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Abstract

Language understanding (LU) modules for
spoken dialogue systems in the early phases
of their development need to be (i) easy
to construct and (ii) robust against vari-
ous expressions. Conventional methods of
LU are not suitable for new domains, be-
cause they take a great deal of effort to
make rules or transcribe and annotate a suf-
ficient corpus for training. In our method,
the weightings of the Weighted Finite State
Transducer (WFST) are designed on two
levels and simpler than those for conven-
tional WFST-based methods. Therefore,
our method needs much fewer training data,
which enables rapid prototyping of LU mod-
ules. We evaluated our method in two dif-
ferent domains. The results revealed that our
method outperformed baseline methods with
less than one hundred utterances as training
data, which can be reasonably prepared for
new domains. This shows that our method
is appropriate for rapid prototyping of LU
modules.

1 Introduction
The language understanding (LU) of spoken dia-
logue systems in the early phases of their devel-
opment should be trained with a small amount of
data in their construction. This is because large
amounts of annotated data are not available in the
early phases. It takes a great deal of effort and time
to transcribe and provide correct LU results to a

Figure 1: Relationship between our method and con-
ventional methods

large amount of data. The LU should also be robust,
i.e., it should be accurate even if some automatic
speech recognition (ASR) errors are contained in its
input. A robust LU module is also helpful when col-
lecting dialogue data for the system because it sup-
presses incorrect LU and unwanted behaviors. We
developed a method of rapidly prototyping LU mod-
ules that is easy to construct and robust against var-
ious expressions. It makes LU modules in the early
phases easier to develop.

Several methods of implementing an LU mod-
ule in spoken dialogue systems have been proposed.
Using grammar-based ASR is one of the simplest.
Although its ASR output can easily be transformed
into concepts based on grammar rules, complicated
grammars are required to understand the user’s ut-
terances in various expressions. It takes a great deal
of effort to the system developer. Extracting con-
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Figure 2: Example of WFST for LU

cepts from user utterances by keyword spotting or
heuristic rules has also been proposed (Seneff, 1992)
where utterances can be transformed into concepts
without major modifications to the rules. However,
numerous complicated rules similarly need to be
manually prepared. Unfortunately, neither method
is robust against ASR errors.

To cope with these problems, corpus-based (Su-
doh and Tsukada, 2005; He and Young, 2005) and
Weighted Finite State Transducer (WFST)-based
methods (Potamianos and Kuo, 2000; Wutiwi-
watchai and Furui, 2004) have been proposed as LU
modules for spoken dialogue systems. Since these
methods extract concepts using stochastic analy-
sis, they do not need numerous complicated rules.
These, however, require a great deal of training data
to implement the module and are not suitable for
constructing new domains.

Here, we present a new WFST-based LU module
that has two main features.

1. A statistical language model (SLM) for ASR
and a WFST for parsing that are automatically
generated from the domain grammar descrip-
tion.

2. Since the weighting for the WFST is simpler
than that in conventional methods, it requires
fewer training data than conventional weight-
ing schemes.

Our method accomplishes robust LU with less ef-
fort using SLM-based ASR and WFST parsing. Fig-
ure 1 outlines the relationships between our method
and conventional schemes. Since rule- or grammar-
based approaches do not require a large amount of
data, they take less effort than stochastic techniques.

However, they are not robust against ASR errors.
Stochastic approaches, on the contrary, take a great
deal of effort to collect data but are robust against
ASR errors. Our method is an intermediate approach
that lies between these. That is, it is more robust than
rule- or grammar-based approaches and takes less
effort than stochastic techniques. This characteristic
makes it easier to rapidly prototype LU modules for
a new domain and helps development in the early
phases.

2 Related Work and WFST-based
Approach

A Finite State Transducer (FST)-based LU is ex-
plained here, which accepts ASR output as its in-
put. Figure 2 shows an example of the FST for a
video recording reservation domain. The input, ε,
means that a transition with no input is permitted at
the state transition. In this example, the LU mod-
ule returns the concept [month=2, day=22] for the
utterance “It is February twenty second please”.
Here, a FILLER transition in which any word is ac-
cepted is appropriately allowed between phrases. In
Figure 2, ‘F’ represents 0 or more FILLER tran-
sitions. A FILLER transition from the start to the
end is inserted to reject unreliable utterances. This
FILLER transition enables us to ignore unnecessary
words listed in the example utterances in Table 1.
The FILLER transition helps to suppress the inser-
tion of incorrect concepts into LU results.

However, many output sequences are obtained for
one utterance due to the FILLER transitions, be-
cause the utterance can be parsed with several paths.
We used a WFST to select the most appropriate
path from several output sequences. The path with
the highest cumulative weight, w, is selected in a
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Table 2: Many LU results for input “It is February twenty second please”
LU output LU result w

It is February twenty second please month=2, day=22 2.0
It is FILLER twenty second please day=22 1.0
It is FILLER twenty second FILLER day=22 1.0

FILLER FILLER FILLER FILLER FILLER FILLER n/a 0

Table 1: Examples of utterances with FILLERs
ASR output

Well, it is February twenty second please
It is uhm, February twenty second please
It is February, twe-, twenty second please
It is February twenty second please, OK?

(LU result = [month=2, day=22])

WFST-based LU. In the example in Table 2, the
concept [month=2, day=22] has been selected, be-
cause its cumulative weight, w, is 2.0, which is the
highest.

The weightings of conventional WFST-based ap-
proaches used an n-gram of concepts (Potamianos
and Kuo, 2000) and that of word-concept pairs (Wu-
tiwiwatchai and Furui, 2004). They obtained the
n-grams from several thousands of annotated ut-
terances. However, it takes a great deal of ef-
fort to transcribe and annotate a large corpus. Our
method enables prototype LU modules to be rapidly
constructed that are robust against various expres-
sions with SLM-based ASR and WFST-based pars-
ing. The SLM and WFST are generated automat-
ically from a domain grammar description in our
toolkit. We need fewer data to train WFST, because
its weightings are simpler than those in conventional
methods. Therefore, it is easy to develop an LU
module for a new domain with our method.

3 Domain Grammar Description
A developer defines grammars, slots, and concepts
in a domain in an XML file. This description en-
ables an SLM for ASR and parsing WFST to be au-
tomatically generated. Therefore, a developer can
construct an LU module rapidly with our method.

Figure 3 shows an example of a descrip-
tion. A definition of a slot is described in
keyphrase-class tags and its keyphrases and

...
<keyphrase-class name="month">
...

<keyphrase>
<orth>February</orth>
<sem>2</sem>

</keyphrase>
...
</keyphrase-class>
...
<action type="specify-attribute">

<sentence> {It is} [*month] *day [please]
</sentence>

</action>

Figure 3: Example of a grammar description

the values are in keyphrase tags. The month is
defined as a slot in this figure. February and 2 are
defined as one of the phrases and values for the slot
month. A grammar is described in a sequence of
terminal and non-terminal symbols. A non-terminal
symbol represents a class of keyphrases, which is
defined in keyphrase-class. It begins with an
asterisk “*” in a grammar description in sentence
tags. Symbols that can be skipped are enclosed
by brackets []. The FILLER transition described
in Section 2 is inserted between the symbols un-
less they are enclosed in brackets [] or braces {}.
Braces are used to avoid FILLER transitions from
being inserted. For example, the grammar in Figure
3 accepts “It is February twenty second please.” and
“It is twenty second, OK?”, but rejects “It is Febru-
ary.” and “It, uhm, is February twenty second.”.

A WFST for parsing can be automatically gener-
ated from this XML file. The WFST in Figure 2 is
generated from the definition in Figure 3. Moreover,
we can generate example sentences from the gram-
mar description. The SLM for the speech recognizer
is generated with our method by using many exam-
ple sentences generated from the defined grammar.
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4 Weighting for ASR Outputs on Two
Levels

We define weights on two levels for a WFST. The
first is a weighting for ASR outputs, which is set to
select paths that are reliable at a surface word level.
The second is a weighting for concepts, which is
used to select paths that are reliable on a concept
level. The weighting for concepts reflects correct-
ness at a more abstract level than the surface word
level. The weighting for ASR outputs consists of
two categories: a weighting for ASR N-best outputs
and one for accepted words. We will describe the
definitions of these weightings in the following sub-
sections.

4.1 Weighting for ASR N-Best Outputs
The N-best outputs of ASR are used for an input of
a WFST. Weights are assigned to each sentence in
ASR N-best outputs. Larger weights are given to
more reliable sentences, whose ranks in ASR N-best
are higher. We define this preference as

wi
s =

eβ·scorei

∑N
j eβ·scorej

,

where wi
s is a weight for the i-th sentence in ASR

N-best outputs, β is a coefficient for smoothing, and
scorei is the log-scaled score of the i-th ASR out-
put. This weighting reflects the reliability of the
ASR output. We set β to 0.025 in this study after
a preliminary experiment.

4.2 Weighting for Accepted Words
Weights are assigned to word sequences that have
been accepted by the WFST. Larger weights are
given to more reliable sequences of ASR outputs at
the surface word level. Generally, longer sequences
having more words that are not fillers and more re-
liable ASR outputs are preferred. We define these
preferences as the weights:

1. word(const.): ww = 1.0,

2. word(#phone): ww = l(W ), and

3. word(CM): ww = CM(W ) − θw.

The word(const.) gives a constant weight to
all accepted words. This means that sequences

with more words are simply preferred. The
word(#phone) takes the length of each accepted
word into consideration. This length is measured by
its number of phonemes, which are normalized by
that of the longest word in the vocabulary. The nor-
malized values are denoted as l(W ) (0 < l(W ) ≤
1). By adopting word(#phone), the length of se-
quences is represented more accurately. We also
take the reliability of the accepted words into ac-
count as word(CM). This uses confidence measures
(Lee et al., 2004) for a word, W , in ASR outputs,
which are denoted as CM(W ). The θw is the thresh-
old for determining whether word W is accepted or
not. The ww obtains a negative value for an unreli-
able word W when CM(W ) is lower than θw. This
represents a preference for longer and more reliable
sequences.

4.3 Weighting for Concepts
In addition to the ASR level, weights on a concept
level are also assigned. The concepts are obtained
from the parsing results by the WFST, and contain
several words. Weights for concepts are defined by
using the measures of all words contained in a con-
cept.

We prepared three kinds of weights for the con-
cepts:

1. cpt(const.): wc = 1.0,

2. cpt(avg):

wc =

∑

W
(CM(W ) − θc)

#W
, and

3. cpt(#pCM(avg)):

wc =

∑

W
(CM(W ) · l(W ) − θc)

#W
,

where W is a set of accepted words, W , in the corre-
sponding concept, and #W is the number of words
in W .

The cpt(const.) represents a preference for
sequences with more concepts. The cpt(avg)
is defined as the weight by using the CM(W )
of each word contained in the concept. The
cpt(#pCM(avg)) represents a preference for longer
and reliable sequences with more concepts. The θc

is the threshold for the acceptance of a concept.
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Table 3: Examples of weightings when parameter set is: word(CM) and cpt(#pCM(avg))
ASR onput No, it is February twenty second
LU output FILLER it is February twenty second
CM(W ) 0.3 0.7 0.6 0.9 1.0 0.9

l(W ) 0.3 0.2 0.2 0.9 0.6 0.5
Concept - - - month=2 day=22

word - 0.7 − θw 0.6 − θw 0.9 − θw 1.0 − θw 0.9 − θw

cpt - - - (0.9 · 0.9 − θc)/1 (1.0 · 0.6 − θc + 0.9 · 0.5 − θc)/2

'

&

$

%

Reference From June third please
ASR output From June third uhm FIT please LU result
CM(W ) 0.771 0.978 0.757 0.152 0.525 0.741

LU reference From June third FILLER FILLER FILLER month:6, day:3
Our method From June third FILLER FILLER FILLER month:6, day:3

Keyword spotting From June third FILLER FIT please month:6, day:3, car:FIT

(‘FIT’ is the name of a car.)
Figure 4: Example of LU with WFST

4.4 Calculating Cumulative Weight and
Training

The LU results are selected based on the weighted
sum of the three weights in Subsection 4.3 as

wi = wi
s + αw

∑

ww + αc

∑

wc

The LU module selects an output sequence with
the highest cumulative weight, wi, for 1 ≤ i ≤ N .

Let us explain how to calculate cumulative weight
wi by using the example specified in Table 3. Here,
word(CM) and cpt(#pCM(avg)) are selected as pa-
rameters. The sum of weights in this table for ac-
cepted words is αw(4.1 − 5θw), when the input se-
quence is “No, it is February twenty second.”.
The sum of weights for concepts is αc(1.335 − 2θc)
because the weight for “month=2” is αc(0.81 − θc)
and the weight for “day=22” is αc(0.525 − θc).
Therefore, cumulative weight wi for this input se-
quence is wi

s + αw(4.1 − 5θw) + αc(1.335 − 2θc).
In the training phase, various combinations of pa-

rameters are tested, i.e., which weightings are used
for each of ASR output and concept level, such as
N = 1 or 10, coefficient αw,c = 1.0 or 0, and thresh-
old θw,c = 0 to 0.9 at intervals of 0.1, on the train-
ing data. The coefficient αw,c = 0 means that a
corresponding weight is not added. The optimal pa-

rameter settings are obtained after testing the various
combinations of parameters. They make the concept
error rate (CER) minimum for a training data set.
We calculated the CER in the following equation:
CER = (S +D + I)/N , where N is the number of
concepts in a reference, and S, D, and I correspond
to the number of substitution, deletion, and insertion
errors.

Figure 4 shows an example of LU with our
method, where it rejects misrecognized concept
[car:FIT], which cannot be rejected by keyword
spotting.

5 Experiments and Evaluation

5.1 Experimental Conditions
We discussed our experimental investigation into the
effects of weightings in Section 4. The user utter-
ance in our experiment was first recognized by ASR.
Then, the i-th sentence of ASR output was input to
WFST for 1 ≤ i ≤ N , and the LU result for the
highest cumulative weight, wi, was obtained.

We used 4186 utterances in the video recording
reservation domain (video domain), which consisted
of eight different dialogues with a total of 25 differ-
ent speakers. We also used 3364 utterances in the
rent-a-car reservation domain (rent-a-car domain) of
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eight different dialogues with 23 different speakers.
We used Julius 1 as a speech recognizer with an
SLM. The language model was prepared by using
example sentences generated from the grammars of
both domains. We used 10000 example sentences in
the video and 40000 in the rent-a-car domain. The
number of the generated sentences was determined
empirically. The vocabulary size was 209 in the
video and 891 in the rent-a-car domain. The average
ASR accuracy was 83.9% in the video and 65.7%
in the rent-a-car domain. The grammar in the video
domain included phrases for dates, times, channels,
commands. That of the rent-a-car domain included
phrases for dates, times, locations, car classes, op-
tions, and commands. The WFST parsing mod-
ule was implemented by using the MIT FST toolkit
(Hetherington, 2004).

5.2 Performance of WFST-based LU
We evaluated our method in the two domains: video
and rent-a-car. We compared the CER on test data,
which was calculated by using the optimal settings
for both domains. We evaluated the results with 4-
fold cross validation. The number of utterances for
training was 3139 (=4186*(3/4)) in the video and
2523 (=3364*(3/4)) in the rent-a-car domain.

The baseline method was simple keyword spot-
ting because we assumed a condition where a large
amount of training data was not available. This
method extracts as many keyphrases as possible
from ASR output without taking speech recogni-
tion errors and grammatical rules into consideration.
Both grammar-based and SLM-based ASR outputs
are used for input in keyword spotting (denoted as
“Grammar & spotting” and “SLM & spotting” in
Table 4). The grammar for grammar-based ASR
was automatically generated by the domain descrip-
tion file. The accuracy of grammar-based ASR was
66.3% in the video and 43.2% in the rent-a-car do-
main.

Table 4 lists the CERs for both methods. In key-
word spotting with SLM-based ASR, the CERs were
improved by 5.2 points in the video and by 22.2
points in the rent-a-car domain compared with those
with grammar-based ASR. This is because SLM-
based ASR is more robust against fillers and un-

1http://julius.sourceforge.jp/

Table 4: Concept error rates (CERs) in each domain

Domain Grammar &
spotting

SLM &
spotting

Our
method

Video 22.1 16.9 13.5
Rent-a-car 51.1 28.9 22.0

known words than grammar-based ASR. The CER
was improved by 3.4 and 6.9 points by optimal
weightings for WFST. Table 5 lists the optimal pa-
rameters in both domains. The αc = 0 in the video
domain means that weights for concepts were not
used. This result shows that optimal parameters de-
pend on the domain for the system, and these need
to be adapted for each domain.

5.3 Performance According to Training Data
We also investigated the relationship between the
size of the training data for our method and the CER.
In this experiment, we calculated the CER in the
test data by increasing the number of utterances for
training. We also evaluated the results by 4-fold
cross validation.

Figures 5 and 6 show that our method outper-
formed the baseline methods by about 80 utterances
in the video domain and about 30 utterances in
the rent-a-car domain. These results mean that our
method can effectively be used to rapidly prototype
LU modules. This is because it can achieve robust
LU with fewer training data compared with conven-
tional WFST-based methods, which need over sev-
eral thousand sentences for training.

6 Conclusion
We developed a method of rapidly prototyping ro-
bust LU modules for spoken language understand-
ing. An SLM for a speech recognizer and a WFST
for parsing were automatically generated from a do-
main grammar description. We defined two kinds
of weightings for the WFST at the word and con-
cept levels. These two kinds of weightings were
calculated by ASR outputs. This made it possi-
ble to create an LU module for a new domain with
less effort because the weighting scheme was rel-
atively simpler than those of conventional methods.
The optimal parameters could be selected with fewer
training data in both domains. Our experiment re-
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Table 5: Optimal parameters in each domain
Domain N αw ww αc wc

Video 1 1.0 word(const.) 0 -
Rent-a-car 10 1.0 word(CM)-0.0 1.0 cpt(#pCM(avg))-0.8
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Figure 5: CER in video domain
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Figure 6: CER in rent-a-car domain

vealed that the CER could be improved compared to
the baseline by training optimal parameters with a
small amount of training data, which could be rea-
sonably prepared for new domains. This means that
our method is appropriate for rapidly prototyping
LU modules. Our method should help developers
of spoken dialogue systems in the early phases of
development. We intend to evaluate our method on
other domains, such as database searches and ques-
tion answering in future work.
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