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Abstract

We present three approaches to lexical chain-
ing based on the LDA topic model and eval-
uate them intrinsically on a manually anno-
tated set of German documents. After motivat-
ing the choice of statistical methods for lexi-
cal chaining with their adaptability to different
languages and subject domains, we describe
our new two-level chain annotation scheme,
which rooted in the concept of cohesive har-
mony. Also, we propose a new measure
for direct evaluation of lexical chains. Our
three LDA-based approaches outperform two
knowledge-based state-of-the art methods to
lexical chaining by a large margin, which can
be attributed to lacking coverage of the knowl-
edge resource. Subsequent analysis shows that
the three methods yield a different chaining
behavior, which could be utilized in tasks that
use lexical chaining as a component within
NLP applications.

1 Introduction

A text that is understandable by its nature exhibits
an underlying structure which makes the text co-
herent; that is, the structure is responsible for mak-
ing the text “hang” together (Halliday and Hasan,
1976). The theoretic foundation of this structure is
defined as coherence and cohesion. While the for-
mer is concerned with the meaning of a text, the lat-
ter can be seen as a collection of devices for cre-
ating it. Cohesion and coherence build the basis
for most of the current natural language processing
problems that deal with text understanding. Lex-
ical cohesion ties together words or phrases that

are semantically related. Once all the cohesive ties
are identified the involved items can be grouped to-
gether to form so-called lexical chains, which form a
theoretically well-founded building block in various
natural language processing applications, such as
word sense disambiguation (Okumura and Honda,
1994), summarization (Barzilay and Elhadad, 1997),
malapropism detection and correction (Hirst and St-
Onge, 1998), document hyperlinking (Green, 1996),
text segmentation (Stokes et al., 2004), topic track-
ing (Carthy, 2004), and others. The performance of
the individual task heavily depends on the quality of
the identified lexical chains.

1.1 Motivation for Corpus-driven Approach

Previous approaches mainly focus on the use of
knowledge resources like lexical semantic databases
(Hirst and St-Onge, 1998) or thesauri (Morris and
Hirst, 1991) as background information in order to
resolve possible semantic relations. A major draw-
back of this strategy is the dependency on the cov-
erage of the resource, which has a direct impact on
the lexical chains. Their quality can be expected to
be poor for resource-scarce languages or specialized
application domains.

Statistical methods to modeling language seman-
tics have proven to deliver good results in many nat-
ural language processing applications. In particu-
lar, probabilistic topic models have been success-
fully used for tasks such as summarization (Gong
and Liu, 2001; Hennig, 2009), text segmentation
(Misra et al., 2009), lexical substitution (Dinu and
Lapata, 2010) or word sense disambiguation (Cai et
al., 2007; Boyd-Graber et al., 2007).
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In this work, we address the question, whether
statistical methods for the extraction of lexi-
cal chains can yield better results than existing
knowledge-based methods, especially for underre-
sourced languages or domains, following principles
of Structure Discovery (Biemann, 2012). To address
this, we have developed a methodology for evaluat-
ing the quality of lexical chains intrinsically, have
carried out an annotation study, and report results on
a corpus of manually annotated German news docu-
ments.

After defining a measure for the comparison of
(manually or automatically created) lexical chains
in Section 2, Section 3 describes our annotation
methodology and discusses issues regarding the in-
herent subjectivity of lexical chain annotation. In
Section 4, three statistical approaches for lexical
chaining are developed on the basis of the LDA topic
model. Experiments that demonstrate the advantage
of these approaches over a knowledge-baseline are
conducted and evaluated in Section 5, and Section 6
concludes and provides an outlook future directions.

1.2 Previous Work on Lexical Chains

Morris and Hirst (1991) initially proposed an al-
gorithm for lexical chaining based on Roget’s the-
saurus (Roget, 1852), and manually assessed the
quality of their algorithm. Hirst and St-Onge (1998)
first presented a computational approach to lexical
chaining based on WordNet showing that the lexi-
cal database is a reasonable replacement to Roget’s.
The basic idea behind these algorithms is that se-
mantically close words should be connected to form
chains. Subsequent approaches mainly concentrated
on disambiguation of words to WordNet concepts
(WSD), since ambiguous words can lead to the over-
generation of connections. Barzilay and Elhadad
(1997) improved the implicit word sense disam-
biguation (WSD) by keeping a list of different inter-
pretations of the text and finally choosing the most
plausible senses for chaining. Silber and McCoy
(2002) introduced an efficient variant of the algo-
rithm with linear complexity in the number of can-
didate terms. Galley and McKeown (2003) further
improved accuracy by first performing WSD, and
then using the remaining links between the disam-
biguated concepts only. They also introduced a so-
called disambiguation graph, a representation that

has also been utilized by the method of Medelyan
(2007), where she applied a graph clustering algo-
rithm to the disambiguation graph to cut weak links,
performing implicit WSD. A combination of statis-
tical and knowledge-based methods is presented by
Marathe and Hirst (2010), who combine distribu-
tional co-occurrence information with semantic in-
formation from a lexicographic resource for extract-
ing lexical chains and evaluate them by text segmen-
tation. We are not aware of previous lexical chain-
ing algorithms that do not rely on a lexicographic
resource at all.

A major issue in developing a new lexical chain-
ing algorithm is the comparison to previous systems.
Most of previous approaches are validated by the
evaluation in a certain task like summarization, word
sense disambiguation, keyphrase extraction or infor-
mation retrieval (Stairmand, 1996). Hence, these ex-
trinsic evaluations are heavily influenced by the par-
ticular task at hand. We propose to re-consider lexi-
cal chaining as a task on its own, and propose objec-
tive criteria for directly comparing lexical chains to
this end.

2 Comparing Lexical Chains

The comparison of lexical chains is a non-trivial
task. We adopt the idea of interpreting lexical chains
as clusters and a particular set of lexical chains as
a clustering, and develop a suitable cluster com-
parison measure. As stated by Meilă (2005) and
Amigó et al. (2009), a best clustering comparison
measure for the general case does not exist. It should
be stressed that the appropriate clustering measure
highly depends on the task at hand.

After exploring a number of measures1, we de-
cided on a combination of the adjusted Rand in-
dex (ARI , Hubert and Arabie (1985)) and the basic
merge distance (BMD, Menestrina et al. (2010))
for our new measure. Menestrina et al. (2010) in-
troduced a linear time algorithm for computing the
generalized merge distance (GMD), which counts

1Explored measures which are unsatisfactory for the given
task are: Closest Cluster F1 (Benjelloun et al., 2009), K (Ajmera
et al., 2002), Pairwise F1 (Manning et al., 2008), Variation of
Information (Meilă, 2005), B3(Bagga and Baldwin, 1998), V-
Measure (Rosenberg and Hirschberg, 2007), Normalized Mu-
tual Information (Strehl, 2002). The last two measures are
equal. A proof of this can be found in the appendix.
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split and merge cluster editing operations. Using a
constant factor of 1 for both splits and merges gives
the basic merge distance (BMD): Considering >
as the most general clustering of a dataset D, where
all elements are grouped into the same cluster, and
further considering ⊥ as the most specific cluster-
ing of D, where each element builds its own clus-
ter, the lattice between > and ⊥ spans all possible
clusterings and the BMD can be interpreted as the
shortest path from a clustering C to a clustering C ′

in the lattice with some restrictions (see Menestrina
et al. (2010) for details). We normalize the BMD
score by the maximum BMD2 to the normalized
basic merge distance (NBMD). ARI is is based
on pair comparisons, and is computed as3:

index = TP

expected index =
(TP + FP )× (TP + FN)
TP + TN + FP + FN

max index = TP +
1
2
(FP + FN)

ARI(C,C ′) =
index− expected index

max index− expected index

The reasons for choosing these two particular
measures are the following: ARI is a well known
measure which is adjusted (corrected) for decisions
made by chance. But since it is based on pairwise
element comparison it completely disregards single-
ton clusters (chains) and some types of errors are not
adequately penalized. The NBMD on the other hand
penalizes various errors almost equally.

We combine the two single measures into a
new lccm (lexical chain comparison measure), de-
fined as the arithmetic mean between ARI and
1−NBMD. An lccm of 1 indicates perfect con-
gruence and an lccm = 0 indicates that not a single
pair of items in C is found in a cluster together in
C ′.

lccm(C,C ′) =
1
2

[
1−NBMD(C,C ′) +ARI(C,C ′)

]
.

2BMD(>,⊥) for |D| ≤ 2, BMD(>,⊥) + 1 otherwise
3TP : pairs in D and D’, FP : pairs in D’ but not in D, FN :

pairs in D but not in D’, TN : pairs not in D and not in D’, where
D is the underlying dataset of C, D’ is the underlying dataset of
C’, and pairs means all unique combinations of elements that
are in the same cluster.

3 Annotating Lexical Chains

A challenge with the annotation of lexical chains is
the subjective interpretation of the text by individ-
ual annotators (Morris and Hirst, 2004), which also
substantiates the fact that currently no gold stan-
dard exist, and all previous automatic approaches
are evaluated by performing a certain NLP task.
Hollingsworth and Teufel (2005) as well as Cramer
et al. (2008) conclude from their lexical chain anno-
tation projects that high inter-annotator agreement is
very hard to achieve. We argue that directly evalu-
ating on lexical chains should enable us to optimize
towards higher-quality chain annotations, which is
a task of its own right and which has the potential
to improve all subsequent applications. For this, we
devise an annotation scheme that gets us reasonable
inter-annotator agreement, inspired by the concept
of cohesive harmony (Hasan, 1984), and report on
an annotation project for German newswire texts.

Documents from the SALSA 2.0 (Burchardt et al.,
2006) corpus were chosen to form the basis for the
annotation of lexical chain information. SALSA is
based on the semi-automatically annotated TIGER
Treebank 2.1 (Brants et al., 2002). The TIGER
treebank provides manual annotations, such as lem-
mas, part-of-speech tags, and syntactic structure, the
SALSA part of the corpus is also partially annotated
with FrameNet-style (Baker et al., 1998) frame an-
notation. The documents are general domain news
articles from a German newspaper comprising about
1,550 documents and around 50,000 sentences in to-
tal, with a median document length of 275 tokens.

3.1 Annotation Scheme
In order to minimize the subjectiveness of choices
by different annotators, annotation guidelines were
developed comprising a total of ten pages. We
decided to consider only nouns, noun compounds
and non-compositional adjective noun phrases like
“dirty money” as candidate terms for lexical chain-
ing, which is consistent with the procedures of
Hollingsworth and Teufel (2005) and Cramer et al.
(2008). For annotation, we used the MMAX24

(Müller and Strube, 2006) tool.
We introduce the term dense chain, which refers

to a type of lexical chain in which every element is
4http://mmax2.sourceforge.net
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related to every other element in that chain. Terms
are considered to be related if they share the same
topic, i.e. common sense and knowledge of the lan-
guage is needed to decide which terms belong to-
gether in the same topic and whether a chosen topic
is neither too broad nor too narrow. A single dense
chain can thus be assigned a definite topical descrip-
tion of its items. Whereas Hollingsworth and Teufel
(2005) dealt with the inherent fuzziness of member-
ship of terms to lexical chains by allowing terms
to occur in different lexical chains, we follow the
concept of cohesive harmony introduced by Hasan
(1984) here, where complete chains can be linked
to others. For this purpose, we introduce so-called
level two links, which are cohesive ties between lex-
ical items in distinct dense chains. Having such
a link between two chains, both chains can be as-
signed a topical description which is broader than
the description of the individual chains. This results
in a two-level representation of chains. We report
on dense lexical chains and merged lexical chains
(dense chains are merged into a common chain if a
level two link exists between them) separately.

In total, 100 documents were annotated by two
expert annotators. Documents were chosen around
the length median and consist of 248 – 304 tokens.
The two rightmost columns of Table 3 show the
characteristics of the annotated data set. It can be
concluded that there is a moderate to high agree-
ment regarding the annotator selections of candidate
terms, which is ensured by preselection of candidate
terms by part-of-speech patterns. A value of 81% in
the average agreement on lexical items (cf. Figure 1)
shows that even though the choice of lexical items
is limited to nouns and adjective noun phrases only,
the decision on candidate termhood is somewhat dif-
ferent between the annotators, but compares favor-
ably with previous findings of 63% average pairwise
agreement (Morris and Hirst, 2004).

Figure 2 shows the annotator agreement on the
individual documents using the lccm (cf. Sec. 2),
sorted in the same way as in Figure 1. In order to use
the level two link information the figure also shows
a second agreement score, which was computed on
merged chains.

The agreement scores of the assignment of lexical
items to lexical chains depend partially on the agree-
ment scores of the identified lexical items them-
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Figure 1: Agreement of lexical items annotated by anno-
tator A and annotator B as a percentage of lexical items
annotated by annotator A or annotator B. The average
agreement is 81%.
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Figure 2: Individual annotator agreement scores on 100
documents sorted by their agreement on candidate terms.
The red circles show the agreement of both annotators on
the dense lexical chains disregarding the cohesive links,
and the green dots show the agreement of both annotators
on the merged lexical chains (via the cohesive links) both
using the proposed lexical chain comparison measure.

selves, which is a desired property. Across all doc-
uments, a perfect agreement was never achieved,
which confirms the difficulty of annotating such a
subjective task: The average lccm per document on
the manual annotations is 0.56 (dense chains), re-
spectively 0.54 (merged chains). However, the con-
siderable overlap between the annotators still en-
ables us to evaluate automatic chaining methods,
and the lccm agreement score serves as an upper
bound. Note that by performing no reconciliation
of the annotations we explicitly allow the possibil-
ity of different interpretations which is in our opin-
ion appropriate here due to the subjectiveness of the
task itself. By doing so, we evaluate our algorithms
against individual annotator interpretations.

4 Statistical Methods for Lexical Chaining

This work employs a well-studied statistical method
for creating something that Barzilay (1997) called
an automatic thesaurus which will then be adapted
for lexical chaining. For our automatic approaches,
candidate lexical items in a text are preselected by
the same heuristic that is also applied in Section 3
for the annotation process.

Topic models (TMs) are a suite of unsuper-
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vised algorithms designed for unveiling some hid-
den structure in large data collections. The key idea
is that documents can be represented as compos-
ites of so-called topics where a topic itself repre-
sents as a composite of words. Hofmann (1999)
defined a topic to be a probability distribution over
words and a document to be a probability distribu-
tion over a fixed set of topics. We use the latent
Dirichlet allocation (LDA, Blei et al. (2003)) topic
model for estimating the semantic closeness of can-
didate terms, and explore different ways of utilizing
LDA’s topic information in automatic lexical chain-
ers. Specifically, we use the GibbsLDA++5 frame-
work for topic model estimation and inference, and
examine the following LDA parameters: number of
topics T , Dirichlet hyperparameters for document-
topic distribution α and topic-term distribution β.

We now describe three LDA-based approaches to
lexical chaining.

4.1 LDA Mode Method (LDA-MM)

The LDA-MM approach places all word tokens that
share the same topic ID into the same chain. The
point is now how to decide to which topic a word
belongs to. Since single samples of topics per word
exhibit a large variance (Riedl and Biemann, 2012),
we follow these authors by sampling several times
and using the mode (most frequently assigned) topic
ID per word as the topic assignment. This strategy
reduced the variance in the lccm to a tenth6.

More formally, let samples(d,w) be the vector
of assignments that have been collected for a cer-
tain word w in a certain document d with each
samples

(d,w)
i referring to the i-th sampled topic ID

for (d,w). In other words, samples(d,w) can be seen
as the Markov chain for a particular word in a par-
ticular document. Further let z(d,w) be the topic ID
that was most assigned to the word w with respect
to the samples in samples(d,w). Precisely, z(d,w) is
defined to be the sampled mode in samples(d,w) —
in case of multiple modes a random mode is chosen,

5http://gibbslda.sourceforge.net
6Preliminary experiments yielded a variance of 2.6 × 10−6

in lccm using the mode method and 3.07×10−5 using a single
sample for lexical chain assignment.

which never happened in our experiments.

z(d,w) = mode (samples(d,w))
≈ arg max

j
(P (z = j|w, d))

The LDA-MM assigns for every word w which
is a candidate lexical item of a certain document d
which is assigned the same topic z(d,w) to the same
chain; hence implicitly disambiguating the terms.

The possibility to create level two links is given
by taking the second most occurring topic for a given
word if it exceeds a certain threshold.

4.2 LDA Graph Method (LDA-GM)
The LDA-GM algorithm creates a similarity graph
based on the comparison of topic distributions for
given words and then applies a clustering algorithm
in order to find semantically related words.

Let ψ(d,w) be the per-word topic distribution
P (z|w, d). Analogously to the LDA-MM, ψ(d,w)

can be obtained by counting the occurrences of
a certain topic ID z in the sample collection
samples(d,w) for a particular word w and document
d.

The semantic relatedness between any two words
wi and wj can then be measured by their similarity
score of the topic distributions ψ(d,wi) and ψ(d,wj),
which is stored in a term similarity matrix. This
matrix can also be interpreted as an adjacency ma-
trix of a graph, with candidate items being nodes
and edges being weighted with the similarity value
simij for any two nodes i, j : i 6= j ∧ i, j ∈
{1, 2, . . . , Nd}. We test two similarity measures:
Euclidian (dis-)similarity and cosine similarity.

Let G = (V,E) be the graph represen-
tation of a document with term vertices
V = {v1, . . . , vNd} and weighted edges E =
{(v1, v2, sim12), . . . (vNd, vNd−1, simNdNd−1)},
where simij is either the cosine or Euclidean
similarity of term vectors. For simplicity, we reduce
this representation to an unweighted graph by
only retaining edges (of unit weight) that have a
similarity above a parameter threshold εsim. To
identify chains as clusters in this graph, we follow
Medelyan (2007) and apply the Chinese Whispers
graph clustering algorithm (CW, Biemann (2006)),
which finds the number of clusters automatically.
The CW algorithm implementation comes with
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three parameters to regulate the node weight based
on its degree, which influences cluster size and
granularity. We test options ”top”, ”dist log” and
”dist lin”.

The final chaining procedure is straightforward:
The LDA-GM algorithm assigns every candidate
lexical item wi of a certain document d which is
assigned the same class label ci to the same chain.
Level two links are drawn using the second domi-
nant class of a vertex’s neighborhood, which is pro-
vided by the CW implementation.

4.3 LDA Top-N Method (LDA-TM)
The LDA-TM method is different to the others in
that it uses the information of the per-topic word dis-
tribution φ(z) = P (w|z) and the per-document topic
distribution θ(d) = P (z|d). Given a parameter n re-
ferring to the top n topics to choose from θ(d) and a
parameter m referring to the top m words to choose
from φ(z) the main procedure can be described as
follows: for all z ∈ top n topics in θ(d): chain the
top m words in φ(z) .

Note that although the number of chains and chain
members for each chain is bound and could lead to
the same number and sizes of chains, in practice the
number of generated chains as well as the number of
chain members still varies considerably across doc-
uments: often some of the top m words for a (glob-
ally computed) topic do not even occur in a partic-
ular document. This implies that the parameters n
and m must not be set globally but dependent on
the particular document. To overcome this to some
extent, additional thresholding parameters εθ and εφ
are used for further bounding the respective n or m
parameter. The procedure works like this: for all z
∈ top n topics in θ(d) ∧ θ

(d)
z < εθ: chain the top m

words w in φ(z) ∧ φ
(z)
w < εφ.

Level two links are created by computing the co-
sine similarity between every pair of the top n topic
distributions, and thresholding with a link parame-
ter.

4.4 Repetition Heuristic
All methods described above can be applied to new
unseen documents that are not in the training set. To
alleviate a possible vocabulary mismatch between
training set and test set, which happens when terms
in the test set have not been contained in our training

documents, we add a heuristic that chains repetitions
of (previously unknown) words as a post-processing
step to all methods.

5 Empirical Analysis

In order to provide a realistic estimate of the qual-
ity of our methods to unseen material, we randomly
split our annotated documents in two parts of 50
documents each. One part is used as a development
set for optimizing the parameters of the methods (i.e.
model selection), the other part forms our test set for
evaluation.

The training corpus, on the other hand, consists
of all 1,211 SALSA/Tiger documents that are not
part of the development and test corpus and nei-
ther very long nor very short. These documents
are taken from the German newspaper “Frankfurter
Rundschau” around 1992. Additionally the training
corpus is enriched with 12,264 news texts from the
same newspaper around 1997 with similar charac-
teristics7, making up a total of 13,457 training doc-
uments for the estimation of topic models.

Input to the LDA model training are verbs, nouns
and adjectives, as well as candidate terms as de-
scribed in Section 3.1, all in their lemmatized form.
We further filter words that occur in more than 1/3
of the training documents, as well as known stop-
words, and words that occur in less than two doc-
uments which results in a vocabulary size of about
100K words.

5.1 Experimental Setup
For comparison, we implemented three baselines,
which we describe below. One baseline is trivial,
two baselines are state-of-the art knowledge-based
systems adapted to German.

Random: Candidate lexical items are randomly
tied together to form sets of lexical chains.
Level two links are created analogously. We
regulate the process to yield the same average
number of chains and links as in the develop-
ment and test data.

S&M GermaNet: Algorithm by Silber and McCoy
(2002) with GermaNet as its knowledge re-
source.

7as provided by Projekt Deutscher Wortschatz,
http://wortschatz.uni-leipzig.de/
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G&M GermaNet: Algorithm by Galley and McK-
eown (2003), also using GermaNet.

GermaNet (Hamp and Feldweg, 1997) is a large
WordNet-like resource for German, containing al-
most 100,000 lexical units and over 87,000 concep-
tual relations between synsets. While its size is only
about half of WordNet, it is one of the largest non-
English lexical semantic resources.

5.2 Model Selection
We optimize two sets of parameters: parameters for
the LDA topic model (number of topics K, Dirich-
let hyperparameters α and β) are optimized for the
LDA-MM method only, and the same LDA model
is used in the other two LDA-based methods. Pa-
rameters particular to the respective method are op-
timized individually. For LDA, we tested sensible
combinations in the ranges K = 50..1000, α =
0.05/K..50/K and β = 0.001..0.1. The highest
performance of the LDA-MM method was found for
K = 500, α = 50/K, β = 0.001, and the result-
ing topic model is used across all methods. The final
parameter values for the other methods, found by ex-
haustive search, are summarized in Table 1.

Method Parameter
LDA-GM similarityfunction = cosine similarity

labelweightscheme = dist log
εsim = 0.95

LDA-TM n = 10, m = 20, εθ = 0.2, εφ = 0.2

Table 1: Final parameter values.

5.3 Evaluation
For evaluation purposes, terms that consist of multi-
ple words are mapped to its rightmost term which
is assumed to be the head, e.g. “dirty money” is
mapped to “money”. Additionally, singleton chains,
i.e. chains that contain only a single lexical item
are omitted unless the respective lexical item is not
linked by a level two link.

Dense Chains Comparative results of the ap-
proaches in terms of lccm for both annotators are
summarized in Table 2 (upper half). We observe
that all our new methods beat the random baseline
and the two knowledge-based baselines by a large
margin. The knowledge-based baselines, both using

Anno A Anno B Average
LDA-MM 0.320 0.306 0.313
LDA-TM 0.307 0.299 0.303
LDA-GM 0.328 0.314 0.321

G&M 0.255 0.215 0.235
S&M 0.248 0.209 0.229

Random 0.126 0.145 0.135
LDA-MM 0.316 0.300 0.308
LDA-TM 0.303 0.280 0.291
LDA-GM 0.279 0.267 0.273

G&M 0.184 0.166 0.176
S&M 0.179 0.159 0.169

Random 0.196 0.205 0.201

Table 2: Results of the evaluation based on dense chains
(upper half) and merged chains (lower half). The annota-
tor agreement on the test set’s chains = 0.585; on merged
chains = 0.553

GermaNet, produce very similar lccm scores, which
highlights the important role of the knowledge re-
source. Data analysis revealed that while chains pro-
duced by knowledge-based baselines are sensible,
the main problem is a lack of coverage in terms of
vocabulary and relations in GermaNet. Comparing
the statistical methods, the LDA-GM method excels
over the others.

Level Two Links Table 2 (lower half) summarizes
the evaluation results of the merged chains via level
two links. Because of merging, a text now contains
fewer chains with more lexical items each. Note that
knowledge-based baselines do not construct level
two links, which is why they are heavily penalized
in this setup.

Again, the statistical methods beat the baselines
by a substantial amount. In this evaluation, the ran-
dom baseline performs above the knowledge-based
methods, which is rooted in the fact that lccm penal-
izes small, correct chains, whereas the random base-
line with linking often produces very large chains
containing most of the terms – something that we
also observe for many manually annotated docu-
ments. The large overlap in the biggest chain then
leads to the comparatively high random baseline
score. In this evaluation, the LDA-MM is the clear
winner, with LDA-GM being clearly inferior this
time.
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LDA-MM LDA-GM LDA-TM S&M G&M Anno A Anno B
avg. num. of lexical items per doc. 38.20 29.32 30.82 14.40 15.29 38.66 38.96
avg. num. of chains per doc. 13.80 9.12 7.32 5.83 5.71 11.25 7.38
avg. num. of links per doc. 8.60 2.06 1.44 – – 5.47 2.41
avg. size lexical chains 2.82 3.41 4.61 2.48 2.68 3.69 5.57
avg. num. of merged lexical chains 5.76 7.06 5.98 – – 6.10 4.99
avg. size merged lexical chains 8.29 4.45 5.57 – – 7.60 8.91

Table 3: Quantitiative characteristics of automatic and manual lexical chains. In average, a document contains 51.58
candidate terms as extracted by our noun phrase patterns

Davud Bouchehri,
[Davud Bouchehri,]

seit
[since]

der
[the]

letzten
[last]

Spielzeit
[playing period]

als
[as]

Dramaturg
[dramaturg]

in
[in]

Basel
[Basle]

tätig,
[acting,]

wechselt
[switches]

zur
[to the]

Saison 1996 / 97
[1996 / 97 season]

als
[as]

künstlerischer
[art]

Geschäftsführer
[director]

des
[of the]

Schauspiels
[play]

an
[to]

das
[the]

Staatstheater
[state theater]

Darmstadt.
[Darmstadt.]

Der
[The]

aus
[from]

dem
[the]

Iran
[Iran]

stammende
[coming]

34jährige
[34-year-old]

soll
[shall]

daneben
[besides]

auch
[also]

für
[for]

spartenübergreifende
[multi discipline]

Projekte
[projects]

zuständig
[responsible]

sein,
[be,]

teilte
[aquainted]

das
[the]

Basler
[Basle’s]

Theater
[theather]

am
[on]

Donnerstag
[Thursday]

mit.
[with.]

LDA-MM:
c1: {Spielzeit, Schauspiels, Staatstheater}
c2: {Dramaturg, Theater}
c3: {Saison}
l1: (Theater→ Spielzeit)
l2: (Spielzeit→ Saison)

LDA-GM:
c1: {Dramaturg, Theater}
c2: {Schauspiels, Staatstheater}

LDA-TM:
c1: {Schauspiels, Staatstheater, Theater}
c2: {Dramaturg}
c3: {Spielzeit, Saison}
l1: (Theater→ Dramaturg)

S&M-GermaNet:
–

G&M-GermaNet:
c1: {Staatstheater, Theater}

Figure 3: Diverse output of the various lexical chaining systems after applying them on a short German example text
from the used TIGER/SALSA corpus. For a better understanding the text is calqued. Candidate items are highlighted
and the ci are the resulting dense lexical chains and the li are the level two links produced by the various methods.

Data Analysis Table 3 shows quantitative num-
bers of the extracted lexical chains in the test set.

The LDA-MM approach chains and links a lot
more items than the other statistical methods: it cre-
ates a lot more links between items that would oth-
erwise be removed because they form unlinked sin-
gleton chains. As opposed to this, the graph method
(LDA-GM), as well as the top-n method (LDA-TM)
perform an implicit filtering on the candidate lexi-
cal items by creating less level two links, yet larger
dense chains. The knowledge based algorithms by
Silber and McCoy (2002) and Galley and McKeown
(2003) extract fewer and smaller chains than the sta-
tistical approaches, which reflects GermaNet’s spar-
sity issues. While higher lexical coverage in the
underlying resource would increase the coverage of
our knowledge-based systems, this is only one part
of the story. The other part is rooted in the fact
that lexical cohesion relations, which are used in
lexical chains, encompass many more semantic re-
lations than listed in today’s lexical semantic net-

works. This especially holds for cases where sev-
eral expressions refer to the same event or theme for
which no well-defined relation exists, such as e.g.
”captain” and ”harbor”.

Comparing the three LDA-based approaches, no
overall best method could be determined. the LDA-
MM seems especially suited for a high coverage
and coarse (level two) chains, the LDA-GM appears
most suited for dense chains, and LDA-TM pro-
duces the longest chains on average.

Figure 3 shows the resulting dense lexical chains
and level two links after applying our chainers to a
short example text from our corpus. In the exam-
ple the LDA-TM produces the most adequate lexi-
cal chains, at least in our intuition. The LDA-GM
and the LDA-MM produce slightly wrong chains,
yet the LDA-MM additionally creates some mean-
ingfull level two links which the LDA-GM does not.
Both knowledge-based approaches perform poorly
compared to the knowledge-free approaches, where
the S&M algorithm creates no chains at all and the
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G&M algorithm produces only a single chain con-
taining only two words. This is mostly due to Ger-
maNet’s lacking lexical and relational coverage and
the scope of the algorithms for finding relations be-
tween the words.

6 Conclusion

In this paper, we presented experiments for auto-
matic lexical chain annotation and evaluated them
directly on a manually annotated dataset for Ger-
man. A new two-level annotation scheme for lexi-
cal chains was proposed and motivated by the con-
cept of cohesive harmony. We further proposed a
new measure for comparing lexical chain annota-
tions that is especially suited for the characteristics
of lexical chain annotations. Three variants of sta-
tistical lexical chaining methods based on the LDA
topic model were proposed and evaluated against
two knowledge-based baseline systems. Our sta-
tistical methods exhibit a substantially higher per-
formance than the knowledge-based systems on our
dataset. This can partially be attributed to miss-
ing relations, partially to the lack of lexical cov-
erage of GermaNet, which was used in these sys-
tems. Since GermaNet is a large lexical-semantic
net, however, this strengthens our main point: Espe-
cially for under-resourced languages or subject do-
mains, statistical and data-driven methods should be
preferred over their knowledge-based counterparts,
since they do not require the development of lexical-
semantic nets and adopt easily to subject domains by
training their unsupervised models on an in-domain
collection.

In future work, we would like to explore better
ways of selecting candidate items. While our POS-
pattern-based selection mechanism works for practi-
cal purposes, it currently only extracts noun phrases
and over-generates on compositional adjective mod-
ifiers. We would like to define a better filter to re-
duce over-generation. Further, especially for com-
pounding languages such as German, we would like
to decompose one-word compounds as to be able to
link their heads in lexical chains.

While we found it important to directly evalu-
ate our lexical chaining algorithms on manually an-
notated data, a natural next step in this line of re-
search is to use our lexical chaining methods as

pre-processing steps for applications such as sum-
marization, text segmentation or word sense disam-
biguation. This would enable to find out advantages
and disadvantages of our three variants with respect
to an application.

The manually annotated data, the open source an-
notation tool, the annotation guidelines and the im-
plementations of all described methods and base-
lines are available for download8.
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Proof: Equality of NMI and V
Using the standard notation from information retrievalH(X)= Entropy,
I(X,Y )= Information, H(X|Y )= Conditional Entropy, NMI(X,Y)=
Normalized Mutual Information, V(X,Y)= V-Measure:

V (C,K) = 2×
h× c
h+ c

(1)

h = 1−
H(C|K)

H(C)
, c = 1−

H(K|C)

H(K)
(2)

and

NMI(C,K) =
I(C,K)

H(C)+H(K)
2

= 2×
I(C,K)

H(C) +H(K)
(3)

reformulate h and c using the fact that I(C,K) = H(C) −
H(C|K) = H(K)−H(K|C):

h = 1−
H(C|K)

H(C)

=
H(C)

H(C)
−
H(C|K)

H(C)

=
I(C,K)

H(C)

(4)

c = 1−
H(K|C)

H(K)

=
H(K)

H(K)
−
H(K|C)

H(K)

=
I(C,K)

H(K)

(5)

simplifying h× c using (4) and (5):

h× c =
I(C,K)

H(C)
×
I(C,K)

H(K)

=
I(C,K)2

H(C)H(K)

(6)

simplifying h+ c using (4) and (5):

h+ c =
I(C,K)

H(C)
+
I(C,K)

H(K)

=
I(C,K)H(K) + I(C,K)H(C)

H(C)H(K)

=
I(C,K)[(H(K) +H(C)]

H(C)H(K)

(7)

simplifying h×c
h+c

using (6) and (7):
h× c
h+ c

=
I(C,K)2

H(C)H(K)
×

H(C)H(K)

I(C,K)[H(K) +H(C)]

=
I(C,K)

H(K) +H(C)

(8)

8http://www.ukp.tu-darmstadt.de/
data/lexical-chains-for-german/
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substituting (8) into (1) shows that NMI and V are equal:

V (C,K) = 2×
h× c
h+ c

= 2×
I(C,K)

H(K) +H(C)
= NMI(C,K) (9)
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