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Abstract

Cross-adaptation (CA) based methods of
machine translation (MT) system combi-
nation work by adapting the decoding step
of a baseline system using information
from alternate systems. Generally, the re-
quired information is very deep, such as a
full decoding forest. In this paper, we de-
scribe a method of cross-adaptation based
system combination which only requires
the final output from each alternate sys-
tem. This is achieved by adding a dis-
criminatively weighted n-gram confidence
feature to our decoder. In order to opti-
mize the confidence weight of each sys-
tem, we present a novel procedure called
non-linear Expected-BLEU optimization
that can be used to optimize arbitrary non-
linear parameters for any decoding fea-
ture. We also describe a method for explic-
itly creating an adapted system that is dis-
similar from each particular input system,
which we have found to be useful in com-
bination. Although our new method does
not outperform a state-of-the-art confusion
network (CN) based combination system
on its own, we obtain statistically signif-
icant gains of 0.21-0.45 BLEU when the
CA output is used as an additional system
in CN combination.

∗This work was supported by DARPA/I2O Contract No.
HR0011-06-C-0022 under the GALE program (Approved for
Public Release, Distribution Unlimited). The views, opin-
ions, and/or findings contained in this article/presentation are
those of the author/presenter and should not be interpreted as
representing the official views or policies, either expressed or
implied, of the Defense Advanced Research Projects Agency
or the Department of Defense.

1 Introduction

In general terms, system combination is the task
of using multiple machine translation (MT) sys-
tems to produce an output that is better than any
input system could produce by itself. The method
for doing this is largely shaped by the informa-
tion available: some require an actual MT decoder
for each system (Li et al., 2009), some require
a full forest of derivations (DeNero et al., 2010),
and some only require the final output translations
from each system (Rosti et al., 2009). Our re-
search was done as part of a project where multi-
ple sites develop their decoding systems indepen-
dently, and then these outputs are combined to-
gether to produce a “team” output. Because these
systems widely differ in structure, the only infor-
mation we have available for system combination
is an n-best list of hypotheses. No source-side cor-
respondences are available, and some systems are
only capable of producing a 1-best list.

Additionally, in this procedure, we assume that
a strong baseline decoding system is available for
each condition where system combination is per-
formed. The general principle behind this proce-
dure is to run a baseline decoding system with the
output adapted towards the output of the other sys-
tems. In this case, we perform the adaptation by
effectively increasing the probability of language
model n-grams that are seen in other systems’
outputs, as well as including translation rules ex-
tracted from the other systems’ outputs. The rel-
ative weight of each system is estimated discrim-
inatively using a novel extension to the Expected-
BLEU optimization procedure which allows for
the tuning of non-linear feature weights.

Currently, we use a state-of-the-art confusion
network based procedure for system combination
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based on (Rosti et al., 2009). Although our new
method does produce a significant gain over the
best single system, it does not perform as well as
our confusion network decoding on any condition
that we tried. However, this new procedure was
not designed to replace our existing method, but
rather to complement it. When we used the output
of the adaptation-based combination as an addi-
tional system in our standard confusion network
decoding, we obtained a moderate gain in Arabic
web, and a smaller gain on Arabic newswire.

2 Related Work

Existing research in MT system combination can
generally be divided into two major approaches:
confusion networks and cross-adaptation.1 Con-
fusion network based methods align the various
input hypotheses against one another to form the
confusion network, and then generate the most
likely path through this network to produce a com-
bined 1-best (Bangalore et al., 2001). However,
as mentioned previously, we already have state-of-
the-art confusion network system in place, which
is based on (Rosti et al., 2007; Rosti et al., 2009).
It is known that combining the outputs of multiple
system combination procedures can produce fur-
ther gains. Therefore, our goal was to design a
complementary combination system which could
be used in conjunction with our current system to
produce better results than either could indepen-
dently.

In automated speech recognition (ASR), gener-
alized forms of adaptation have widely been used
for a number of years (Rozzi and Stern, 1991) and
more recently, cross-adaptation has been used as a
method of ASR system combination (Stüker et al.,
2006; Gales et al., 2007). In machine translation,
a number of cross-adaptation based combination
methods have been developed under a multitude
of names. However, nearly all of these methods
require rich information about each system which
is not available for our task. Collaborative decod-
ing (Li et al., 2009) requires that each system’s
decoder be run multiple times in an iterative fash-
ion. DeNero’s model combination (DeNero et al.,
2010) requires a full decoding forest from each

1There is a third approach, known as “hypothesis selec-
tion,” which simply selects the best input hypotheses as the
“combined” output, based on some features (Hildebrand and
Vogel, 2008). However, there has been comparatively little
research on this method due to its simplicity and lack of room
for improvement.

system. Joint optimization (He and Toutanova,
2009) and hybrid decoding (Cui et al., 2010) re-
quire that the input models2 for each system be
available to the combination decoder.

Crego et al. (2010) describes a method for LM-
based combination which is most similar to the
work presented in this paper, but their method does
not discriminatively estimate weights for an arbi-
trary number of input systems.3 In fact, they only
present results where their main system is adapted
using the output of a single other systems. By con-
trast, we present results where our main system is
adapted by 7-14 other systems, and the weight for
each of these is estimated discriminatively. As far
as we know, there has been no previous work in
developing a method of cross-adaptation which (a)
requires only the final output from each system,
and (b) discriminatively estimates the adaptation
weight for each system. The latter is highly desir-
able when combining a large number of systems
of varying quality, as with our task.

In order to discriminatively estimate the adap-
tation weight of each input system, we use a
highly-scalable MT-specific optimization proce-
dure called Expected-BLEU (Devlin, 2009; Rosti
et al., 2010). The Expected-BLEU procedure is
very similar to the Co-BLEU metric (Pauls et al.,
2009), and is more distantly related to earlier work
such as Tromble’s linear approximation of BLEU
(Tromble et al., 2008) and Smith’s minimum risk
annealing (Smith and Eisner, 2006). In this pa-
per, we describe a novel extension to Expected-
BLEU that allows for the optimization of arbitrary
non-linear feature parameters. This allows for any
feature parameters that are differentiable with re-
spect to the feature score to be optimized along-
side the normal log-linear decoding weights dur-
ing the standard optimization procedure.

3 Description of MT System

Our baseline machine translation system, which
is also used to perform the cross-adaptation, is
a state-of-the-art hierarchical decoder based on
(Shen et al., 2008) and (Chiang, 2007). Bottom-
up chart parsing is performed to produce a shared
forest of derivations, and possible path through the

2Such as the set of translation rules and the language
model.

3The adaptation weight represents how much each system
should influence the adaptation process.
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forest defines one hypothesis h.4 The decoder uses
a log-linear translation model, so the score of hy-
pothesis h is defined as:

Sh(w⃗) =
m∑

i=1

wi

∑

r∈R(h)

Fri (1)

where R(h) is the set of translation rules that make
up hypothesis h, m is the number of features, Fri

is the score of the ith feature in rule r, and wi is
the weight of feature i. This weight vector is op-
timized discriminatively to maximize BLEU score
on a tuning set, using the Expected-BLEU opti-
mization procedure.

Our decoder uses all of the standard statistical
MT features, such as:

• P (T |S) = forward rule translation
• P (S|T ) = backward rule translation
• LS(T |S) = lexical smoothing
• P (qj |qj−1, ...) = language model

Additionally, we use approximately 50,000
sparse, binary-valued features which model spe-
cific events such as “Is the bigram ‘united states’
seen in the target side of the translation rule?”
These features do cause some amount of over-
fitting on the tuning set, but we have not found this
to be harmful to the test sets. However, this also
causes a certain amount of variability on the tune
set results, so minor variations in BLEU score on
the tuning set from condition to condition are to be
expected.

The cross adaptation models described below
are used as standard log-linear feature scores, and
the weights are optimized jointly with the normal
decoding features.

4 Discriminative Model Adaptation

In this section, we describe how the cross-
adaptation is actually implemented in our system.
We perform the adaptation by defining additional
decoding features which affect both the language
model and the translation model, in order to make
the MT output appear more like the output of the
other systems.

4.1 Discriminative Language Model
Adaptation

We perform language model adaptation by effec-
tively increasing the language model probability

4In this case, hypothesis refers to a specific path through
the shared forest, rather than a specific output string.

of n-grams that are seen in the other systems’ out-
puts. Since we use a 3-gram decoder, we adapt the
probability of all 1-grams, 2-grams, and 3-grams.

In the past, Snover et al. (2008) performed lan-
guage model adaptation using simple linear inter-
polation:

P (qj |qj−1, ...) =

K∑

i=1

viPi(qj |qj−1, ...) (2)

where K is the number of models, q =
(qj , qj−1, ...) is the n-gram in question, and vi

is the weight for model i, constrained so that∑
i vi = 1. This formula replaces the standard

language model probability in the log-linear de-
coding model. When this feature was used by
Snover, it combined the standard language model
with a test-sentence-specific language model that
was trained on several hundred documents. How-
ever, in the case of system combination, we are
adapting towards a much smaller amount of data,
so P (qj |qj−1, ..., qj−n+1) will not be well esti-
mated. Therefore, we use a modified formula
which uses a binary function δ(q) to indicate the
presence or absence of the n-gram q. This formula
is used as an additional feature in the log-linear de-
coding model:5

F (q, v⃗) = log(ϵ +

∑K
i=1 eviGi(q)

ϵ +
∑K

i=1 evi
) (3)

Gi(q) =

∑Hi
j=1 bijδij(q)
∑Hi

j=1 bij

(4)

where K is the number of systems, ϵ is a small
positive value fixed at 10−8, and vi is the discrim-
inatively estimated weight for system i.6 If an n-
gram is seen in exactly zero system outputs, it does
not receive a score of log(ϵ), but instead receives
a score of log(1) and triggers an additional binary
feature. This additional feature acts as a discrimi-
native backoff log-probability for unseen n-grams,
and generally optimizes to a large negative value
in the range of -10 to -15.

The function Gi(q) represents the “count” of
n-gram q in system i’s n-best list. In it, Hi is
the number of hypotheses in system i, δij(q) is
a binary “occurrence function” that returns 1 if
n-gram q is seen in hypothesis ij, and bij is a

5Therefore, the standard language model probability re-
mains unchanged.

6ϵ is used to prevent log() underflow or divide-by-zero
errors, since vi is unbounded.

669



hypothesis-specific positive weighting which as-
signs mass to each hypothesis as a function of its
rank. Obviously, if q is seen in every hypothesis
of system i, Gi(q) = 1. Note that δij(q) does
not return the actual count of q, because we never
want Gi(q) or F (q, v) to return a value over 1 (or
log(1)).

Theoretically, bij could be estimated discrimi-
natively, but for simplicity we use the following
formula which assigns mass to each hypothesis
based on its rank in the n-best list:

bij = Hi − j + 1 (5)

As an example, if system i has a 5-best output,
and n-gram q is seen in hypotheses 1 and 4, then
Gi(q) = 5+2

5+4+3+2+1 = 0.467.
Equation 3 can be thought of as the log-

confidence that n-gram q is consistent with the
other systems’ outputs. Note that F (q, v⃗) is
continuous and differentiable with respect to the
weights v⃗, and F (q, v⃗) returns a value in the
range [log(ϵ), 0] for all values of v⃗. These prop-
erties make it possible to discriminatively esti-
mate v⃗ within our standard optimization frame-
work, which is discussed in Section 5.

4.2 Discriminative Translation Model
Adaptation

We extract adapted translation rules using the
method described in (Snover et al., 2008). Es-
sentially, for each source phrase s, we consider
every target phrase t from each of the input sys-
tem hypotheses as a possible translation of s.7 We
limit the maximum length of s and t to 3 and 5, re-
spectively. Clearly, this produces many extraneous
rules. We prune these rules only keeping the top
20 most likely target translations of each s, sorted
by the “noisy-or” lexical smoothing score between
s and t (Zens and Ney, 2004). This lexical smooth-
ing score is used as an additional decoding feature.

The formula for the discriminative adapted rule
confidence is exactly the same as Equation 3:

H(r, z⃗) = log(ϵ +

∑K
i=1 eziGi(r)

ϵ +
∑K

i=1 ezi
) (6)

Gi(r) =

∑Hi
j=1 bijδij(r)
∑Hi

j=1 bij

(7)

where r is the adapted rule and z⃗ are the discrimi-
native system weights. The “occurrence function”

7This adaptation performed independently for each test
sentence.

δij(r) function returns 1 when the rule r’s target
phrase t⃗ is seen anywhere in hypothesis ij.

5 Parameter Optimization

In this section, we describe a novel procedure for
discriminatively optimizing the non-linear param-
eters v⃗ and z⃗ used in Equations 3 and 6. These pa-
rameters are jointly optimized alongside the stan-
dard log-linear decoding weights to directly max-
imize BLEU score on a tuning set. In order to
perform this optimization, we use a modified ver-
sion of maximum BLEU tuning, called Expected-
BLEU (Rosti et al., 2010). For the benefit of the
reader, we will first give a brief overview of max-
imum BLEU and Expected-BLEU optimization.
Afterwards, we will describe a novel extension to
Expected-BLEU which allows for the optimiza-
tion of non-linear feature parameters.

5.1 Expected-BLEU Optimization
Standard maximum BLEU optimization attempts
to find the set of weights w⃗ that maximizes the 1-
best BLEU score over an n-best list, with BLEU
(Papineni et al., 2002) defined as:

BLEU(w⃗) =




4∏

m=1

∑N
i=1 c

(m)
ibi(w⃗)

∑N
i=1 t

(m)
ibi(w⃗)




1/4

·θ
(

1 −
∑

i ribi(w⃗)∑N
i=1 hibi(w⃗)

)
(8)

bi(w⃗) = argmaxh∈Hi
(Sh(w⃗)) (9)

where θ (x) = min(1.0, ex), N is the number
of test sentences, bi is the 1-best hypothesis of
the ith sentence selected using weights w⃗, and
{c

(1)
bi

, c
(2)
bi

, ...hbi
} are the 10 pre-computed BLEU

statistics for hypothesis bi.8 Crucially, the se-
lection of 1-best hypotheses with respect to w⃗
is discrete, and therefore the max BLEU func-
tion is non-differentiable. Because of this, a line
search algorithm such as Powell’s method (Pow-
ell, 1964) must be used to optimize the weights,
which does not perform well when more than few
dozen weights are optimized simultaneously.

Expected-BLEU optimization seeks to approx-
imate max BLEU using a continuous objective
function. The advantage of this is that it quickly

8c(m) is the number of matching m-grams, t(m) is the
number of total hypothesis m-grams, r is the reference
length, h is the hypothesis length, and θ(x) is a “brevity
penalty” which penalizes short hypotheses.
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converges even when tens of thousands of weights
are estimated simultaneously. Therefore, instead
of discretely selecting a 1-best hypothesis from
each of the m test sentences, the BLEU statis-
tics are summed over every hypothesis weighted
by its corresponding posterior probability. Note
that we compute the expectation of each of the 10
BLEU statistics independently, so the Expected-
BLEU formula is not technically equivalent to the
“expected value of BLEU.” However, in practice
this has not been an issue.

The posterior probability for hypothesis ij is
simply the normalized decoding probability:

pij(w⃗) =
eγSij(w⃗)

∑n
k=1 eγSik(w⃗)

(10)

The free parameter γ controls the shape of the dis-
tribution, with a higher γ shifting more mass to-
wards the 1-best hypothesis.

As a final step, we replace Equation 8’s “brevity
penalty” θ(x) = min(1, ex) with a differentiable
approximate over the range 0.9 ≤ x ≤ 1.1. The
function is defined as:

ϕ(x) =
ex − 1

e1000x + 1
+ 1 (11)

The final Expected-BLEU objective function is
then:

ExpBLEU(w⃗) =

(
4∏

m=1

∑
i

∑
j pijc

(m)
ij∑

i

∑
j pijt

(m)
ij

)1/4

·ϕ
(

1 −
∑

i

∑
j pijrij∑

i

∑
j pijhij

)
(12)

where pij is short for pij(w⃗), as defined in Equa-
tion 10. The values {c

(m)
ij , ...) are the same pre-

computed BLEU statistics as in Equation 8.
The differentiation of this function with respect

to w⃗ can be performed in a fairly small num-
ber of steps using basic calculus, the details of
which are provided in (Devlin, 2009). The func-
tions ExpBLEU(w⃗) and dExpBLEU

dw are used
with LBFGS (Liu and Nocedal, 1989) to perform
n-best based parameter optimization. We use a
standard iterative optimization procedure: (1) De-
code tuning set with initial weights w⃗ and gener-
ate n-best list, (2) Optimize w⃗ on n-best list, (3)
Repeat (1) and (2) until convergence, (4) Decode
validation set.

In order to prevent over-fitting, we add a stan-
dard L2-norm regularization term to our objective
function:

Obj(w⃗) = ExpBLEU(w⃗) − α||w⃗ − w⃗′||2 (13)

where w⃗′ is the initial weight vector at the current
iteration of optimization, and α is the regulariza-
tion term, fixed at 10−5.

5.2 Non-Linear Feature Optimization
The previous section describes the optimization
procedure for standard linear decoding weights,
but it can also be extended to optimize non-linear
weights, as in Equation 3 and Equation 6. We sim-
ply modify Equation 1 so that Fi is a function of
parameters v⃗i:

Sh(w⃗, v⃗) =
m∑

i=1

wi

∑

r∈Rh

Fri(v⃗i) (14)

For each non-linear feature type, we must im-
plement dFri

dv⃗i
. Then, we can “generically” com-

pute dExpBLEU
dFri

inside of the optimizer and apply
the chain rule to compute:

dExpBLEU

dv⃗i
=
∑

h

∑

r∈Rh

dExpBLEU

dFri

dFri

dv⃗i
(15)

where Rh is the set of rules associated with hy-
pothesis h. This information is usually not avail-
able to the optimizer, so this functionality must be
added.

The non-linear weights v⃗ are jointly optimized
with the standard decoding weights w⃗ using the
function ExpBLEU(w⃗, v⃗).

5.3 Dissimilarity Optimization
Because the ultimate goal of the cross-adaptation
combination is to use it as an additional system
in confusion network decoding, it would be ben-
eficial if we could ensure that it contains comple-
mentary information. In the past, we have seen
that that system combination performs best when
the input systems have similar performance but are
very different from one another. We model this
difference or dissimilarity between two sentences
using the TER metric, which measures the nor-
malized number of “edits” required to transform
the one sentence into another (Snover et al., 2006).
Normally, TER is computed on an MT hypothesis
against its reference translation. In this case, we
instead measured the TER of the cross-adaptation
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output against the external input system hypothe-
ses.9

We attempted to explicitly increase TER dis-
similarity by discriminatively optimizing against
the input system hypotheses.10 In other words, we
used the input hypotheses as reference translation
and optimized in the opposite direction that we
normally would. We added this as a linear term in
our existing Expected-BLEU objective function.
Note that Expected-BLEU is computed against the
reference translations and Expected TER is com-
puted against the external input systems:

Obj(w⃗, v⃗) = ExpBLEURef (w⃗, v⃗)

+0.1·ExpTERExSys(w⃗, v⃗) (16)

−α||w⃗ − w⃗′||2

The dissimilarity term is weighted at 0.1 in order
to prevent the BLEU score from degrading by a
significant amount. Note that it is not contradic-
tory to adapt towards the input hypotheses while
simultaneously optimizing against those same hy-
potheses, because the adaptation is done at the n-
gram level and TER is computed on the sentence
level. We want to use words and phrases from the
input systems, but we don’t want the final sentence
to be too similar to any one particular input hy-
pothesis.

6 Experiments

The input to our system combination procedure
consists of output from 14 different machine trans-
lation systems developed independently at 5 dif-
ferent sites. Of these, 7 were “internal” systems
developed at our site, while 7 were “external” sys-
tems developed at the 4 outside sites. The 7 inter-
nal systems all used the same hierarchical decoder
and feature set described in Section 3, but varied
by source tokenization and method of word align-
ment. The 7 external systems include a phrasal
system, two hierarchical systems, a syntax system,
a tree-to-string system, a string-to-tree system, and
a hand-crafted rule based system. We will present
results on Arabic-to-English web and newswire.

Our parallel training data and development sets
consist of publicly available LDC/NIST data, as

9The “external” input systems are those that were devel-
oped at outside sites. Since our internal system is used to
perform the cross-adaptation, we do not perform dissimilar-
ity optimization against its baseline output.

10Alternately, we could optimize against the confusion net-
work baseline output, but we found that this did not perform
well.

well as data specific to DARPA’s Global Au-
tonomous Language Exploitation (GALE) project.
The publicly available training data consists of
3.3 million words of newswire/treebank LDC-
released data as well as 118 million words of
LDC-released UN data. The GALE-only training
data consists of 46 million words of LDC-released
data plus 30 million words released by Sakhr Soft-
ware. The monolingual LM training consists of
4 billion words from the GigaWord corpus and 4
billion words from various other sources such as
Google News and New York Times. We use a 3-
gram LM for decoding and 5-gram LM for rescor-
ing.

Our development sets were constructed using
the NIST MT04, MT05, MT06, and MT08 data
sets, as well as the GALE Phase1-Phase4 devel-
opment/evaluation sets. We use one tuning set,
referred to as “Tune,” to optimize both the cross-
adaptation and confusion network based systems.
Our validation set is referred to as “Test.” 11

Our cross-adaptation system uses the features
described in Section 4 to actually perform the
adaptation, but is otherwise identical to our base-
line system, referred to as “Best Single System” or
“Internal Best.”

Because we use a large number of discrimina-
tive features in our baseline MT system, there is
a moderate-to-significant over-fitting effect when
optimizing on any new set. However, in the past
we have found that even a large amount of over-
fitting (e.g., 3-4 BLEU points) on the tuning set
does not have a negative affect on the test set re-
sults. Here, we see less than 1.0 BLEU over-fitting
during cross-adaptation and less than 0.5 BLEU
on the final combination, so we did not take any
steps to mitigate it. The proper solution would
likely be to use separate sets to optimize the cross-
adaptation and the confusion network. The de-
scriptions of the “Tune” and “Test” sets are shown
in Table 1.

Tune Test
# sents # refs # sents # refs

ara nw 5456 2.1 1986 1.4
ara web 5454 2.3 2276 2.4

Table 1: “Number of sentences” and “average
number of references per sentence” for the devel-
opment sets.

11The input systems were optimized on a third set, which
is not used here.
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Since it is not practical to present the scores on
all input systems, Table 2 shows BLEU scores for
the best internal system as well as the top three
external systems. In both cases, the best inter-
nal system outperforms all of the external sys-
tems. It is interesting to note that the best internal
system outperforms the top two external systems
by a greater margin on Arabic web than Arabic
newswire.

ara nw ara web
Tune Test Tune Test

BLEU BLEU BLEU BLEU
Internal Best 48.48 45.00 39.77 41.44
External 1st 47.74 44.35 38.27 40.20
External 2nd 47.71 44.20 37.49 39.01
External 3rd 44.84 42.29 36.77 38.54

Table 2: Comparison of best internal system vs.
top three external systems. Here, “Tune” is a valid
test set, since none of the input systems were opti-
mized on it.

One final detail to note is that on Arabic web
we performed adaptation using all 14 input sys-
tems, while on Arabic newswire we only used the
7 external systems. The reason is that on newswire
we encountered an optimization issue where the
weights for the internal systems would receive a
large value during the first few iterations of tuning,
which would cause the optimization to converge
at a sub-optimal local maximum. However, even
when we manually finessed the optimization, we
did not see a gain on cross-adaptation from using
all 14 systems on newswire. Because the weights
are estimated discriminatively, it should theoreti-
cally never be harmful to include additional sys-
tems,12 so we plan to experiment with different
types of regularization to solve this optimization
issue. On Arabic web, this issue did not occur, so
we were able to use all 14 systems without any
“manual finessing.”

6.1 Cross-Adaptation Results

Tables 3 and 4 show the effect of using the cross-
adaptation features from Equations 3 and 6. We
use separate weights for each n-gram order as well
as the adapted rules, which results in 4K total
weights, where K is the number of systems.13

On Arabic web, our optimized cross-adaptation

12It should never harm the results on the tuning set, al-
though it could be harmful on the test set.

13We estimate a separate set of weights for (1) unigrams,
(2) bigrams, (3) trigrams, and (4) adapted rules.

ara web
Tune Test

BLEU TER BLEU TER
BSS 39.77 47.81 41.44 46.69
BSS w/ “Tune” 42.41 46.39 41.69 46.61
CA, No Opt 43.32 45.55 43.95 44.75
CA 43.52 45.27 44.58 44.49
DCA 41.88 46.44 43.15 45.48
CN 43.10 45.52 45.00 44.56
CN w/ CA 43.70 45.20 45.37* 44.46
CN w/ DCA 43.47 45.27 45.12 44.27*
CN w/ CA+DCA 43.76 45.23 45.45* 44.36*

Table 3: Combination results on Arabic web using
14 input system. * indicates that the system is sig-
nificantly better than CN using a 95% confidence
interval, as defined in (Koehn, 2004). Significance
is only shown on the Test set. BSS = Best single
system. BSS w/ “Tune” = Tuning on “Tune” us-
ing only standard features, instead of the normal
decoding tuning set. CN = Confusion network
baseline. CA, No Opt = Cross-adaptation, fix-
ing all of the non-linear system weight to ai = 0,
but the standard linear feature weights optimized
as normal. CA = Cross-adaptation, allowing the
non-linear system weights to optimize. CN w/ CA
= Using the output of CA as an additional input
in CN. DCA = Cross adaptation with dissimilar-
ity optimization. CN w/ DCA = Using the out-
put of DCA as an additional input in CN. CN w/
CA+DCA = Using the output of both CA and DCA
as an additional input in CN.

system (CA) gains 3.1 BLEU over our best single
system (BSS), and gets within 0.4 BLEU of our
confusion network baseline (CN). When the cross-
adaptation output is used as an additional system
during confusion network decoding, we see a gain
of 0.37 BLEU (CN w/ CA). Using the dissimilar-
ity cross-adaptation as a second additional system
helps slightly more, bringing the total gain to 0.45
BLEU (CN w/ CA+DCA). In both cases, the gain
is statistically significant.

On Arabic newswire, the optimized cross-
adaptation system gains 2.3 BLEU over the best
single system, but performs 0.8 BLEU worse than
our confusion network baseline. Using the cross-
adaptation output as an additional system yields
no gain, while using the dissimilarity optimized
cross-adaptation output as an additional system
yields a minor gain of 0.2 BLEU. However, the
gain on BLEU is statistically significant.

We also provide the results on two additional
test conditions for Arabic web. The condition BSS
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ara nw
Tune Test

BLEU TER BLEU TER
BSS 48.48 38.59 45.00 38.51
CA 51.54 36.37 47.30 36.72
DCA 49.94 37.33 46.27 37.35
CN 51.67 35.87 48.07 35.87
CN w/ CA 52.03 35.91 48.05 35.87
CN w/ DCA 51.81 35.95 48.27* 35.77
CN w/ CA+DCA 52.06 35.84 48.28* 35.71

Table 4: Combination results on Arabic newswire
using 7 input systems. Conditions have same
meaning as in Table 3.

w/ “Tune” shows the results of optimizing on the
system combination tuning set, as opposed to the
standard tuning set which all of the input systems
were optimized on. We can see that the gain on
“Test” is very small, meaning that this difference
was not an issue. For the condition CA, No Opt we
set all of the adaptation weights to a fixed value of
ai = 0, so all systems receive an equal “vote” in
the adaptation features.14 As expected, this has a
detrimental effect on the results, losing 0.6 BLEU
compared to CA.

6.2 Dissimilarity Optimization Results

The previous tables demonstrate that although dis-
similarity optimization performs worse than stan-
dard cross-adaptation, it is still beneficial to use it
as an additional system in the confusion network
decoding. Table 5 shows how dissimilar the DCA
output is from the input systems compared to CA.
The DisTER score is computed on the MT output
of each condition against the 7 external input sys-
tems. We see that on newswire the DCA output is
4.5 TER points more dissimilar than the CA out-
put, while on web it is 3.1 TER more dissimilar.
At the same time, both DCA conditions gains 1.0-
1.5 BLEU points over the best single system.

ara nw ara web
Test Test

BLEU DisTER BLEU DisTER
BSS 45.00 23.16 41.44 29.65
CA 47.30 15.63 44.58 22.38
DCA 46.27 20.17 43.15 25.50

Table 5: BSS = Best single system. CA = Cross-
adaptation. DCA = Cross-adaptation with dissim-
ilarity optimization. BLEU is computed against
the reference translations, while DisTER is com-
puted against the input systems.

14Recall that the true weight is eai

7 Conclusions and Future Work

In this paper, we presented a novel method of
cross-adaptation based system combination which
obtains statistically significant BLEU gains over
best single system. The advantages of this method
are that it can be implemented using only sim-
ple decoding features, and that it requires just an
n-best list from the input systems, as opposed
to alternate cross-adaptation methods that require
deeper information. Although this new method
does not perform as well as our existing confusion
network based combination, we showed that it is
beneficial when used as additional system in the
confusion network decoding.

We also showed that it is possible to explic-
itly create a system with complementary informa-
tion by using dissimilarity optimization, where the
TER score between the cross adaptation output
and the input systems is used as part of the opti-
mization objective function. Although this method
of optimization degrades the BLEU score com-
pared to standard cross-adaptation, we showed
that it is useful to use this output as a second addi-
tional system during confusion network decoding.

In the future, we plan to use the dissimilarity
optimization procedure to produce multiple input
systems which are explicitly optimized to be dif-
ferent from one another. We already know that
it is beneficial to combine multiple systems that
use the same decoder/feature set but vary by to-
kenization/alignment/etc. If we can discrimina-
tively optimize these systems so that they have
higher pair wise TER scores without harming their
BLEU scores, it may be possible to obtain a larger
gain during combination.

Additionally, we presented a highly-scalable,
robust method for optimizing arbitrary non-linear
feature parameters alongside the standard log-
linear decoding weights. We have already used
this method to explore many types of new fea-
tures, such as using a neural net based language
model and discriminatively optimizing sentence-
level confidence weights on the training data. We
plan to further refine our optimization procedure
to use additional regularization and normalization,
so that very high-dimensional non-linear feature
sets can be used without any issues.
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