icelandic (is), Polish (pl),
Persian (fa), Boolean (language ((Afrikaans) (af), Danish
(da), German (de), Russian (ru), French (fr), Tagalog (tl),
Finnish (fi), Khmer (km), Georgian (ka), Gujarati (gu),
Haitian (Creole (ht), Korean (ko), Dutch (nl), Galician (gl),
Catalan (ca), Czech (cs), Kannada (kn), Croatian (hr), Latin
(la), Latvian (lv), Lao (lo), Lithuanian (lt), Romanian (ro),
Maltese (mt), Malay (ms), Macedonian (mk), Bengali (bn),
Norwegian (no), Portuguese (pt), Japanese (ja), Swedish (sv),
Serbian (sr), Esperanto (eo), Slovak (sk), Slovenian (sl),
Swahili (sw), Telugu (te), Tamil (ta), Thai (th), Turkish (tr),
Welsh (cy), Urdu (ur), Ukrainian (uk), Hebrew (iw), Greek
(el), Spanish (es), Hungarian (hu), Armenian (hy), Italian (it),
Yiddish (yi), Hindi (hi), Indonesian (id), English (en), Viet-
namese (vi), Simplified Chinese (zh-CN), Traditional Chi-
nese (zh-TW).

Metrics overall function
words

content
words

random 4.44% 4.62% 4.36%
trigram 8.06% 3.95% 9.73%
sig-score 10.71% 22.16% 6.07%
round-trip (aligned word) 10.69% 12.72% 9.87%
round-trip (exact word
match) 5.75% 4.27% 6.35%

trigram + α round-trip
(aligned word) 14.80% 11.84% 16.00%

trigram + α round-trip
(exact word match) 9.49% 4.61% 11.47%

trigram + α sig-score 11.01% 22.68% 6.28%
align # 5.04% 3.36% 5.72%
trigram + Cc×align # 9.58% 4.61% 11.60%
contrib 8.59% 20.23% 3.87%
trigram + contrib 21.63% 38.16% 14.93%

Table 2: Redundancy part identification accuracies
for different redundancy metrics on NUCLE cor-
pus, using French as the pivot language.

If so, does the choice of the pivot language matter?
(3) How do the potentially conflicting goals of pre-
serving fluency versus preserving meaning impact
the definition of a redundancy measure?

Our experimental results are presented in Fig-
ure 4 and Table 2. In Figure 4 we compare using
different pivot languages in our proposed model;
in Table 2 we compare using different redundancy
metrics for the same pivot language – French.

Figure 4: Using different pivot languages for re-
dundancy measurement.

First, compared to other measures, our proposed
model best captures redundancy. In particular, our
model picks the correct redundant chunk 21.63%
of the time, which is five times higher than the ran-
dom baseline. This suggests that using translation
to approximate sentence meanings is a plausible
option. Note that one partial reason for the low
figures is the limitation of data resources. During
error analysis, we found linkers/connectors (e.g.
moreover, however) and modal auxiliaries (e.g.
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can, had) are often marked redundant when they
actually carry undesirable meanings (Ex6, Ex5).
These cases comprise a 16% portion among our
model’s failures. Despite this limitation, the evalu-
ation still suggests that current approaches are not
ready for a full redundancy detection pipeline.

Second, we find that the choice of pivot lan-
guage does make a difference. Experimental result
suggests that the system tends to achieve higher
redundancy detection accuracy when using trans-
lations of a language more similar to English. In
particular, when using European languages (e.g.
German (de), French (fr), Hungarian (hu) etc.) as
pivot, the system performs much better than using
Asian languages (e.g. Chinese (zh-CN), Japanese
(ja), Thai (th) etc.). One reason for this phe-
nomenon is that the default Google translation out-
put in Asian languages (as well as the alignment
between English and these languages) are orga-
nized into characters, while characters are not the
minimum meaning component. For example, in
Chinese, “解释” is the translation of “explana-
tion”, but the two characters “解” and “释” mean
“to solve” and “to release” respectively. In the
alignment output, this will cause certain words be-
ing associated with more or less alignments than
others. In this case, the number of alignments no
longer directly reflect how many meaning units
a certain word helps to express. To confirm this
phenomenon, we tried improving the system using
Simplified Chinese as the pivot language by merg-
ing characters together. In particular, we applied
Chinese tokenization (Chang et al., 2008), and
then merged alignments accordingly. This raised
the system’s accuracy from 17.74% to 20.11%.

Third, to better understand the salient features
of a successful redundancy measure, we experi-
mented with using different components in isola-
tion. We find that the language model component
is better at detecting redundant content words,
while the alignment analysis component is better
at detecting redundant function words. The lan-
guage model detects the function word redundan-
cies with a worse accuracy than the random base-
line; the alignment analysis component also has a
worse accuracy than the random baseline on con-
tent words. However, the English language model
and the alignment analysis result can build on top
of each other when we analyze the redundancies.

We also found that alignments help us to better
account for each word’s contribution to the “mean-

ing” of the sentence. A linear combination of a
language model score and our proposed measure
based on analysis of alignments best captures re-
dundancy. However, as our experimental results
suggest, it is necessary both to use alignments in
translation outputs, and to use them in a good
way. Alignments help isolating fluency from the
meaning component – making them easy to inte-
grate. As our experiments demonstrated, although
methods comparing Google round-trip transla-
tion’s output with the original sentence could lead
to a 10.69% prediction accuracy, it is harder to
combine it with the English language model. This
is partly because of the non-orthogonality of these
two measures – the English language model has
already been used in the round-trip translation re-
sult. Also, an information theoretical interpreta-
tion of alignments is essential for the model’s suc-
cess. For example, a more naive way of using
alignment results, align #, which counts the num-
ber of alignments, leads to a much lower accuracy.

6 Conclusions

Despite the prevalence of redundant phrases in
ESL writings, there has not been much work in the
automatic detection of these problems. We con-
duct a first study on developing a computational
model of redundancies. We propose to account for
words/phrases redundancies by comparing an ESL
sentence with outputs from off-the-shelf machine
translation systems. We propose a redundancy
measure based on this comparison. We show that
by interpreting the translation outputs with IBM
Models, redundancies can be measured by a lin-
ear combination of a language model score and
the words’ contribution to the sentence’s mean-
ing. This measure accounts for both the fluency
and completeness of a sentence after removing one
chunk. The proposed measure outperforms the di-
rect round-trip translation and a random baseline
by a large margin.
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