
International Joint Conference on Natural Language Processing, pages 1285–1291,
Nagoya, Japan, 14-18 October 2013.

Effect of Non-linear Deep Architecture in Sequence Labeling

Mengqiu Wang
Computer Science Department

Stanford University
Stanford, CA 94305, USA

mengqiu@cs.stanford.edu

Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305, USA

manning@cs.stanford.edu

Abstract

If we compare the widely used Condi-
tional Random Fields (CRF) with newly
proposed “deep architecture” sequence
models (Collobert et al., 2011), there are
two things changing: from linear archi-
tecture to non-linear, and from discrete
feature representation to distributional. It
is unclear, however, what utility non-
linearity offers in conventional feature-
based models. In this study, we show the
close connection between CRF and “se-
quence model” neural nets, and present
an empirical investigation to compare their
performance on two sequence labeling
tasks – Named Entity Recognition and
Syntactic Chunking. Our results suggest
that non-linear models are highly effective
in low-dimensional distributional spaces.
Somewhat surprisingly, we find that a non-
linear architecture offers no benefits in a
high-dimensional discrete feature space.

1 Introduction

Sequence labeling encompasses an important class
of NLP problems that aim at annotating natu-
ral language texts with various syntactic and se-
mantic information, such as part-of-speech tags
and named-entity labels. Output from such sys-
tems can facilitate downstream applications such
as Question Answering and Relation Extraction.
Most methods developed so far for sequence label-
ing employ generalized linear statistical models,
meaning methods that describe the data as a com-
bination of linear basis functions, either directly in
the input variables space (e.g., SVM) or through
some transformation of the probability distribu-
tions (e.g., “log-linear” models).

Recently, Collobert et al. (2011) proposed

“deep architecture” models for sequence labeling
(named Sentence-level Likelihood Neural Nets,
abbreviated as SLNN henceforth), and showed
promising results on a range of tasks (POS
tagging, NER, Chunking, and SRL). Two new
changes were suggested: extending the model
from a linear to non-linear architecture; and re-
placing discrete feature representations with dis-
tributional feature representations in a continuous
space. It has generally been argued that non-
linearity between layers is vital to the power of
neural models (Bengio, 2009). The relative con-
tribution of these changes, however, is unclear, as
is the question of whether gains can be made by
introducing non-linearity to conventional feature-
based models.

In this paper, we illustrate the close relationship
between CRF and SLNN models, and conduct an
empirical investigation of the effect of nonlinear-
ity with different feature representations. Exper-
iments on Named Entity Recognition (NER) and
Syntactic Chunking tasks suggest that non-linear
models are highly effective in low-dimensional
distributed feature space, but offer no benefits in
high-dimensional discrete space. Furthermore,
both linear and non-linear models improve when
we combine the discrete and continuous feature
spaces, but a linear model still outperforms the
non-linear one.

2 From CRFs To SLNNs

A CRF models the conditional probability of
structured output variables y given observations x.
In sequence modeling, the observations are typi-
cally words in a sentence, and the output variables
are some syntactic or semantic tags we are trying
to predict for each word (e.g., POS, named-entity
tags, etc.). The most commonly used CRF model
has a linear chain structure, where prediction yi

1285

at position i is independent of other predictions,
given its neighbors yi−1 and yi+1. It is customary
to describe the model as an undirected graphical
model, with the following probability definition:

P (y|x) =

|x|∏
i=1

Ψ(x, yi; Θ)
|x|∏
j=1

Φ(x, yj , yj−1; Λ)

Z(x)

Ψ(x, yi; Θ) = exp

{
m∑

k=1

θ(k,yi)fk(x)

}

Φ(x, yi, yi−1; Λ) = exp

{
m′∑
k=1

λ(k,yi,yi−1)gk(x)

}

Z(x) =
∑
y′

 |x|∏
i=1

Ψ(x, y′i)

|x|∏
j=1

Φ(x, y′j , y
′
j−1)

Ψ(x, yi) denotes node clique potentials in this

graph, and Φ(x, yi, yi−1) denotes edge clique po-
tentials. fk(x) is the set of node-level feature func-
tions,m is the number of node features, and θ(k,yi)

is a weight parameter of feature k associated with
a particular output yi; similarly for edges we have
gk(x), m′, and λ(k,yi,yi−1). Z(x) is the partition
function that sums over all possible assignments
of output variables in the entire sequence.

Let us focus our discussion on the node clique
potentials Ψ for now. We call the operand of the
exponentiation operator in Ψ a potential function
ψ. In a CRF, this can be expressed in matrix nota-
tion as:

ψ(x, yi; Θ) = |Θᵀf(x)|ŷi1

We use the notation ŷi to denote the ordinal in-
dex of the value assigned to yi. This linear po-
tential function ψ can be visualized using a neu-
ral network diagram, shown in the left plot in Fig-
ure 1. Each edge in the graph represents a param-
eter weight θ(k,ŷi), for feature fk(x) and a vari-
able assignment of yi. In neural network termi-
nology, this architecture is called a single-layer
Input-Output Neural Network (IONN). 1 Normal-
izing locally in a logistic regression is equivalent
to adding a softmax layer to the output layer of the
IONN, which was commonly done in neural net-
works, such as in Collobert et al. (2011).

We can add a hidden linear layer to this ar-
chitecture to formulate a two-layer Linear Neural

1The bias parameter “b” commonly seen in Neural Net-
work convention can be encoded as an “always on” feature in
the input layer.

Network (LNN), as shown in the middle diagram
of Figure 1. The value of the node zj in the hidden
layer is computed as zj =

∑
k

ω(k,j)fk(x). The

value yi for nodes in the output layer is computed
as: yi =

∑
j

δ(j,i)zj =
∑

j

δ(j,i)
∑

k

ω(k,j)fk(x).

where ω(k,j) and δ(j,i) are new parameters intro-
duced in the model. In matrix form, it can be writ-
ten as y = ∆ᵀz = ∆ᵀΩᵀf(x). The node potential
function now becomes:

ψ′(x, yi; Ω,∆) = |∆ᵀΩᵀf(x)|ŷi1

This two-layer network is actually no more power-
ful than the previous model, since we can always
compile it down to a single-layer IONN by making
Θ = Ω∆. In the next step, we take the output of
the hidden layer in the LNN, and send it through
a non-linear activation function, such as a sigmoid
or tanh, then we arrive at a two-layer Deep Neural
Network (DNN) model. Unlike the previous two
models, the DNN is non-linear, and thus capable
of representing a more complex decision surface.

So far we have extended the potential function
used in node cliques of a CRF to a non-linear
DNN. And if we keep the potential function for
edge cliques the same as before, then in fact we
have arrived at an identical model to the SLNN in
Collobert et al. (Collobert et al., 2011). The dif-
ference between a SLNN and an ordinary DNN
model is that we need to take into consideration
the influence of edge cliques, and therefore we can
no longer normalize the clique factors at each po-
sition to calculate the local marginals, as we would
do in a logistic regression. The cardinality of
the output variable vector y grows exponentially
with respect to input sequence length. Fortunately,
we can use forward-backward style dynamic pro-
gramming to compute the marginal probabilities
efficiently.

It is also worth pointing out that this model has
in fact been introduced a few times in prior litera-
ture. It was termed Conditional Neural Fields by
Peng et al. (2009), and later Neural Conditional
Random Fields by Do and Artieres (2010). Unfor-
tunately, the connection to Collobert and Weston
(2008) was not recognized in either of these two
studies; vice versa, neither of the above were ref-
erenced in Collobert et al. (2011). This model also
appeared previously in the speech recognition lit-
erature in Prabhavalkar and Fosler-Lussier (2010).

1286

f1(x)

f2(x)

f3(x)

f4(x)

yi = v1

yi = v2

yi = v3

θ(1,v1)

Input
layer

Output
layer ω(1,1) δ(1,v1)

Hidden
layer

Input
layer

Output
layer

tanh

ω(1,1) δ(1,v1)

Nonlinear
Hidden
layers

Input
layer

Output
layer

Figure 1: In this diagram, we assume the random variable yi has three possible value assignments
(v1, v2, v3). On the left side is the linear potential function ψ in CRF, illustrated as a single-layer Input-
Output Neural Network. In the middle is a potential function as a two-layer Linear Neural Network; on
the right side is a two-layer Deep Neural Network.

3 Parameter Learning

Supervised conditional training of the SLNN
model amounts to maximizing the objective func-
tion L, which is given by the sum of log-
probabilities over training examples:

L(Y∗|X) =

|X|∑
l=1

(|xl|∑
i=1

ψ′(xl,yl∗
i)

+

|xl|∑
j=1

φ(xl,yl∗
j ,y

l∗
j−1)

)
−
|X|∑
l=1

logZ(x)

The change in node potential function from ψ
to ψ′ does not affect the inference procedure, and
thus we can employ the same dynamic program-
ming algorithm as in a CRF to calculate the log
sum over Z(x) and the expectation of feature pa-
rameters.

We adopted the simple L-BFGS algorithm for
training weights in this model (Liu and Nocedal,
1989). Although L-BFGS is in general slower than
mini-batch SGD – another common optimization
algorithm used to train neural networks (Bengio
et al., 2006, inter alia), it has been found to be
quite stable and suitable for learning neural net-
works (Socher et al., 2011). The gradient of a pa-
rameter ω(k,j) is calculated as the following:

∂L

∂ω(k,j)
=

|X|∑
l=1

|xl|∑
i=1

(
∂ψ′(xl,yl

i)

∂ω(k,j)

− EP (yl|xl)

[
∂ψ′(xl,yl

i)

∂ω(k,j)

])

The partial derivative of the potential function
∂ψ′(xl,yl

i)

∂ω(k,j)
can be calculated using the back-

propagation procedure, identical to how gradients
of a standard Multilayer Perceptron are calculated.
The gradient calculation for output layer param-
eters ∆ and edge parameters Λ follow the same
form. We apply `2-regularization to prevent over-
fitting.

4 Empirical Evaluation

We evaluate the CRF and SLNN models on
two standard sequence labeling tasks: Syntactic
Chunking and Named Entity Recognition (NER).
In both experiments, we use the publicly available
Stanford CRF Toolkit (Finkel et al., 2005).

4.1 Named Entity Recognition

We train all models on the standard CoNLL-2003
shared task benchmark dataset (Sang and Meulder,
2003), which is a collection of documents from
Reuters newswire articles, annotated with four en-
tity types: Person, Location, Organization, and
Miscellaneous. We adopt the BIO2 annotation
standard. Beginning and intermediate positions of
an entity are marked with B- and I- tags, and non-
entities with O tag. The training set contains 204K
words (14K sentences), the development set con-
tains 51K words (3.3K sentences), and the test set
contains 46K words (3.5K sentences).

To evaluate out-of-domain performance, we run
the models trained on CoNLL-03 training data
on two additional test datasets. The first dataset

1287

(ACE) is taken from the ACE Phase 2 (2001-02)
and ACE-2003 data. Although the ACE dataset
also consists of newswire text and thus is not
strictly out-of-domain, there is a genre or dialect
difference in that it is drawn from mostly Ameri-
can news sources, whereas CoNLL is mostly En-
glish. The test portion of this dataset contains
63K words, and is annotated with 5 original entity
types: Person, Location, Organization, Fact, and
GPE. We remove all entities of type Fact and GPE
by relabeling them as O during preprocessing, and
discard entities tags of type Miscellaneous in the
output of the models. The second dataset is the
MUC7 Formal Run test set, which contains 59K
words. It is also missing the Miscellaneous entity
type, but includes 4 additional entity types that do
not occur in CoNLL-2003: Date, Time, Money,
and Percent. We converted the data to CoNLL-
2003 type format using the same method applied
to the ACE data.

We used a comprehensive set of features that
comes with the standard distribution of Stanford
NER model (Finkel et al., 2005). A total num-
ber of 437,905 features were generated for the
CoNLL-2003 training dataset.

4.2 Syntactic Chunking
In Syntactic Chunking, we tag each word with
its phrase type. For example, tag B-NP indi-
cates a word starts a noun phrase, and I-PP marks
an intermediate word of a prepositional phrase.
We test the models on the standard CoNLL-2000
shared task evaluation set (Sang and Buchholz,
2000). This dataset comes from the Penn Tree-
bank. The training set contains 211K words (8.9K
sentences), and the test set contains 47K words
(2K sentences). The set of features used for this
task is:
• Current word and tag
• Word pairs: wi ∧ wi+1 for i ∈ {−1, 0}
• Tags: (ti ∧ ti+1) for i ∈ −1, 0; (t−1, t0, ti+1);
• The Disjunctive word set of the previous and

next 4 positions
A total number of 317794 features were generated
on this dataset.

4.3 Experimental Setup
In all experiments, we used the development por-
tion of the CoNLL-2003 data to tune the `2-
regularization parameter σ (variance in Gaussian
prior), and found 20 to be a stable value. Over-
all tuning σ does not affect the qualitative results

in our experiments. We terminate L-BFGS train-
ing when the average improvement is less than 1e-
3. All model parameters are initialized to a ran-
dom value in [−0.1, 0.1] in order to break symme-
try. We did not explicitly tune the features used
in CRF to optimize for performance, since feature
engineering is not the focus of this study. How-
ever, overall we found that the feature set we used
is competitive with CRF results from earlier liter-
ature (Turian et al., 2010; Collobert et al., 2011).
For models that embed hidden layers, we set the
number of hidden nodes to 300. 2 Results are re-
ported on the standard evaluation metrics of en-
tity/chunk precision, recall and F1 measure.

For experiments with continuous space fea-
ture representations (a.k.a., word embeddings), we
took the word embeddings (130K words, 50 di-
mensions) used in Collobert et al. (2011), which
were trained for 2 months over Wikipedia text. 3

All sequences of numbers are replaced with num
(e.g., “PS1” would become “PSnum”), sentence
boundaries are padded with token PAD, and un-
known words are grouped into UNKNOWN. We at-
tempt to replicate the model described in Collobert
et al. (2011) without task-specific fine-tuning, with
a few exceptions: 1) we used the soft tanh acti-
vation function instead of hard tanh; 2) we use
the BIO2 tagging scheme instead of BIOES; 3)
we use L-BFGS optimization algorithm instead
of stochastic gradient descent; 4) we did not use
Gazetteer features; 5) Collobert et al. (2011) men-
tioned 5 binary features that look at the capital-
ization pattern of words to append to the embed-
ding as additional dimensions, but only 4 were de-
scribed in the paper, which we implemented ac-
cordingly.

5 Results and Discussion

For both the CRF and SLNN models, we experi-
ment with both the discrete binary valued feature
representation used in a regular CRF, and the word
embeddings described. Unless otherwise stated,
the set of edge features is limited to pairs of pre-
dicted labels at the current and previous positions,
i.e., (yi, yi−1). The same edge features were used
in Collobert et al. (2011) and were called “transi-
tion scores” ([A]i,j).

2We tried varying the number of hidden units in the range
from 50 to 500, and the main qualitative results remain the
same.

3Available at http://ml.nec-labs.com/
senna/.

1288

CRF SLNN
P R F1 P R F1

CoNLLd 90.9 90.4 90.7 89.3 89.7 89.5
CoNLLt 85.4 84.7 85.0 83.3 83.9 83.6
ACE 81.0 74.2 77.4 80.9 74.0 77.3
MUC 72.5 74.5 73.5 71.1 74.1 72.6
Chunk 93.7 93.5 93.6 93.3 93.3 93.3

Table 1: Results of CRF versus SLNN, over
discrete feature space. CoNLLd stands for the
CoNLL development set, and CoNLLt is the test
set. Best F1 score on each dataset is highlighted in
bold.

5.1 Results of Discrete Representation

The first question we address is the following:
in the high-dimensional discrete feature space,
would the non-linear architecture in SLNN model
help it to outperform CRF?

Results from Table 1 suggest that SLNN does
not seem to benefit from the non-linear architec-
ture on either the NER or Syntactic Chunking
tasks. In particular, on the CoNLL and MUC
dataset, SLNN resulted in a 1% performance drop,
which is significant for NER. The specific statisti-
cal properties of this dataset that lead to the per-
formance drop are hard to determine, but we be-
lieve it is partially because the SLNN has a much
harder non-convex optimization problem to solve
– on this small dataset, the SLNN with 300 hidden
units generates a shocking number of 100 million
parameters (437905 features times 300 hidden di-
mensions), due to the high dimensionality of the
input feature space.

To further illustrate this point, we also com-
pared the CRF model with its Linear Neural Net-
work (LNN) extension, which has exactly the
same number of parameters as the SLNN but does
not include the non-linear activation layer. Al-
though this model is identical in representational
power to the CRF as we discussed in Section 2,
the optimization problem here is no longer convex
(Ando and Zhang, 2005). To see why, consider ap-
plying a linear scaling transformation to the input
layer parameter matrix Ω, and apply the inverse
scaling to output layer ∆ matrix. The resulting
model has exactly the same function values. We
can see from Table 2 that there is indeed a perfor-
mance drop with the LNN model as well, likely
due to difficulty with optimization. By compar-
ing the results of LNN and SLNN, we see that the
addition of a non-linear activation layer in SLNN
does not seem to help, but in fact further decreases

CRF LLN
P R F1 P R F1

CoNLLd 90.9 90.4 90.7 89.5 90.6 90.0
CoNLLt 85.4 84.7 85.0 83.1 84.7 83.9
ACE 81.0 74.2 77.4 80.7 74.3 77.3
MUC 72.5 74.5 73.5 72.3 75.2 73.7
Chunk 93.7 93.5 93.6 93.1 93.2 93.2

Table 2: Results of CRF versus LNN, over discrete
feature space.

performance in all cases except Syntactic Chunk-
ing.

A distinct characteristic of NLP data is its high
dimensionality. The vocabulary size of a decent
sized text corpus is already in the tens of thou-
sands, and bigram statistics are usually an or-
der of magnitude larger. These basic information
units are typically very informative, and there is
not much structure in them to be explored. Al-
though some studies argue that non-linear neu-
ral nets suffer less from the curse of dimension-
ality (Attali and Pagés, 1997; Bengio and Bengio,
2000; Pitkow, 2012), counter arguments have been
offered (Camastra, 2003; Verleysen et al., 2003).
The empirical results from our experiment seems
to support the latter. Similar results have also
been found in other NLP applications such as Text
Classification. Joachims concluded in his seminal
work: “non-linear SVMs do not provide any ad-
vantage for text classification using the standard
kernels” (Joachims, 2004, p. 115). If we compare
the learning curve of CRF and SLNN (Figure 2),
where we vary the amount of binary features avail-
able in the model by random sub-sampling, we
can further observe that SLNNs enjoy a small per-
formance advantage in lower dimensional space
(when less than 30% of features are used), but are
quickly outpaced by CRFs in higher dimensional
space as more features become available.

Another point of consideration is whether there
is actually much non-linearity to be captured in
sequence labeling. While in some NLP applica-
tions like grammar induction and semantic pars-
ing, the data is complex and rich in statistical
structures, the structure of data in sequence label-
ing is considerably simpler. This contrast is more
salient if we compare with data in Computer Vi-
sion tasks such as object recognition and image
segmentation. The interactions among local vari-
ables there are much stronger and more likely to
be non-linear. Lastly, models like CRF actually
already capture some of the non-linearity in the

1289

0.2 0.4 0.6 0.8 1

70

80

90

SLNN
CRF

Figure 2: The learning curve of SLNN vs. CRF
on CoNLL-03 dev set, with respect to the percent-
age of discrete features used (i.e., size of input di-
mension). Y-axis is the F1 score (out of 100), and
X-axis is the percentage of features used.

CRF SLNN
P R F1 P R F1

CoNLLd 80.7 78.7 79.7 86.1 87.1 86.6
CoNLLt 76.4 75.5 76.0 79.8 81.7 80.7
ACE 71.5 71.1 71.3 75.8 74.1 75.0
MUC 65.3 74.0 69.4 65.7 76.8 70.8

Table 3: Results of CRF versus SLNN, over con-
tinuous space feature representations.

input space through the interactions of latent vari-
ables (Liang et al., 2008), and it is unclear how
much additional gain we would get by explicitly
modeling the non-linearity in local inputs.

5.2 Results of Distributional Representation
For the next experiment, we replace the discrete
input features with a continuous space representa-
tion by looking up the embedding of each word,
and concatenate the embeddings of a five word
window centered around the current position. Four
binary features are also appended to each word
embedding to capture capitalization patterns, as
described in Collobert et al. (2011). Results of
the CRF and SLNN under this setting for the NER
task is show in Table 3.

With a continuous space representation, the
SLNN model works significantly better than a
CRF, by as much as 7% on the CoNLL develop-
ment set, and 3.7% on ACE dataset. This suggests
that there exist statistical dependencies within this
low-dimensional (300) data that cannot be effec-
tively captured by linear transformations, but can
be modeled in the non-linear neural nets. This
perhaps coincides with the large performance im-

CoNLLd CoNLLt ACE MUC
CRFdiscrete 90.7 85.0 77.4 73.5
CRFjoin 92.4 87.7 82.2 81.1
SLNNcontinuous 86.6 80.7 75.0 70.8
SLNNjoin 91.9 87.1 81.2 79.7

Table 4: Results of CRF and SLNN when word
embeddings are appended to the discrete features.
Numbers shown are F1 scores.

provements observed from neural nets in hand-
written digit recognition datasets as well (Peng et
al., 2009; Do and Artieres, 2010), where dimen-
sionality is also relatively low.

5.3 Combine Discrete and Distributional
Features

When we join word embeddings with discrete fea-
tures, we see further performance improvements,
especially in the out-of-domain datasets. The re-
sults are shown in Table 4.

A similar effect was also observed in Turian et
al. (2010). The performance of both the CRF and
SLNN increases by similar relative amounts, but
the CRF model maintains a lead in overall absolute
performance.

6 Conclusion

We carefully compared and analyzed the non-
linear neural networks used in Collobert et al.
(2011) and the widely adopted CRF, and revealed
their close relationship. Through extensive exper-
iments on NER and Syntactic Chunking, we have
shown that non-linear architectures are effective in
low dimensional continuous input spaces, but that
they are not better suited for conventional high-
dimensional discrete input spaces. Furthermore,
both linear and non-linear models benefit greatly
from the combination of continuous and discrete
features, especially for out-of-domain datasets.
This finding confirms earlier results that distribu-
tional representations can be used to achieve better
generalization.

Acknowledgments

The authors would like to thank Rob Voigt, Sida
Wang, and the three anonymous reviewers, and ac-
knowledge the support of the DARPA Broad Op-
erational Language Translation (BOLT) program
through IBM. Any opinions, findings, and conclu-
sion or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the view of DARPA or the US government.

1290

References
Rie K. Ando and Tong Zhang. 2005. A framework

for learning predictive structures from multiple tasks
and unlabeled data. JMLR, 6:1817–1853.

Jean-Gabriel Attali and Gilles Pagés. 1997. Approx-
imations of functions by a multilayer perceptron: a
new approach. Neural Networks, 10:1069–1081.

Yoshua Bengio and Samy Bengio. 2000. Modeling
high-dimensional discrete data with multi-layer neu-
ral networks. In Proceedings of NIPS 12.

Yoshua Bengio. 2009. Learning deep architectures for
AI. Found. Trends Mach. Learn., 2(1):1–127, Jan-
uary.

Francesco Camastra. 2003. Data dimensionality es-
timation methods: A survey. Pattern Recognition,
36:2945–2954.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of ICML.

Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR, 12:2461–2505.

Trinh-Minh-Tri Do and Thierry Artieres. 2010. Neural
conditional random fields. In Proceedings of AIS-
TATS.

Jenny R. Finkel, Trond Grenager, and Christopher D.
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In Proceedings of ACL.

Thorsten Joachims. 2004. Learning to Classify Text
Using Support Vector Machines: Methods, Theory,
and Algorithms. Kluwer Academic Publishers.

Percy Liang, Hal Daume, and Dan Klein. 2008. Struc-
ture compilation: Trading structure for features. In
Proceedings of ICML.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Math. Programming, 45:503–528.

Jian Peng, Liefeng Bo, and Jinbo Xu. 2009. Condi-
tional neural fields. In Proceedings of NIPS 22.

Xaq Pitkow. 2012. Compressive neural representation
of sparse, high-dimensional probabilities. In Pro-
ceedings of NIPS 25.

Rohit Prabhavalkar and Eric Fosler-Lussier. 2010.
Backpropagation training for multilayer conditional
random field based phone recognition. In Proceed-
ings of ICASSP.

Erik F. Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of CoNLL.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
language-independent named entity recognition. In
Proceedings of CoNLL.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of
EMNLP.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of
ACL.

Michel Verleysen, Damien Francois, Geoffroy Simon,
and Vincent Wertz. 2003. On the effects of
dimensionality on data analysis with neural net-
works. In Proceedings of the 7th International
Work-Conference on Artificial and Natural Neural
Networks: Part II.

1291

