
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 785–793,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

A Breadth-First Representation for Tree Matching
in Large Scale Forest-Based Translation

Sumukh Ghodke Steven Bird Rui Zhang
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia
{sghodke,sb,rui}@csse.unimelb.edu.au

Abstract

Efficient data structures are necessary for
searching large translation rule dictionar-
ies in forest-based machine translation.
We propose a breadth-first representation
of tree structures that allows trees to be
stored and accessed efficiently. We de-
scribe an algorithm that allows incremen-
tal search for trees in a forest and show
that its performance is orders of magni-
tude faster than iterative search. A B-tree
index is used to store the rule dictionar-
ies. Prefix-compressed indexes with a
large page size are found to provide a bal-
ance of fast search and disk space utilisa-
tion.

1 Introduction

Statistical machine translation (SMT) uses ma-
chine learning and parallel corpora to perform
translations automatically. Syntax based SMT
systems can be broadly classified into two types
based on the input to the system: tree-based and
string-based (Mi et al., 2008). In a tree-based sys-
tem, the input is a parse tree of the source lan-
guage, whereas in the latter, the input is a sequence
of words that is simultaneously parsed and trans-
lated. Forest-based translation employs multiple
parse trees for each source language sentence.

Forest-based translation can be performed in
three main steps. First, the input sentence is parsed
into a packed forest, which is then pruned. Next,
for each tree in the packed forest, all matching
translation rules are found. These translation rules
are then combined to form a translation forest. The
translation forest is finally decoded to produce a
sentence in the target language.

The second step – finding all matching trans-
lation rules for each tree in the source sentence
forest – is a complex task in itself. It could be

performed by enumerating all trees in the forest
and then searching for those trees in the transla-
tion rule dictionary. Of the enumerated trees, those
that are present in the rule dictionary produce the
translation forest. However, enumerating all pos-
sible trees from a forest incurs an exponential cost
and many or most of those generated trees may
not exist in the rule dictionary. Hence, a com-
mon approach in MT research is to perform the
inverse task, and iterate over all the rules to check
whether each rule matches anywhere in the source
forest. This is a relatively easy task, especially
if the rule dictionary is not large. In experimen-
tal setups a subset of rules may be used based on
the prior knowledge of the rules required for the
given test sentences. While that method works for
research experiments on translation methods, no
prior knowledge is available for online MT sys-
tems, and iterating over all rules will not be effi-
cient for large rule dictionaries. Another method
used to quicken the search is to limit the depth of
the rules. Shallower rule trees are lesser in num-
ber. However, the reduction in depth can lower the
translation quality.

This paper’s contribution is in the second step
of forest-based translation. We propose a breadth-
first representation of translation rule trees and
a sorted index architecture to store and retrieve
translation rules efficiently. Together, they allow
all translation trees to be discovered at each node
in the forest, incrementally. Each node in the for-
est is expanded to form trees that are present in
the rule dictionary. This allows the rule dictionary
to contain all rules without any restriction on the
depth of the rule or the size of the collection.

Translation rules are stored in the Berke-
leyDB (Olson et al., 1999) B-tree index structure.
Section 3 describes the breadth-first representation
used to store trees in the index. The architec-
ture of the translation system and the method of
incremental tree expansion are described in Sec-

785

tion 4. Section 4 also discusses the significance
of the breadth-first over a depth-first tree storage
approach.

Section 5 describes our experimental setup. The
experiments measure the total time to construct a
translation forest from a pruned source forest. An
iterative search over the rule dictionary is the base-
line performance measure. In addition to compar-
ing the indexed search with the baseline, this sec-
tion also analyses the effect of page size and com-
pression on search performance. Multiple rule in-
dexes are created to test the effect of the database
parameter settings. The operating system disk
cache and the database cache are cleared to sim-
ulate a fresh start before operating on each for-
est. The experiments are conducted on two rule
dictionaries and three forest collections. The first
rule dictionary has 11.8M rule trees and the sec-
ond has 33.1M rules. The rules are extracted from
NIST (2010a) data while the forest collections are
extracted from NIST (2010a; 2010b) data.

2 Background

In this section we present the fundamentals of
packed forests and forest-based translation before
briefly describing the B-tree index structure.

2.1 Packed Forest

Packed forests or forests are directed hypergraphs
and have been used to model and represent sev-
eral applications in computer science and discrete
mathematics (Klein and Manning, 2001).

Directed hypergraphs can be de-
fined as a pair: H = (V, E) where
V = {v1, v2, · · · , vn} is the set of nodes and
E = {E1, E2, · · · , Em} is the set of hyper-
edges. Each hyperedge can be defined as a pair:
Ei = (Xi, Yi) | Xi, Yi ⊆ V, i = 1, 2, · · · ,m.

Packed forests have been used in NLP in the
area of sentence parsing (Gallo et al., 1993) where
the propositions of a parse analysis correspond to
the nodes in the hypergraph and rules are repre-
sented as hyperedges. A similar model is used
in forest based machine translation, where multi-
ple parses of the input sentence are modelled as a
forest. In NLP applications, the head of a hyper-
edge is usually a single node. This allows a single
hyperedge to be semantically equivalent to a tree
node with its children.

Figure 1: A translation rule reproduced from
(Mi and Huang, 2008)

2.2 Forest Based Translation

Forest-based SMT overcomes the limitations of
parse errors in tree-based translation and has been
shown to be faster than k-best tree-based transla-
tion (Mi et al., 2008). For translating a sentence
using the forest-based translation technique, we
require a parser that can process a source language
sentence and produce a packed forest and a trans-
lation rule dictionary, or database, which is a col-
lection of tree-to-string translation rules (Huang et
al., 2006; Liu et al., 2006).

A translation rule is a mapping from a source
language tree to a string in the target language.
An example translation rule from Chinese to En-
glish is shown in Figure 1. The left-hand-side is
the source language tree. The Chinese word yǔ is
translated to with in the target side on the right.
The xi variables on the right-hand-side are place-
holders for the corresponding elements in the tree.
Other numerical parameters associated with each
translation rule are not shown here. Note that there
may be several rules in the rule dictionary that
have identical source language trees but different
translations.

Once a source language sentence is parsed into
a packed forest and pruned, the next step is to
find trees in the forest that have matching rules in
the translation rule dictionary. Matching rules are
used to produce a translation forest for decoding
into a target language string. The forest is a hyper-
graph made up of hyperedges where each hyper-
edge has a single source node, while the rules in
the rule dictionary are trees.

Recent work by Huang and Mi (2010) has
shown that forest expansion can be done in de-
coders using beam search (Koehn, 2004). How-
ever, to the best of our knowledge, no index-based
search structures for incrementally finding trees
have been proposed to date.

786

Figure 2: Transforming a tree into a breadth-first
format

2.3 Indexing Methods

Data structures for indexing can be broadly clas-
sified into either memory based or disk based.
Memory based indexes are not considered here
since an online SMT system with a large transla-
tion rule dictionary requires disk based storage.

B-trees are balanced search trees that are de-
signed to work efficiently from the disk. They
minimise disk I/O and provide an insert and delete
time complexity of O(log n), where n is the num-
ber of objects in the database. The keys in a B-tree
are always in sorted order, therefore providing a
guarantee of proximity for comparable keys.

The B-tree implementation in BerkeleyDB is
used in our experiments. Since the keys are sorted,
consecutive keys often share a common prefix.
BerkeleyDB allows the compression of keys in a
database via user-defined compress and decom-
press functions. If no such functions are supplied,
it performs prefix compression. Our experiments
test the performance of search with page size and
compression of keys. Other settings such as the
minimum number of keys for each leaf page and
cache size allow us to fine tune the performance of
the system, but we do not report experiments on
those for lack of space.

3 Breadth-first Representation

The storage and efficient retrieval of the left-hand-
side of translation rules is closely linked to the
format in which they are stored. This section de-
scribes the format we use to represent trees both in
queries and for rules in the index.

Trees can be represented linearly in several
ways. As mentioned in Section 2.2, although a

forest is a hypergraph made up of hyperedges, the
left-hand-sides of rules in the rule dictionary are
actually trees. Each node in a forest can have zero
or more outgoing hyperedges. A hyperedge is be
treated as a tree node with its children. Source
sentence trees are constructed by recursively ex-
panding nodes in the forest.

Figure 2a shows a tree constructed with three
hyperedges, having head nodes A, B and F. Fig-
ure 2b shows the typical string representation of
the tree where a node’s descendants are scoped
by an open and close bracket. The bracketed for-
mat, although visually intuitive, is not efficient
for storage and processing. There has been much
research on succinct representation of tree struc-
tures. Succinct representations encode trees in the
most compact fashion by either using a balanced
bracket representation or depth first unary degree
sequences (Jansson et al., 2007). Such methods
often represent the open and close brackets of a
tree in bit notations. However, braces can only
be matched when the trees are stored in a depth-
first format and it cannot be applied to breadth-first
representations.

Figure 2c represents the tree as a sequence of
label and integer pairs. The labels represent node
labels in the tree in a depth first format and the in-
tegers that follow each node label give the number
of children at that node. Figure 2d shows a similar
encoding scheme, but with the tree traversed in a
breadth-first format. Finally, Figure 2e shows the
format used in this paper. In our format, we sep-
arate the node labels and the integers representing
the number of child nodes. When using this rep-
resentation in the index, each node label is rep-
resented by a unique integer, which occupies four
bytes, whereas the integer representing the number
of child nodes is restricted to a maximum value of
255, and can therefore be represented in one byte.

Separating the node labels from integers rep-
resenting the number of child nodes gives us a
greater prefix overlap between consecutive expan-
sions. For example, if we were to use the in-
terleaved expansion method shown in Figure 2d
on the hyperedge with head A and then expand
the hyperedge with head B, the breadth-first rep-
resentation of the trees would be A3B0E0F0 and
A3B2E0F0C0D0. We can see that the expansion
of the node B has resulted in its number of children
being updated to 2 from 0. Since, each label is en-
coded using 4 bytes and the child count using 1

787

byte, the overlap between the expanded sequences
is 9 bytes. With the separated breadth-first for-
mat (Figure 2e) the two trees are ABEF3000 and
ABEFCD320000, an overlap of 4 node labels or
16 bytes. The separated form helps in increasing
the prefix overlap of expanded tree structures.

If, instead, the depth-first notation is used, then
the second tree is represented as A3B2C0D0E0F0.
Then, even if the integers are separated, the prefix
shared by the two queries is only 9 bytes.

To generalise the breadth-first representation
and the prefix overlap, consider a tree T con-
taining k nodes, denoted here as an ordered se-
quence N = (n1, n2, · · · , nk) in breadth-first or-
der. Each node is either fully expanded or is
collapsed, therefore, if k is greater than 1, then
the first node, being the root, must be fully ex-
panded. Let the labels of nodes in N be a sequence
L = (l1, l2, · · · , lk) and let C = (c1, c2, · · · , ck)
denote the sequence of the number of children of
each node in N . The separated breadth-first repre-
sentation of T , which is used in this paper, is the
sequence B = (l1, l2, · · · , lk, c1, c2, · · · , ck). In a
tree T , the number of nodes that can be expanded
is equal to the number of leaves p, where p ≤ k.
Each expansion of a leaf node in T produces
a new tree. Let S = {Ti | i ∈ {1, 2, · · · , k}}
be the set of all trees produced as a result of
the expansion, where |S | =p and each tree, Ti,
is an expansion of node ni in T and its sep-
arated breadth-first representation is Bi. Let
N ′

i = {nj | depth(nj) ≤ depth(ni)} be a set of
all nodes of depth less than or equal to node ni’s
depth in T . Then, Bi shares a prefix of at least
4 |N ′

i |bytes with B.
Now, each node ni has been considered to have

either no child or one ordered set of children.
While this is true in a tree, a forest is different.
Each node in a forest can have multiple expan-
sions, or hyperedges. The algorithm discussed in
the next section therefore iterates over all possible
hyperedges at a node.

4 Index Architecture

This section explains the structure of the index
and the incremental search algorithm. To present
a broader picture of where the index and search
components fit within a larger online MT system, a
representative block diagram of a complete forest-
based MT system is provided in Figure 3. We fo-
cus only on the the incremental search algorithm

Figure 3: Architecture for an online forest-based
translation system

and the rule dictionary in this section. The func-
tion of other components in the indexed data store
is only briefly explained as they are not critical to
the operation of the search algorithm.

The indexed data store is composed of three dic-
tionaries. The first is a label to integer mapper. It
assigns an integer identifier to all unique labels in
the system. All tree node labels, including words,
that appear on both sides of translation rules are
indexed within this dictionary. The integer id for
a label can be looked up using the label string as
the key while encoding a tree query or while creat-
ing the other two dictionaries. A reverse mapping
from the integer id to the label is used while con-
structing the translation forest from encoded rule
trees. Any key-value data-structure could be used
for the label mapper. It could even be a memory
based hash table if it fits in memory.

The other two dictionaries, the rule dictionary
and the translation info dictionary, contain the in-
formation about translation rules. The rule dictio-
nary or database is a collection of left-hand-sides
of translation rule trees accessible by a tree as the
key. Each tree in the rule database has a unique
integer id as its value. The integer id is the refer-
ence to a position in the translation info dictionary.
Each rule tree may have one or more target lan-
guage translations. Hence, each entry in the trans-
lation info database is a list of translations. Each
element in the list is a tuple of the target language
strings and the parameters defining the statistics
of that translation. The target language strings are
stored as a sequence of integer ids and the parame-
ters are stored in a pre-defined binary format. The
translation info database uses a simple record list
structure from the BerkeleyDB library.

A large rule dictionary, requires a disk-resident
index to support efficient access. The B-tree data-
structure is used as the rule database because of

788

its scaling capabilities and its sorted key storage
property which is critical to the operation of the
incremental search algorithm.

4.1 Incremental Forest Exploration

The incremental search algorithm finds trees
within a forest that are also present in the rule
dictionary. Nodes are expanded incrementally to
ensure that expansions occur only where there is
a possibility of a translation rule when expanded.
This section also explains the significance of the
breadth-first representation to the working of the
algorithm and the reason why depth-first encoding
will not work.

The algorithm works on a given source lan-
guage forest where each node has one or more hy-
peredges. The function Process Node in Pseudo-
code 1 iterates over each node in a forest in or-
der to find the trees originating at that node. The
incremental search itself is detailed in function
Find Tree Increment in Pseudocode 1. The incre-
ment finding function is now explained here by
assuming that a tree is being processed. It can
be extended to work with forests as shown in the
pseudocode.

Consider the tree T with k nodes, of which p
nodes are leaves, as described in Section 3. The
separated breadth-first representation of T , B, is
essentially made up of two halves. The first half
of B contains node label identifiers while the lat-
ter half contains child counts. This is true when
the elements of B are considered as integers only,
but the ratio is different in the binary form of B
where the first half is represented using 4 bytes
and the second half uses only 1 byte each. Nev-
ertheless, both halves represent the information of
nodes in sequence N , where N is in breadth-first
order. To find a tree T in the rule dictionary, the
tree has to be translated to the binary encoding
of B to be searched in the index. Then, the tree
would need to be expanded at p nodes to check if
there are any possible rules that match when ex-
panded. The process of finding any expansions
of a tree is performed recursively in the function
Find Tree Increment of Pseudocode 1.

When expanding trees, the data-structure needs
to be an efficient one to operate on, since this is
a recursive task. The algorithm should also fa-
cilitate a simple way of tracking the position in
the tree where the expansion is taking place. This
can be performed very easily because of a prop-

Pseudocode 1 Incremental search for trees
proc Get Translation Forest sourceForest

RuleDB points to the translation rule database
for node in sourceForest do

call Process Node with node
end for

proc Process Node node
if node doesn’t have hyperedges then

label← node’s label
word← child of node
the only tree possible is ‘label(word)’
query← call Separated Breadth First with label(word)
if query is present in RuleDB then

add query to translation forest
end if
return

end if
hyperedges← all hyperedges at node
for hyperedge in hyperedges do

query← call Separated Breadth First with hyperedge
if query is found in RuleDB then

add query to translation forest
end if
if query is found or (query is not found but prefix of
query is found) then

call Find Tree Increment with query
end if

end for

proc Find Tree Increment sbfArray
labels← first half of sbfArray
childCounts← second half of sbfArray
lastNd← node corresponding to labels’ last element
startNd ← node imm. after node corresponding to
childCounts’s last non-zero entry
startNd contains the node after the last expanded node
in breadth-first order
for node from startNd to lastNd do

if node doesn’t have hyperedges then
word← child of node
appLabel← labels + [word’s label]
appChild← childCounts + [0]
appChild[node]← the number of children of node
query← appLabel + appChild
if query is present in RuleDB then

add query to translation forest
end if
continue

end if
hyperedges← all hyperedges at node
for hyperedge in hyperedges do

numTails← number of hyperedge’s tail nodes
appLabel← labels + [hyperedge’s tail labels]
arrayOfZeroes← [0] * numTails
appChild← childCounts + arrayOfZeroes
appChild[node]← numTails
query← appLabel + appChild
if query is found in RuleDB then

add query to translation forest
end if
if query is found or (query is not found but prefix of
query is found) then

call Find Tree Increment with query
end if

end for
end for

proc Separated Breadth First tree
return the separated breadth first representation of tree

789

erty of the breadth-first representation. The prop-
erty is that, when we expand node ni in a tree T ,
and the depth(ni) = depth(T) or depth(ni) =
depth(T) − 1 and @ nj where j > i and nj

is expanded, then, the child nodes of node ni

can simply be appended to N . In the function
Find Tree Increment, the startNd and lastNd
variables point to the start and end of expand-
able nodes in the tree represented by sbfArray.
The startNd node is located by finding the node
immediately after the last expanded node when
traversing the sequence N from k to 1. A node
ni is expanded if ci is greater than 0. Hence, since
this pattern exists, the recursive function treats its
input parameter as a list and ignores the fact that
it’s operating on a tree.

A depth-first representation does not support
such a property that allows expansions of nodes to
be appended at the end of the list. This is because
the tree expansion for searching rules is such that
when a node is expanded, all its children have to
be included at once, due to which expansions of
trees in the depth-first method will almost always
have child nodes appear in-between the original
sequence of nodes. The only exception is when
the very last node in the depth-first sequence is ex-
panded. Having successive expansions differ from
one another reduces their proximity in the index.

5 Experiments

5.1 Data

We use two rule collections in our experiments.
The rules are extracted from 1.5M word-aligned
sentence pairs of Chinese and English from the
NIST (2010a) machine translation corpus. The
first rule collection contains 11.8M Chinese trans-
lation rules, of which about 7.8M are for unique
trees. All trees are limited to a depth of five lev-
els. The second rule collection contains 33.1M
rules, of which 23.9M are unique. The rules in the
second collection are binarized but not limited by
depth. The rule collections are 285MB and 2.5GB
on disk, respectively, when gzipped.

In total, we use three forest collections. The
first forest collection contains 254 forests from
NIST (2010a) data. The second forest collec-
tion contains 288 forests, also obtained by parsing
NIST (2010a) data, but they are binarized to work
with the second rule collection. The third forest
collection contains 348 binarized forests obtained
by parsing NIST (2010b) data.

rule set page size regular compressed
1 4K 1001MB 569MB
1 8K 947MB 537MB
1 16K 960MB 525MB
1 32K 954MB 496MB
2 4K 3.1GB 1.6GB
2 8K 3.0GB 1.5GB
2 16K 3.0GB 1.3GB
2 32K 3.0GB 1.2GB

Table 1: Size of B-tree indexes

5.2 Setup

The experiments are run on an Intel Core2Duo
processor (2.4GHz; 4MB cache) desktop ma-
chine with 2GB of RAM. The operating system
is Ubuntu desktop edition version 10.04.2. The
index and program are installed on two different
hard disks, both having a disk speed of 5400 rpm.
The disk on which the code is installed has a page
size of 4KB while the index disk has a page size
of 8KB.

The index is created using B-tree index struc-
tures in the BerkeleyDB (version 5.1) library. The
search algorithm is coded in Python and is open
sourced1. Database accesses from the python pro-
gram are through a python wrapper for Berke-
leyDB called bsddb32. The B-tree indexes are cre-
ated with and without prefix compression. We also
create indexes with four different page sizes (4K,
8K, 16K, and 32K) to analyse the effect of page
size on performance. The sizes of the B-tree rule
dictionaries are shown in Table 1.

Caching has a significant impact on perfor-
mance measurements for disk-based searching.
There are a minimum of 2 levels of caching
while performing the tests. One cache is han-
dled by the database while the other is a disk
level cache managed by the operating system.
We clear the database cache by choosing an in-
memory cache and re-starting the database pro-
cess when required. The commands sync; fol-
lowed by echo 3 > /proc/sys/vm/drop caches; are
used to clear the operating system cache.

Search time is measured using the datetime
package in Python version 2.6 and cache perfor-
mance of the database is measured using Berke-
leyDB tools. Every test is run three times and the
average time is reported. The exact search process

1https://bitbucket.org/leopardspot/forest-search
2http://pybsddb.sourceforge.net/bsddb3.html

790

rule set forest set baseline breadth-first
1 1 ∼ 23min 1.55sec
2 2 ∼ 80min 15.71sec
2 3 ∼ 80min 11.49sec

Table 2: Average time to search a forest

is explained in the specific experiment’s sections.

5.3 Incremental Tree Matching
Experiment 1: Comparison with baseline
This experiment compares the performance of the
baseline system with the breadth-first index based
approach. The baseline checks if each rule in the
rule dictionary is found in the forest being trans-
lated. If found, the rule is added to the translation
forest. Almost one-third of the rules in the full rule
collection have a common left-hand side. Also,
rules with the same left-hand-side have been found
to be consecutive in the collection. Therefore, the
outcome of previous rule’s check is reused if the
current rule is same as the previous one.

The average forest search time with the baseline
setup is compared with the best breadth-first in-
dex based search method in Table 2. The times re-
ported for the incremental breadth-first search are
obtained when using a regular 32K page size in-
dex. The average time is the ratio of the total time
required to search all forests in a forest set, and the
number of forests in the set.

Experiment 2: Page size and compression
This experiment compares the effects of page size
and compression on the search time in a breadth-
first index. For each forest in a forest collection,
the time to search the forest is measured. An av-
erage of those times across all forests in the col-
lection is shown in Table 3 for indexes of various
page sizes, with and without compression.

Experiment 3: Cache utilisation
In order to measure the cache utilisation of the in-
dexes, the forests are searched sequentially with-
out closing the database or clearing the disk cache.
A BerkeleyDB utility is then used to obtain the
memory usage statistics which displays the cache
hit ratio. The cache usage will depend on the or-
der in which the forests are searched and also on
the content of the forests. However, the forests
are searched in the same order across all indexes,
therefore, their relative cache performances can be
meaningfully compared.

rule forest page regular compressed
set set size (s) (s)
1 1 4K 2.35 2.09
1 1 8K 2.01 1.93
1 1 16K 1.69 1.86
1 1 32K 1.55 2.01
2 2 4K 20.86 22.90
2 2 8K 25.42 18.52
2 2 16K 17.73 18.69
2 2 32K 15.71 19.62
2 3 4K 14.13 15.03
2 3 8K 17.86 12.78
2 3 16K 12.63 13.16
2 3 32K 11.49 14.03

Table 3: Average time for breadth-first search

5.4 Analysis

From Table 2, it is clear that the baseline method
is more than an order of magnitude slower. It can
also be observed that forest sets 2 and 3 take about
the same amount of time on average over rule set
2. It is therefore clear that the search time for
the baseline method is primarily determined by the
size of the rule set and not on the size of the for-
est. Table 3 shows that the best performance in
B-tree indexes is always obtained in the uncom-
pressed, or regular, index and when using the 32K
page size. However, the performance of the com-
pressed index seems to stabilise and not deterio-
rate much beyond the 8K page size. Considering
that the compressed indexes are almost half the
size of the regular index – or even smaller than half
in the case of rule set 2 with 16K and 32K page
sizes – they might be the better option to consider
for very large collections.

The average run times on a collection of forests
depend on the properties of individual forests in
the collection. A histogram of the number of
forests searched in time intervals shows us that
when searching a compressed index the search op-
erates faster on already fast searches and slower
on the initially-slow searches. Figure 4 and Fig-
ure 5 show the histograms for the third set of
forests searched using a compressed and an un-
compressed index, respectively, each with a page
size of 8K. From the figures, it is evident that the
number of forests translated in less than 5s – the
first stick in the figures – increase in the com-
pressed index, while the slower forests which take
about 200s on a regular index take about 250s or

791

Figure 4: Distribution of forests searched in an 8K
compressed index

longer on the compressed index. This is true even
in other page sizes. Histograms for the 32K page
size index – omitted here for lack of space – look
similar to Figure 4 and Figure 5, but the com-
pressed index shows a very marginal increase in
the number of faster forests and a clear increase in
the time for the slower forests. But, even without
compression, the 32K index has about the same
number of forests translated in less than 5s as the
faster 8K compressed index.

Cache utilisation is found to be very high in all
cases. The number of pages retrieved from a com-
pressed index is always lower than that for an un-
compressed one. Cache misses are clearly not the
cause for the slowdown in the compressed indexes.
The decompress operation is the most likely rea-
son. However, with compression, more queries,
or keys, would fit in one page which may causes
a speedup when fewer queries are required while
searching a forest.

Another observation is that although rule set 2
is about 3 times as large as rule set 1– both in the
number of rules and in the size of the index – the
search times do not show a 3-fold increase. This
could be the result of various factors. One, the rule
set 1 might have more pages cached than rule set
2, because it’s a smaller index. Two, the depth of
the rules in rule set 1 are limited to 5 whereas the
depth is not limited in set 2. We feel that the most
likely reason in this case is the first one. How-
ever, to verify we would have to test with a larger

Figure 5: Distribution of forests searched in an 8K
uncompressed index

dataset which is limited in depth.

6 Conclusion and Future Work

We propose a breadth first representation for trees
and use that representation in an algorithm to in-
crementally find all trees in a forest that are also
present in a rule dictionary. We compare the per-
formance of the algorithm on two different rule
sets and three forest collections. We find our
method to outperform an exhaustive search base-
line by more than an order of magnitude. We find
that the a compressed index provides a balance of
fast search and less disk space, but uncompressed
indexes are faster with large B-tree page sizes.

In the future, we would like to explore the prop-
erties of forests that influence their search time.
We would also like to perform more experiments
with depth limitation to ascertain if a depth limit
improves performance.

Acknowledgements

We thank Dr. Liang Huang from ISI, USA and
Dr. Haitao Mi from ICT, China, for their feedback
and technical discussions during this research.
We also thank Google for their travel scholarship
awarded to the first author.

792

References
Giorgio Gallo, Giustino Longo, Stefano Pallottino, and

Sang Nguyen. 1993. Directed hypergraphs and ap-
plications. Discrete Applied Mathematics, 42:177–
201, April.

NIST Multimodal Information Group. 2010a. NIST
2006 Open Machine Translation (OpenMT) Evalua-
tion, Linguistic Data Consortium, Philadelphia.

NIST Multimodal Information Group. 2010b. NIST
2008 Open Machine Translation (OpenMT) Evalua-
tion, Linguistic Data Consortium, Philadelphia.

Liang Huang and Haitao Mi. 2010. Efficient incre-
mental decoding for tree-to-string translation. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’10, pages 273–283, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
A syntax-directed translator with extended domain
of locality. In Proceedings of the Workshop on
Computationally Hard Problems and Joint Inference
in Speech and Language Processing, CHSLP ’06,
pages 1–8, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Jesper Jansson, Kunihiko Sadakane, and Wing-Kin
Sung. 2007. Ultra-succinct representation of or-
dered trees. In Proceedings of the eighteenth an-
nual ACM-SIAM symposium on Discrete algorithms,
SODA ’07, pages 575–584, Philadelphia, PA, USA.
Society for Industrial and Applied Mathematics.

Dan Klein and Christopher D. Manning. 2001. Parsing
and hypergraphs. In Seventh International Work-
shop on Parsing Technologies (IWPT- 2001), pages
123–134, Beijing, China, October.

Philipp Koehn. 2004. Pharaoh: a beam search de-
coder for phrase-based statistical machine transla-
tion models. In Proceedings of the Sixth Confer-
ence of the Association for Machine Translation in
the Americas, pages 115–124.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical machine
translation. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Com-
putational Linguistics, ACL-44, pages 609–616,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Haitao Mi and Liang Huang. 2008. Forest-based trans-
lation rule extraction. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’08, pages 206–214, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. In Proceedings of ACL-08: HLT,

pages 192–199, Columbus, Ohio, USA, June. Asso-
ciation for Computational Linguistics.

Michael A. Olson, Keith Bostic, and Margo Seltzer.
1999. Berkeley DB. In Proceedings of the annual
conference on USENIX Annual Technical Confer-
ence, pages 43–43, Berkeley, CA, USA. USENIX
Association.

793

