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Abstract

This paper describes efforts of NLP re-
searchers to create a system to aid the
relief efforts during the 2011 East Japan
Earthquake. Specifically, we created a
system to mine information regarding the
safety of people in the disaster-stricken
area from Twitter, a massive yet highly
unorganized information source. We de-
scribe the large scale collaborative effort
to rapidly create robust and effective sys-
tems for word segmentation, named entity
recognition, and tweet classification. As a
result of our efforts, we were able to effec-
tively deliver new information about the
safety of over 100 people in the disaster-
stricken area to a central repository for
safety information.

1 Introduction

On March 11, 2011 at 14:461, a massive earth-
quake of Magnitude 9.0 struck off the coast of
Japan. The earthquake and the ensuing Tsunami
caused damage across the entire eastern coast of
the country, with homes destroyed, roads impassi-
ble, and large swaths of the disaster-stricken area
losing electricity and the ability to communicate.

Figure 1 shows the death toll and the number
of missing people from tsunami and earthquake,
presented by the Japanese National Police Agency.
The number of missing people reached its peak on
March 25th, indicating that the government took 2
weeks to fully grasp the total number of victims,
although they began gathering information about
the whereabouts of victims and survivors as soon
as the earthquake hit. One of the main reasons
for this delay was that prefectures could not effec-
tively collect the information from municipal gov-
ernments or police stations because many of them

1All the dates and times in this paper are in JST.
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Figure 1: Change of overall death toll and missing
people

were extensively damaged or destroyed by the dis-
aster (Anonymous, 2011)2. Furthermore, damage
to communication equipment, power outages, and
inundation of the air waves prevented the use of
mobile phones, which are generally the most im-
portant tool for communication during a disaster.

As a result, Twitter or social network services
(SNS) such as mixi3 played an important role
for propagating safety information among peo-
ple. However, with SNSs flooded with informa-
tion about the disaster, it was difficult to ensure
that people would be properly connected with the
information they were seeking. Soon after the
disaster struck, many NLP researchers, engineers,
and students from all over Japan (including the
authors), spontaneously created a working group
called ”ANPI NLP”4 to try to organize this infor-
mation into a form that would be useful. In partic-
ular, we focused on mining and organizing infor-
mation on Twitter regarding safety of individuals
in the disaster-stricken area, as people are initially
more concerned about the safety of their family or

2http://www.asahi.com/special/10005/
TKY201103120549.html

3http://mixi.jp/
4The word “ANPI” means “safety” in Japanese.
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friends than anything else.
There were three major elements to this process:

• Separating the tweets that contained safety
information from the huge number of irrel-
evant tweets.

• Extracting important information, such as
person names and locations from highly
domain-specific text included in the tweets.

• Verifying and delivering this information to
the people that need it.

The working group tackled these issues in
safety information extraction from Twitter, prepar-
ing resources, building tools, and connecting the
extracted information with Google Person Finder
(GPF)5, a central location for safety information
that was widely publicized through the Japanese
news media. Our priorities were not only the ac-
curacy, but also the speed with which we could
provide the information.

In this paper, we report the process of build-
ing an information extraction system in a disaster-
response situation within a matter of days. The
challenges involved included organizing volun-
teers (§2), building resources for out-of-domain,
noisy internet data (§3), and applying these vol-
unteers and resources to the construction of NLP
tools (§4 and §5). We also describe the final results
of the project, the provision of new information
about missing persons to GPF (§6), and summa-
rize related work (§7). Finally in §8 we discuss
what went right and what went wrong with the
project, and provide some insight into what can be
done to prepare for similar situations in the future.

2 Organization and Communication

The project began with a single Twitter post
soon after the earthquake hit, imploring NLP re-
searchers and engineers to think about what they
could do to help in the time of need. In particular,
the creation of resources and tools that could be
used to process information about the earthquake
was cited as one example. In under an hour, the
first responders to this call had started creating the
language resources described in §3.

Given the public nature of Twitter, word of
the efforts spread, and the number of partici-
pants quickly increased. With the large num-
ber of weakly connected participants, there was

5http://japan.person-finder.appspot.
com/

no clear power structure in place to delegate au-
thority. Instead, several leaders spontaneously
emerged, centered around people who joined the
project early, had large Twitter followings, or were
experts in a specific area (such as the creation of
data or domain adaptation of tools). In addition
to the discourse on Twitter, a publicly available
Wiki page was created to gather information about
the project in a single place6. Overall, we believe
that the existing online communication framework
proved quite effective in rallying and organizing
members for the project.

On the other hand, the largest challenge in the
project organization was the initial underestima-
tion of the outpouring of support that the project
would see. In the end, over 65 volunteers joined
the project, and it was often difficult for the few
main organizers to rapidly design and delegate
tasks to such a large number of volunteers. This
resulted in an over-concentration of effort in some
areas, and lack of effort in others. We hope
that this paper will help provide a road-map for
the type of tasks that may be necessary in rapid-
response NLP situations, and prompt discussion
on what other tasks may be taken on in a disaster.

3 Language Resources and Tweet Corpus

The earliest stage of the project focused on sharing
linguistic resources. These included dictionaries,
which were used to improve various text analyzers
and classifiers. At the same time, we also made
efforts towards building a labeled corpus of tweets
containing safety information, with the final goal
of extracting information from unlabeled tweets.

3.1 Text Analysis Resources

Among the earliest contributions to the project
were dictionaries, especially those containing per-
son and place names specific to the Tohoku re-
gion. These were generally contributed by people
directly familiar with the resources, the creators or
maintainers of the dictionaries themselves.

As time was critical, the linguistic analysis
tools actually used in the project were based on
widely available general domain resources, as well
as domain-specific resources gathered within the
very early stages of the project. The general
domain language resources consisted of the Bal-
anced Corpus of Contemporary Written Japanese

6http://trans-aid.jp/ANPI_NLP (in Japanese).
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(BCCWJ) (Maekawa, 2008) and the UniDic dic-
tionary (Den et al., 2008), which are high quality
and annotated with a variety of tags.

The domain-specific resources gathered specif-
ically for the project and used in the analysis tools
described in §4 included:

• The dictionary used in the open source Mozc
Japanese Input method, which contained
50,848 first names and 26,519 last names and
was provided by the maintainer of the project.

• A name list that contains last names specific
to northeast Japan7. These resources were
publicly available on the web.

• A location name list of Iwate, Miyagi,
Fukushima, and Ibaraki prefectures created
by downloading a database of postal code in-
formation and manually checking the data.

A number of other resources were created by
volunteers, including a list of all the station
names in Japan, station location information, land-
mark names in Kanto and Tohoku extracted from
Wikipedia, a list of geopolitical entities, and a list
of abbreviated school names and places. While
these resources were certainly significant, it was
the resources that were prepared early on in the
process that provided the most aid to the project
as a whole. This indicates that for similar situa-
tions in the future, it is essential to have as many
resources as possible immediately available, and
preferably familiar to the people in the project to
facilitate rapid processing and dispersal.

3.2 Tweet Corpus Construction

As Twitter contained a wide variety of earthquake-
related posts including information about the
safety of people in the disaster-affected area,
we decided to create a corpus of disaster-related
tweets to aid our information extraction efforts.
The first tweet corpus shared was the collection
of 469,504 tweets containing the word “地震”
(earthquake) from March 11th 16:09 to March
13th 8:59. We also collected tweets with the hash
tags “#anpi” (safety information) such as “#hi-
nan” (evacuation), “#j j helpme” (help request),
and “#save ”+ location names. Tweets contain-
ing RT (re-tweets) and QT (quote tweets) were
removed to eliminate duplication. As a result,

7http://platinum22000.fc2web.com/
{miyagi,fukushima,iwate,tochigi}.htm

61,376 tweets were collected from March 13th
1:37am until March 14th 16:45pm.

A typical tweet containing safety information
looked like the following 8:

気仙沼市の田中太郎・花子さんと連絡
が取れません！どなたか消息をご存知
ありませんでしょうか？
TANAKA Taro and Hanako who lived
in Kesennuma City can’t be reached.
Does anybody know where they are?

From the large corpus of tweets, we hope to dis-
cover two pieces of information. First, we must
recognize the topic of the tweet, in this case that
the tweet is asking for information about miss-
ing people (tweet classification). Second, we
need to recognize that the people in question are
“TANAKA, Taro” and “Hanako,” both of whom
live in “Kesennuma City” (NE recognition).

In order to create data to train tools to perform
both tweet classification and NE recognition, vol-
unteers began to perform tagging as soon as the
tweet collection was finished. First, we defined
nine kinds of tweet labels specifying the tweet top-
ics, which are listed in Table 1. The distinction
among S/O/U was sometimes unclear and went
under extensive discussion among volunteers. In
practice, the distinction of I/L/P/M from others
(S/O/U) is of the highest importance.

One example is shown below:
<person type="M">TANAKA Taro</person> and
<person type="M">Hanako</person> living in
<location>Kesennuma city</location> can’t
be reached.

Safety information is optionally added to every
person tag, specifying the object of the safety in-
formation, as shown in the above example. Also
multiple tags are permitted when multiple types of
safety information are contained in a single tweet.

Utilizing Twitter, word was spread about the
tagging task force, gathering a large number of
volunteers, most of whom were NLP researchers,
engineers, or students. In order to facilitate the
task-force, several people with annotation experi-
ence responded to questions in real-time, and var-
ious tools were created and shared among the an-
notators. Over 65 volunteers gathered to tag the
corpus with class and NE tags over the course of
two days, resulting in a total of 33,242 tweet an-
notated.

8The actual person and place names have been replaced
with pseudonyms to preserve anonymity.
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Label Definition Example Count
I Him/Herself is alive I’m XXX in YYY City. I’m all right. 405
L Alive Mr./Ms. XXX in YYY City is at ZZZ Shelter. He/She is alive. 1,154
P Passed away — 93
M Missing The safety of Mr./Ms. XXX living in YYY City is unknown. 4,438
H Help Request Mr./Ms. XXX is left in YYY and needs help! 280

S Information request
My relatives/parents/... staying in South XXX City are missing.
Refugees at XXX School are provided enough daily supplies? (Safety
information of unspecific individual, region, etc.)

1,903

O Not safety information You can post safety information on this site! 24,035
R External link Survivor list of XXX City: http://... 773
U Unknown (Non-Japanese or nonsense postings) 1,235

Table 1: Safety information tags on tweets

While the annotators were generally more
skilled and motivated than those in previous at-
tempts to create language resources using crowd-
sourcing (Callison-Burch and Dredze, 2010; Finin
et al., 2010), given the rapid nature by which the
project developed, annotation started before tag-
ging standards were put in place, leading to some
inconsistency in the tagged corpus. In retrospect,
despite the speed of the project, it would have been
helpful to spend some more time thinking about
what information was really necessary for the task,
and have more experienced annotators do a quick
test run before opening annotation to the broader
volunteer base. In addition, as many of the annota-
tors were less experienced, explicitly allowing the
annotators to “pass” on difficult instances would
have reduced the amount of time wasted on diffi-
cult or ambiguous cases.

4 Text Analysis

Before mining the tweets for useful information,
it was necessary to create text analysis tools that
were capable of handling this very specialized data
set. The main objective of text analysis was named
entity recognition (NER), which would allow for
the identification of names and locations.

4.1 Morphological Analysis and NER

The first step in Japanese text processing is
morphological analysis (MA), which splits raw
Japanese text into words and assigns POS tags to
each word. While previous research in tagging
for Twitter has profited by building a custom NLP
pipelines over the course of several months (Gim-
pel et al., 2011; Ritter et al., 2011) or by build-
ing semi-supervised learning systems (Liu et al.,
2011), it was necessary to create a morphological
analyzer in the course of several hours. This is due
to the fact that all other components of the system

depend on MA, and cannot be developed until MA
is in place. Thus, we utilized existing general do-
main resources, and added new resources as they
were collected in a domain-adaptation framework.

For this task we used KyTea9, an open source
morphological analysis tool notable for being rela-
tively robust to out-of-domain data, and being able
to flexibly incorporate a variety of language re-
sources (Neubig et al., 2011).

We trained a word segmentation (WS) and POS
tagging model for KyTea using the BCCWJ and
UniDic as a base. We trained the POS tagging
model, but in order to facilitate NE recognition
farther down the pipeline, we replaced all proper
nouns with their subcategory tag (“first name,”
“place name,” etc.). We also added a corpus of
conversational and news text (CN Corpus) that
was only annotated with word boundaries, and a
large list of Japanese first and last names. We in-
dicate the model trained with all of these resources
as ORIG.

While the POS tagger works on a word-by-
word basis, most named entities consist of multi-
ple words. Previous work has developed linguistic
resources for English NE tagging on Twitter (Finin
et al., 2010), but again considering the short time
frame, we developed a simple rule-based system
to connect multiple words into single named en-
tities. Rules scanned the corpus in order, finding
the first of three POS tags: “first name (FNAME),”
“last name (LNAME),” or “place name (PNAME).”
These words are labeled with PERSON, PERSON,
or LOCATION NE tags respectively. Continuing in
the order of the corpus, all words directly follow-
ing a marked NE are merged if marked with one
of the three previously mentioned POS tags, or as
a “suffix (SUF)10”. An example of the three step

9Available at http://www.phontron.com/kytea.
10A small set of suffixes that are used in conjunction with

person names such as “-san” or “-kun” were omitted.
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Figure 2: An example of the three steps of named
entity recognition. Pronunciations and English
translations are also provided for reference.

Name Words WS POS Group
BCCWJ 997k ◯ ◯ ORIG
CN Text 503k ◯ ORIG
UniDic 217k ◯ ◯ ORIG
Names 144k ◯ ◯ ORIG
Address 73.4k ◯ ◯ +DICT
+Names 29.4k ◯ ◯ +DICT
Active 10.2k ◯ +ACTIVE

Table 2: Resources used in building the model
with names, word counts, whether each corpus
is annotated with WS and POS information, and
which group the resource was added in.

NE tagging process is shown in Figure 2.

4.2 Domain Adaptation

While this classifier worked well on general do-
main data, it is known that accuracy greatly de-
creases for text in different domains or styles than
the training data (Finin et al., 2010; Neubig et al.,
2011; Ritter et al., 2011). In the tweet data there
were a large number of place and person names
specific to the disaster-stricken region, as well as a
large number of linguistic phenomena specific to
tweets, and thus it was necessary to add a number
of language resources (summarized in Table 2) to
adapt the text processing tools to the new domain.

To improve the accuracy on person and place
names, we added the language resources previ-
ously described in section 3. The combination of
these dictionaries is indicated by “+Names” in Ta-
ble 2, and a model trained adding these resources
is indicated with +DICT.

Finally, to handle the the large number of
Twitter-related linguistic phenomena such as

ORIG +DICT +ACTIVE

WS F 97.3% 97.3% 97.7%

Lab. NE P 53.9% 69.6% 69.2%
R 55.6% 71.7% 72.7%

Unlab. NE P 70.6% 80.4% 80.8%
R 72.7% 82.8% 84.9%

Table 3: Word segmentation F-measure and NE
precision (P) and recall (R) for both labeled and
unlabeled evaluation.

the word “tweet” or hash tags, we annotated
word boundaries using the active-learning/partial-
annotation method described by Neubig et al.
(2011). For each round of active learning, we
chose the 100 words for which the morphologi-
cal analyzer was least confident, and had a single
human annotator correct the word boundaries for
these words. This was repeated for 4 rounds (400
words), which took approximately 1.5 hours total.
The model trained by adding this data to +DICT is
indicated as +ACTIVE.

4.3 Result Analysis

In order to demonstrate the necessity and effec-
tiveness of domain adaptation, we present results
of a quantitative and qualitative analysis of WS
and NER for ORIG, +DICT, and +ACTIVE.

Table 3 shows results for a quantitative analysis
of WS and NE tagging results on a manually an-
notated corpus of 50 tweets. Labeled NE accuracy
indicates that the NE is only considered correct if
both its span and its label (PERSON/LOCATION)
are correct, and unlabeled NE accuracy indicates
that the NE is considered correct if the span is
matched, regardless of the label. It can be seen
that the addition of dictionaries for the target do-
main greatly increased the NE accuracy, up to 16%
for labeled tagging. The active-learning-based an-
notation further improved the WS accuracy by
0.42%, resulting in gains of NE recall of 1-2%.

The main reason for the improvement between
the ORIG and +DICT was the proper handling of
place names in the disaster-stricken area. ORIG

would split long addresses into several NEs, some
of which were mistakenly recognized as as person
names. For example, “気仙沼 市” (Kesennuma
city) was mistakenly split into “気仙 沼 市” (Ke-
sen swamp city) and “気仙” was recognized as a
person name. Further, the active learning for WS
fixed segmentation errors such as correcting the
improperly segmented “平浄 水場” to the prop-
erly segmenting “平 浄水 場” (Taira water purify-
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ing plant). This, in turn, allowed for “平” (Taira)
to be properly recognized as a location name.

The largest remaining challenge for the fully
adapted system was the distinction between last
names and place names, which are highly ambigu-
ous in Japanese. The use of the address infor-
mation corpus greatly improved the NE tagging
results, but also biased the classifier heavily to-
wards place names. In a rapid-response situation
it is necessary to use any and all of the resources
available, even if they are known to be biased.
This sample-bias problem can likely be amelio-
rated by recent progress in machine learning tech-
niques (Huang et al., 2007).

5 Safety Information Classifier

Next, we describe the classifier that we built to find
tweets containing safety information out of all the
tweets in the corpus.

5.1 Model 1

Our first classifier, which we will call Model 1,
was developed in several hours by over-
simplifying the classification problem and
using a very limited feature set.

While, as explained in §3.2, a single tweet could
be assigned multiple labels, for Model 1 we simply
took the first label that each annotator assigned to
be true, and trained a one-vs.-rest classifier on this
data. We used two types of features for the clas-
sification, bag-of-character-n-gram features, and
NE features. The bag-of-character-n-gram fea-
tures created a separate feature for each charac-
ter n-gram from unigram to trigrams. As most
Japanese words are relatively short, this is able to
capture the most important words while not requir-
ing word segmentation and thus being relatively
robust. Second, we used the counts of each type
of named entity tag, which are generally larger in
tweets that contained useful information.

We trained all models using the default SVM
solver of LIBLINEAR (Fan et al., 2008). 10-fold
cross validation on the test set showed that the
classifier achieved a tag accuracy of 86.13%.

5.2 Model 2

After few days, we created Model 2 as an exten-
sion of Model 1. Model 2 used a multi-class and
multi-label classifier which output all the labels
each of whose score exceeds a threshold t.

We extended the feature set for Model 2.
Model 2 includes the same features as Model 1,
but for n-grams, Model 2 does not count dupli-
cated sequences. As NE features, co-occurrence
information of PERSON and LOCATION in a single
tweet was added as tweets for safety confirmation
should generally include both of them. Combina-
tion of character 3-grams and the appearance of a
PERSON was also added to capture a tweet’s inten-
tion for that person. We also used existence of the
hash tag “#anpi” and the total number of appear-
ance of hash tags except for “#anpi” as clues for
dividing tweets not related to safety confirmation
(label O, U, S) from the others. Finally, we used
the existence of the string ”http(s)” and combina-
tion of existence of ”http(s)” and NE as clues for
the label R (external lists).

5.3 Evaluation

We evaluated the Model 2 classifier in detail using
the corpus from the 17th of March, which con-
tained 9,812 tweets. We divided the corpus into
three sets: 80% for training, 10% for develop-
ment, and the other 10% for test. For comparison,
we also developed Model 1′ which is a multi-label
model using the same feature set as Model 1.

Table 4 shows the results of the two models.
The performance is not significantly different in
terms of accuracy, but Model 2 obtained higher
recall than Model 1′. The thresholds here were
empirically determined to the one that maximize
the F1-scores on the development set.

We described the result for each label with
Model 2 in Table 5. Good performance was ob-
tained for the O and M that comparatively have
a larger number of instances. However, the recalls
for the labels having few instances were lower. Es-
pecially, most of the label L were still missing.
The most frequent mis-prediction was occurred
between U, S and O. This is not a big problem
since all these three labels are unrelated to safety
confirmation. However, by analyzing errors, we
found that there are a significant number of in-
consistencies for these three labels depending on
the annotators due to the inconsistent annotation
standards mentioned in Section 2. A promising
solution for situations like these is the recent de-
velopment of methods and publicly available tools
for extremely efficient active learning for text clas-
sification (Tong and Koller, 2002; Settles, 2011).
These would allow for similar final results to be
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Dev Test
Model t P R F Acc. P R F Acc.
Model 1′ 0.55 87.8% 84.3% 86.0% 96.8% 87.9% 84.9% 86.4% 96.9%
Model 2 0.45 86.1% 85.7% 85.9% 96.7% 87.1% 86.4% 86.8% 97.0%

Table 4: Micro-averaged precision (P), recall (R), F-score (F), and accuracy (Acc.) achieved by Model 1′

and Model 2. For the evaluation, we transformed the gold and predicted data from multi-labeled instances
to nine sets of binary-labeled instances.

Label #samples P R F
O 719 88.4% 98.3% 93.1%
M 134 91.2% 93.3% 92.3%
S 51 72.5% 56.9% 63.7%
L 45 50.0% 11.1% 18.2%
R 32 76.9% 31.3% 44.4%
U 22 0.0% 0.0% 0.0%
I 12 50.0% 58.3% 53.9%
H 6 100.0% 50.0% 66.7%
P 4 0.0% 0.0% 0.0%

Table 5: Precision (P), recall (R) and F-score (F)
for each labels using Model 2 (t = 0.45).

Gold Predict #err. Gold Predict #err.
U O 22 LR OR 2
S O 17 R LR 2
L O 13 O LR 2

LR O 11 S OS 2
R O 9 MS S 2
O S 7 LPR O 2
L M 5 LM M 2
M IM 5 LM IM 2
M O 4 IM M 2
R OR 3
H O 3 Others 16
M S 3 Total 136

Table 6: Label sequences where the errors oc-
curred with Model 2 (t = 0.45).

achieved by a fewer number of annotators, reduc-
ing inconsistency issues.

6 Application of the System

The final step was verifying that the information
was in fact reliable, and then matching PERSON

and LOCATION tokens from tweets, which were
classified as “L” (the person is alive) to the infor-
mation of Google Person Finder (GPF). We chose
to verify and match the information by hand to
prevent the provision of misinformation on a sen-
sitive topic such as safety of earthquake victims.

GPF contained several columns, such as the first
name and last name of the person, home neighbor-
hood, home city and home prefecture. The man-
ually corrected NE information was matched with
GPF data, and we were able to update the personal
information of more than a hundred individuals

that were confirmed to be alive in tweets.
However, many tokens extracted from tweets

had problems, including:

• Incomplete LOCATION information: The
tokens lacked a couple of information such as
city, or neighborhood. “I was able to contact
Taro Tanaka, who lives in Miyagi prefecture!
[宮城県の田中太郎と無事に連絡が取れまし
た！]”. In this case, there may be many Taro
Tanakas living in the prefecture, so a single
individual cannot be identified.

• Incomplete PERSON names: a) Last or first
names were be omitted when describing peo-
ple of the same family. “I found Taro, Jiro,
and Hanako Tanaka of Sendai at an evacua-
tion shelter. [仙台市に住む田中太郎、次郎、
花子が避難所にいました。]” or “The Tanaka
family who live in Sendai has been reached!
[仙台市に住む田中一家の安否が確認でき
ました。]” b) Many person names that are
likely written in logographic kanji in normal
text were instead written phonetically (using
katakana or hiragana).

While we focused mainly on extracting infor-
mation about missing people, it has also been
noted that Twitter is a source of other information
in disaster situations (Corvey et al., 2010; Vieweg
et al., 2010). For example, “50 people in Kesen-
numa city have evacuated to a hill behind the city
hall. [気仙沼で被災し、市民会館の裏山に 50人
避難しています]” includes the number of people
(50) and a concrete location (a hill behind the city
hall), and could be a good indicator of where to
concentrate rescue efforts. This could be an area
of very practical application for recent research
in verifying reliability of information on Twitter
(Kawahara et al., 2008; Qazvinian et al., 2011).

7 Related Work

Besides the safety information mining task which
we described in the previous sections, we ob-
served many other efforts to help the earthquake
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victims via NLP technologies as sub-projects of
ANPI NLP. Prominent ones include:

• Association of tweets to evacuation shelter
locations: This includes geo-coding location
names extracted from tweets and associating
them with the evaluation shelter lists, which
are also geo-coded.

• Visualization of tweets on a map: This in-
cludes mapping geo-tagged tweets on a map
so that they can be searched easily.

• Translation of information to foreign lan-
guages: This includes compilation and shar-
ing of technical term multilingual dictionar-
ies, automatic translation of earthquake in-
formation, and provision of the translated in-
formation in four major languages spoken by
foreigners in Japan.

We are definitely not the first to focus on
the disaster-related natural language processing.
Lewis (2010) reports the development project of
Haitian Creole translation system in rapid re-
sponse to the Haiti earthquake in 2010. While
their motivations have a lot in common with ours,
such as the necessity to set up a deployable sys-
tem in a very short time span. Corvey et al. (2010)
describe the annotation of a corpus about the Ok-
lahoma wildfires, aiming at provision of broad-
scale information as opposed to safety information
mining about individuals. There have also been a
number of works on detecting general trends from
twitter, including work by Sakaki et al. (2010),
who detect earthquakes based on Twitter postings.
There are many other systems designed for infor-
mation sharing in emergency, including the one
described in (Hasegawa et al., 2005).

8 Conclusion

In this paper we presented a description of the ef-
forts of a group of volunteers to create a useful
NLP system in a short time frame in response to a
natural disaster.

On the whole, we believe the project was a suc-
cess. In an extremely short time-frame, we were
able to design, implement, and run a system for ex-
tracting useful information from a highly unorga-
nized and difficult-to-process information source.
In the short term, this allowed us to provide in-
formation about the safety of over 100 people. In
addition, this allowed us to clarify the framework

required, and develop tools that can be used to al-
low for provision of information on an even larger
scale in future disaster situations. On a more ab-
stract level, we were able to show that NLP has
the potential to make a contribution in a disaster-
response situation, which we hope will provide an
impetus for similar future projects.

However, a number of challenges remain, and
we conclude by summarizing the major lessons
learned in the project.

• Speed is everything: Gathering data, mak-
ing analysis tools, creating a classifier,
and providing information to the public all
needed to be performed on a limited time
frame. As each of these steps must be com-
pleted in order, a delay in any part would re-
sult in delays for the overall process. Thus, it
was necessary to create working tools as fast
as possible, even if this meant making sacri-
fices in accuracy and refining later.

• A better annotation framework is needed:
To resolve the challenges posed by annota-
tion in such a short time frame, we must fo-
cus on create of better standards considering
only the necessary information, do test anno-
tation runs to work out the kinks, and allow
annotators to “pass” on difficult annotations.

• Human resources must be used effectively:
The project summoned an outpouring of sup-
port much larger than originally expected. To
harness all of the people that are willing to
help, it is important to have an overall project
vision, and be able to quickly identify new
projects for volunteers to work on.

Disasters such as earthquakes are tragic, over-
whelming times, with too much information com-
ing in for any individual to handle. We hope that
our work has demonstrated that there is a need and
a means for processing of this information, and
will motivate similar projects in the future.
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