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Abstract

Inferring latent attributes of online users has
many applications in public health, politics,
and marketing. Most existing approaches rely
on supervised learning algorithms, which re-
quire manual data annotation and therefore are
costly to develop and adapt over time. In
this paper, we propose a lightly supervised
approach based on label regularization to in-
fer the age, ethnicity, and political orientation
of Twitter users. Our approach learns from
a heterogeneous collection of soft constraints
derived from Census demographics, trends in
baby names, and Twitter accounts that are em-
blematic of class labels. To counteract the im-
precision of such constraints, we compare sev-
eral constraint selection algorithms that opti-
mize classification accuracy on a tuning set.
We find that using no user-annotated data, our
approach is within 2% of a fully supervised
baseline for three of four tasks. Using a small
set of labeled data for tuning further improves
accuracy on all tasks.

1 Introduction

Data annotation is a key bottleneck in applying
supervised machine learning to language process-
ing problems. This is especially problematic in
streaming settings such as social media, where mod-
els quickly become dated as new linguistic pat-
terns emerge. An attractive alternative is lightly
supervised learning (Schapire et al., 2002; Jin and
Liu, 2005; Chang et al., 2007; Graça et al., 2007;
Quadrianto et al., 2009; Mann and McCallum, 2010;
Ganchev et al., 2010). In this approach, classifiers

are trained from a set of domain-specific soft con-
straints, rather than individually labeled instances.
For example, label regularization (Mann and Mc-
Callum, 2007; Graça et al., 2007) uses prior knowl-
edge of the expected label distribution to fit a model
from large pools of unlabeled instances. Similarly,
annotating features with their expected class fre-
quency has proven to be an efficient way of boot-
strapping from domain knowledge (Druck et al.,
2009; Melville et al., 2009; Settles, 2011).

In this paper we use lightly supervised learning to
infer the age, ethnicity, and political orientation of
Twitter users. Lightly supervised learning provides
a natural method for incorporating the rich, declar-
ative constraints available in social media. Our ap-
proach pairs unlabeled Twitter data with constraints
from county demographics, trends in first names,
and exemplar Twitter accounts strongly associated
with a class label.

Prior applications of label regularization use a
small number of highly-accurate constraints; for ex-
ample, Mann and McCallum (2007) use a single
constraint that is the true label proportions of an un-
labeled dataset, and Ganchev and Das (2013) use
cross-lingual constraints from aligned text. In con-
trast, we use hundreds of constraints that are het-
erogeneous, overlapping, and noisy. For example,
we constrain the predicted attributes of users from
a county to match those collected by the Census,
despite the known non-representativeness of Twit-
ter users (Mislove et al., 2011). Furthermore, users
from that county who list first names in their pro-
file have additional constraints imposed upon them,
which may conflict with the county constraints.
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To deal with such noisy constraints, we explore
forward selection algorithms that choose from hun-
dreds of soft constraints to optimize accuracy on a
tuning set. We find that this approach is competi-
tive with a fully supervised approach, with the added
advantage of being less reliant on labeled data and
therefore easier to update over time. Our primary
research questions and answers are as follows:

RQ1. What effect do noisy constraints have on
label regularization? We find that sim-
ply using all constraints, ignoring noise and
overlap, results in surprisingly high accuracy,
within 2% of a fully-supervised approach on
three of four tasks. For age classification, the
constraint noise appears to substantially de-
grade accuracy.

RQ2. How can we select the most useful con-
straints? Using a small tuning set, we find
that our forward selection algorithms im-
prove label regularization accuracy while us-
ing fewer than 10% of the available con-
straints. Constraint selection improves age
classification accuracy by nearly 18% (abso-
lute).

RQ3. Which constraints are most informative?
We find that follower constraints result in the
highest accuracy in isolation, yet the con-
straint types appear to be complementary. For
three of four tasks, combining all constraint
types leads to the highest accuracy.

In the following, we first review related work in
lightly supervised learning and latent attribute infer-
ence, then describe the Twitter data and constraints.
Next, we formalize the label regularization problem
and our constraint selection algorithms. Finally, we
present empirical results on four classification tasks
and conclude with a discussion of future work.

2 Related Work

Inferring demographic attributes of users in social
media with supervised learning is a growing area of
interest, with applications in public health (Dredze,
2012), politics (O’Connor et al., 2010) and market-
ing (Gopinath et al., 2014). Attributes considered
include age (Nguyen et al., 2011; Al Zamal et al.,

2012), ethnicity (Pennacchiotti and Popescu, 2011;
Rao et al., 2011), and political orientation (Conover
et al., 2011; Barberá, 2013).

The main of drawback supervised learning in so-
cial media is that human annotation is expensive and
error-prone, and collecting pseudo-labeled data by
self-identifying keywords is noisy and biased (e.g.,
searching for profiles that mention political orien-
tation). For these reasons we investigate lightly-
supervised learning, which takes advantage of the
plentiful unlabeled data.

Previous work in lightly-supervised learning has
developed methods to train classifiers from prior
knowledge of label proportions (Jin and Liu, 2005;
Chang et al., 2007; Musicant et al., 2007; Mann and
McCallum, 2007; Quadrianto et al., 2009; Liang et
al., 2009; Ganchev et al., 2010; Mann and McCal-
lum, 2010; Chang et al., 2012; Wang et al., 2012;
Zhu et al., 2014) or prior knowledge of features-
label associations (Schapire et al., 2002; Haghighi
and Klein, 2006; Druck et al., 2008; Melville et al.,
2009). In addition to standard document categoriza-
tion tasks, lightly supervised approaches have been
applied to named-entity recognition (Mann and Mc-
Callum, 2010; Ganchev and Das, 2013; Wang and
Manning, 2014), dependency parsing (Druck et al.,
2009; Ganchev et al., 2009), language identifica-
tion (King and Abney, 2013), and sentiment anal-
ysis (Melville et al., 2009).

One similarly-motivated work is that of Chang et
al. (2010), who infer race/ethnicity of online users
using name and ethnicity distributions provided by
the U.S. Census Bureau. This external data is incor-
porated into the model as a prior; however, no lin-
guistic content is used in the model, limiting the cov-
erage of the resulting approach. Oktay et al. (2014)
extend the work of Chang et al. (2010) to also in-
clude statistics over first names.

Other work has inferred population-level statistics
from social media; e.g., Eisenstein et al. (2011) use
geolocated tweets to predict zip-code statistics of de-
mographic attributes of users, and Schwartz et al.
(2013) predict county health statistics from Twitter.
However, no user-level attributes are predicted.

Patrini et al. (2014) build a Learning with La-
bel Proportions (LLP) model with the objective to
learn a supervised classifier when, instead of la-
bels, only label proportions for bags of observations

186



are known. Their empirical results demonstrate that
their algorithms compete with or are just percents of
AUC away from the supervised learning approach.

In preliminary work (Mohammady and Culotta,
2014), we fit a regression model to predict the eth-
nicity distribution of a county based on its Twitter
usage, then applied the regression model to classify
individual users. In contrast, here we use label reg-
ularization, which can more naturally be applied to
user-level classification and can incorporate a wider
range of constraint types.

3 Data

In this section we describe all data and constraints
collected for our experiments.

3.1 Labeled Twitter Data

For validation (and for tuning some of the methods)
we annotate Twitter users according to age, ethnic-
ity, and political orientation. We collects four dis-
joint datasets for this purpose:

Race/ethnicity: This data set comes from the re-
search of Mohammady and Culotta (2014). They
categorized 770 Twitter profiles into one of four cat-
egories (Asian, Black, Latino, White). They used
the Twitter Streaming API to obtain a random sam-
ple of 1,000 users, filtered to the United States.
These were manually categorized by analyzing the
profile, tweets, and profile image for each user, dis-
carding those for which race could not be deter-
mined (230/1,000; 23%). The category frequency is
Asian (22), Black (263), Latino (158), White (327).
For each user, they collected the 200 most recent
tweets using the Twitter API. We refer to this dataset
as the race dataset.

Age: Annotating Twitter users by age can be dif-
ficult, since it is rarely explicitly mentioned. Sim-
ilar to prior work (Rao et al., 2010; Al Zamal et
al., 2012), we divide users into those below 25 and
those above above 25 years old. Using the idea
from Al Zamal et al. (2012), we use the Twitter
search API to find tweets with phrases like “happy
30th birthday to me,” and then we collect those users
and download their 200 most recent tweets using the
Twitter API. We collect 1,436 users (771 below 25
and 665 above 25). While this sampling procedure
introduces some selection bias, it provides a useful

form of validation in the absence of expedient alter-
natives. We refer to this dataset as the age dataset.

Politician: Inspired by works of (Cohen and
Ruths, 2013), we select the official Twitter accounts
of members of the U.S. Congress. We select 189
Democratic accounts and and 188 Republican ac-
counts and download their most recent 200 tweets.
We refer to this dataset as the politician dataset.

Politician-follower: As the politician dataset is
not representative of typical users, we collect a sep-
arate political datasets. We first collect a list of fol-
lowers of the official Twitter accounts for both par-
ties (“thedemocrats” and “gop”). We randomly se-
lect 598 likely Democrats and 632 likely Republi-
cans, and download the most recent 200 tweets for
each user. While the labels for these data may con-
tain moderate noise (since not everyone who follows
“gop” is Republican), a manual inspection did not
reveal any mis-annotations. We refer to this as the
politician-follower dataset.1

We split each of the datasets above into 40% tun-
ing/training and 60% testing (though not all methods
will use the training set, as we describe below).

3.2 Unlabeled Twitter Data

Label regularization depends on a pool of unlabeled
data, along with soft constraints over the label pro-
portions in that data. Since many of our constraints
involve location, we use the Twitter streaming API
to collect 1% of geolocated tweets, using a bound-
ing box of the United States (48 contiguous states
plus Hawaii and Alaska). In order to assign each
tweet to a county, we use the U.S. Census’ center of
population data.2 We use this data to map each ge-
olocated Twitter user to a corresponding county. We
use the k-d tree algorithm (Maneewongvatana and
Mount, 2002) to find the nearest center of popula-
tion for each tweet and use a threshold to discard
tweets that are not within a specified distance of any
county center. In total, we collect 18 million geolo-
cated tweets from 2.7 million unique users.

1We were unfortunately unable to obtain the annotated po-
litical data of Cohen and Ruths (2013) for direct comparison.

2https://www.census.gov/geo/reference/
centersofpop.html
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3.3 Constraints

Finally, we describe the soft constraints used by la-
bel regularization. Each constraint will apply to a
(possibly overlapping) subset of users from the un-
labeled Twitter data. For all constraints below, we
only include the constraint for consideration if at
least 1,000 unlabeled Twitter users are matched. For
example, if we only have 500 users from a county,
we will not use that county’s demographics as a con-
straint. This is to ensure that there is sufficient unla-
beled data for learning. We consider three classes of
constraints:

County constraints (cnt): The U.S. Census pro-
duces annual estimates of the ethnicity and age de-
mographics for each county. We use the most recent
decennial census (2010) to compute the proportion
of each county that is below and above 25 years old
(to match the labels of the annotated data). We addi-
tionally use the 2012 updated estimates of ethnicity
by county, restricting to Asian, Black, Latino, and
White. Each constraint, then, is applied to the users
assigned to that county in the unlabeled data. For
example, there are 46K unlabeled users from Cook
County, which the Census estimates as 45% White.
We consider 3,000 total counties as constraints, of
which roughly 500 are retained for consideration af-
ter filtering those that match fewer than 1,000 users.

Name constraints (nam): Silver and McCanc
(2014) recently demonstrated how a person’s first
name can often indicate their age. The Social Secu-
rity Administration reports the frequencies of names
given to children born in a given year,3 and its ac-
tuarial tables4 estimate how many people born in
a given year are still alive. From these data, one
can estimate the age distribution of people with a
given name. For example, the median age of some-
one named “Brittany” is 23. With this approach, we
can assign constraints indicating the fraction of peo-
ple with a given name that are above and below 25
years old.

For each user in the unlabeled Twitter data, we
parse the “name” field of the profile, assuming that
the first token represents the first name. Constraints
are assigned to users with matching names. We

3http://www.ssa.gov/oact/babynames/
4http://www.ssa.gov/oact/NOTES/as120/

LifeTables_Tbl_7.html

consider more than 50K total name constraints, of
which we retain 175 that match a sufficient number
of users. For example, there are roughly 1,600 un-
labeled users with the first name Katherine; the con-
straint specifies that 86% of them are under 25.

Follower constraints (fol): Our final type of con-
straint uses Twitter accounts and hashtags strongly
associated with a class label. The constraint ap-
plies to users that follow such exemplar accounts
or use such hashtags. We consider two sources
of such constraints. For age and race, we down-
load demographic data for 1K websites from Quant-
cast.com, an audience measurement company that
tracks the demographics of visitors to millions of
websites (Kamerer, 2013). We then identify the
Twitter accounts for each website. For example,
one constraint indicates that 12% of Twitter users
who follow “oprah” are Latino. For political con-
straints, we manually identify 18 Twitter accounts
or hashtags that are strongly associated with either
Democrats or Republicans.5 The constraint speci-
fies that 90% of users that follow one of these ac-
counts (or use one of these hashtags) are affiliated
with the corresponding party. (We omit constraints
use to construct the labeled data for the politician-
follower data.)

4 Label Regularization

Our goal is to learn a classification model using the
unlabeled Twitter data and the constraints described
above. The idea of label regularization is to de-
fine an objective function that enforces that the pre-
dicted label distribution for a set of unlabeled data
closely matches the expected distribution according
to a constraint.

We select multinomial logistic regression as our
classification model. Given a feature vector x, a
class label y, and set of parameter vectors θ =
{θy1 . . . θyk

} (one vector per class), the conditional
distribution of y given x is defined as follows:

pθ(y|x) =
exp(θy · x)∑
y′ exp(θy′ · x)

5For Democrats: thedemocrats, wegoted, dccc, col-
legedems, dennis kucinich, sensanders, repjohnlewis, keithelli-
son, #p2. For Republicans: gop, nrsc, the rga, repronpaul, sen-
randpaul, senmikelee, repjustinamash, gopleader, #tcot
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Typically, θ is set to maximize the likelihood of a
labeled training set. Instead, we will optimize the
objective defined in Mann and McCallum (2007),
using only unlabeled data and constraints.

Let U = {U1 . . . Uk} be a set of sets, where Uj
consists of unlabeled feature vectors x. The ele-
ments of U may be overlapping. Let p̃j be the ex-
pected label distribution of Uj . E.g., p̃j = {.9, .1}
would indicate that 90% of examples in Uj are ex-
pected to have class label 0. The combination of
(Uj , p̃j) is called a constraint.

Our goal, then, is to set θ so that the predicted
label distribution matches p̃j , for all j. Since using
the predicted class counts results in an objective that
is non-differentiable, Mann and McCallum (2007)
instead use the model’s posterior distribution:

q̂j(y) =
∑
x∈Uj

pθ(y|x)

p̂j(y) =
q̂j(y)∑
y′ q̂j(y′)

where p̂j is the normalized form of q̂j . Then, we
want to set θ such that p̂j and p̃j are close. Mann
and McCallum (2007) use KL-divergence, which
is equivalent to augmenting the likelihood with a
Dirichlet prior over expectations where values for
the priors are proportional to p̃j . KL-divergence can
be factored into two parts:

= −
∑
y

p̃j(y) log p̂j(y) +
∑
y

p̃j(y) log p̃j(y)

= H(p̃j , p̂j)−H(p̃j)

where H(p̃j) is constant for each j, and so we need
to minimize H(p̃j , p̂j) in order to minimize KL-
divergence, where H(p̃j , p̂j) is the cross-entropy of
the hypothesized distribution and the expected dis-
tribution for Uj .

We additionally use L2 regularization, resulting in
our final objective function:

J(θ) =
∑
j

H(p̃j , p̂j) +
1
λ

∑
y

||θy||22

In practice we find that λ does not need tuning for
each data set. We set it simply to:

λ =
C∑
j |Uj |

We set C to 1.3e10 in our experiments. Mann and
McCallum (2007) compute the gradient of cross-
entropy as follows:

∂

∂θk
H(p̃j , p̂j) = −

∑
x∈Uj

∑
y

pθ(y|x)xk

×
 p̃j(y)
p̂j(y)

−
∑
y′

p̃j(y)× pθ(y′|x)
p̂j(y)


The gradient for θk is then a sum of the gradi-

ents for each constraint j. In order to minimize the
objective function, we use gradient descent with L-
BFGS (Byrd et al., 1995). (While the objective is
not guaranteed to be convex, this approximation has
worked well in prior work.) To help reduce overfit-
ting, we use early-stopping (10 iterations).

Temperature: Mann and McCallum (2007) find
that sometimes label regularization returns a degen-
erate solution. For example, for a three class prob-
lem with constraint p̃j(y) = {.5, .35, .15}, it may
find a solution such that pθ(y) = {.5, .35, .15} for
every instance and as a result all of the instances
are assigned the same label. To avoid this behav-
ior Mann and McCallum (2007) introduce a temper-
ature parameter T into the classification function as
follows:

pθ(y|x) =
exp(θy · x/T )∑
y exp(θy · x/T )

In practice we find that we can set T to two for bi-
nary classification and ten for multi-class problems.

While the approach described above closely fol-
lows Mann and McCallum (2007), we note two im-
portant distinctions: we use no labeled data in our
objective, and we consider a set of hundreds of
noisy, overlapping constraints (as opposed to only
a handful of precise constraints).

4.1 Constraint Selection
As described above, our proposed constraints are un-
doubtedly inexact. For example, it is generally ac-
cepted that social media users are not a representa-
tive sample of the population. E.g., younger, urban
and minority populations tend to be overrepresented
on Twitter (Mislove et al., 2011; Lenhart and Fox,
2009), and Latino users tend to be underrepresented
on Facebook (Watkins, 2009). Thus, it is incorrect to
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assume that the demographics of Twitter users from
a county match those of all people from a county.
While it may be possible to directly adjust for these
mismatches using techniques from survey reweight-
ing (Gelman, 2007), it is difficult to precisely quan-
tify the proper weights in this context.

Instead, we propose a search-based approach in-
spired by feature selection algorithms commonly
used in machine learning (Guyon and Elisseeff,
2003). The idea is to select the subset of constraints
that result in the most accurate model. We first as-
sume the presence of a small set of labeled data
L = {(x1, y1) . . . (xn, yn)}. Given a set of con-
straints C = {(U1, p̃1) . . . (Uk, p̃k)}, the search ob-
jective is to select a subset of constraints C∗ ⊆ C to
minimize error on L:

C∗ ← argmin
C′⊆C

E(pC′(y|x), L)

where E(·) is a classification error function, and
pC′(y|x) is the model fit by label regularization us-
ing constraint set C ′.

In our experiments, |C| is in the hundreds, so
exhaustive, exponential search is impractical. In-
stead, we consider the following greedy and pseudo-
greedy forward-selection algorithms:

• Greedy (grdy): Standard greedy search. At
each iteration, we select the constraint that
leads to the greatest accuracy improvement on
L.
• Semi-greedy (semi): Rather than selecting the

constraint that improves accuracy the most,
we randomly select from the top three con-
straints (Hart and Shogan, 1987).
• Improved-greedy (imp): The same as grdy,

but after each iteration, optionally remove a
single constraint. We consider each currently
selected constraint, and compute the accuracy
attained by removing this constraint from the
set. We remove the constraint that improves ac-
curacy the most (if any exists). This constraint
is removed from consideration in future itera-
tions.
• Grasp (grsp): Greedy Randomized Adaptive

Search Procedures (Feo and Resende, 1995)
combines semi and imp.

We run each selection algorithm for 140 iterations
(as we discuss below, accuracy plateaus well before
then). Then, we select the constraint set that results
in the highest accuracy. While this search proce-
dure is computationally expensive, it is fortunately
easily parallelizable (by partitioning by constraint),
which we take advantage of in our implementation.
All constraint selection algorithms use the 40% of
the labeled data reserved for training/tuning. After
we finalized all models using the tuning data, we
then used them to classify the 60% of labeled data
reserved for testing.

5 Baselines

We compare label regularization with standard lo-
gistic regression (logistic) trained using the 40% of
labeled data reserved for training/tuning. We also
consider several heuristic baselines:

• Name heuristic, race classification: We im-
plement the method proposed by (Mohammady
and Culotta, 2014), using the top 1000 most
popular last names with their race distribu-
tion from the U.S. Census Bureau to infer
race/ethnicity of users based of most probable
race according last name. If the last name is not
among the top 1000 most popular for a given
race, we simply predict White (the most fre-
quent class).
• Name heuristic, age classification: We use the

heuristic described in Section 3.3 that estimates
a person’s age by their first name. Given the
age distribution of a first name, we classify the
user according to the more probable class.
• Follower heuristic, political classification:

We reuse the exemplar accounts used in the fol-
lower constraint in Section 3.3. That is, rather
than using the fact that a user follows “den-
nis kucinich” as a soft constraint, we classify
such a user as a Democrat. If a user follows
more than one of the exemplar accounts, we se-
lect the more frequent party.6 In case of ties (or
if the user does not follow any of the accounts),
we classify at random.

6For the politician-follower data the heuristic does not use
“thedemocrats” and “gop,” because these were used for the orig-
inal annotation.
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race age pol pol-f avg
heuristic 43.7 56.0 89.4 65.4 63.6

logistic 81.0 83.3 93.8 68.7 81.7
all-const

cnt 61.9 45.5 58.1 60.6 56.5
fol 67.3 61.4 93.8 60.7 70.8

nam 55.6
cnt fol 79.4 45.5 79.3 67.9 68.0

cnt nam 44.1
fol nam 55.9

cnt fol nam 44.0
imp-greedy

cnt 80.1 76.6 65.6 58.9 70.3
fol 76.6 66.1 86.8 69.1 74.7

nam 68.3
cnt fol 82.3 75.2 88.1 74.3 80.0

cnt nam 79.2
fol nam 68.1

cnt fol nam 75.2

Table 1: Accuracy on the testing set. all-const does
no constraint selection; imp-greedy selects con-
straints to maximize accuracy on the tuning set using
the Improved-greedy algorithm.

Features: For all models, we use a standard bag-
of-words representation consisting of a binary term
vector for the 200 tweets of each user, their descrip-
tion field, and their name field. We differentiate be-
tween terms used in the description, tweet text, and
name field, and also indicate hashtags. Finally, we
include additional features indicating the accounts
followed by each user.

6 Results

Table 1 shows the classification accuracy on the test
set for each of the four tasks (F1 results are simi-
lar). We begin by comparing heuristic and logistic
to the all-const results, which is our proposed la-
bel regularization approach using no constraint se-
lection (i.e., no user-labeled data). We can see that
for three of the four tasks (race, pol, pol-f), label
regularization accuracy is either the same as logistic
or within 2%. That is, using no user-annotated data,
we can obtain accuracy competitive with logistic re-
gression.

For age, however, label regularization does quite

all grdy semi imp grsp
Race 77.9 82.5 82.5 82.8 82.8
Age 48.4 82.8 84.3 82.6 84.3
Politician 84.0 98.7 96.0 99.3 96.7
Politic-fol 61.8 79.1 77.0 79.5 77.0
Average 68.0 85.7 85.0 86.0 85.2

Table 2: Comparison of the accuracy of constraint
selection algorithms on the tuning set. all uses all
possible constraints.

poorly; only using the fol constraints surpasses the
heuristic baseline. We suspect that this is in part
due to the greater noise in age constraints — Twit-
ter users are particularly non-representative of the
overall population according to age. To summarize
our answer to RQ1, label regularization appears to
perform quite well under a moderate amount of con-
straint noise, but can still fail under excessive noise.

We next consider the effect of the constraint se-
lection algorithms. Table 2 compares the four dif-
ferent constraint selection algorithms, along with the
model that selects all constraints. We report the ac-
curacy for each approach considering all constraint
types (county, follow, and name, where applicable).
Importantly, this accuracy is computed on the tun-
ing set, not the test set. The goal here is to deter-
mine which search algorithm is able to find the best
approximate solution. By comparing with all, we
can see that constraint selection can significantly im-
prove accuracy on the tuning set (by 18% absolute
on average). The differences among the selection
algorithms do not appear to be significant.

Figure 1 plots the accuracy at each iteration of
constraint select for three of the datasets. The main
conclusion we draw from these figures is that high
accuracy can be achieved with only a small num-
ber of constraints, provided they are carefully cho-
sen. Each method is very close to convergence after
using only 20 constraints (selected from hundreds).
When examining which constraints are selected, we
find that those that apply to many users are often
preferred, presumably because there is more data to
inform the final model.

Returning to Table 1, we have also listed the ac-
curacy of the imp-greedy selection method (which
performed best on the tuning set), further strati-
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Figure 1: Accuracy per iteration of constraint selection for three classification tasks.

fied by constraint type. Note that imp-greedy se-
lects the constraints that perform best on the tun-
ing set, fits the classification model, and then clas-
sifies the testing set. We can see that for three
of the four tasks (race, age, pol-f), imp-greedy
results in higher accuracy than using all the con-
straints. This is particularly pronounced for age: the
best result without constraint selection is 61.4, com-
pared with 79.2 for imp-greedy. Furthermore, imp-
greedy outperforms logistic on two of four tasks,
suggesting that using unlabeled data can improve
accuracy. Note that both imp-greedy and logistic
use the same amount of labeled data, though in dif-
ferent ways: logistic performs standard supervised
classification; imp-greedy uses the labeled data to
perform constraint selection for label regularization.
Thus, to summarize our answer to RQ2, we find that
imp-greedy provides a robust method to select con-
straints in the presence of noise. While it comes at
the cost of a small amount of labeled data, it is less
reliant on this data than a traditional supervised ap-
proach, and so may be more applicable in streaming
settings.

To answer RQ3, we can compare the accuracies
provided by each of the constraint types in Table 1.
For all-const, the follower constraints (fol) outper-
form the county constraints (cnt) for all tasks, while
the name constraint (which only applies to age), falls
between the two. Including both cnt and fol im-
proves accuracy on two of the four tasks. These
trends change somewhat for imp-greedy. The cnt
constraints are superior for two tasks, while fol are
superior for the other two. The nam constraints
again fall between the two. Unlike for all-const,

using more constraint types improves accuracy on
three of four tasks. These differences suggest that
the constraint selection algorithms allow label regu-
larization to be more robust to noisy and conflicting
constraints. That is, using constraint selection, we
can view constraint engineering akin to feature engi-
neering in discriminative, supervised learning meth-
ods — developers can add many types of constraints
to the model without (much) fear of reducing accu-
racy. The usual caveat of overfitting applies here as
well; indeed, comparing the accuracies on the tuning
set (Table 2) with those on the testing set (Table 1)
suggests that some over-tuning has occurred, most
notably on age and pol.

We further examined the coefficients of the mod-
els trained using each constraint type. We find,
for example, that county constraints result in mod-
els with large coefficients for location-specific terms
(e.g., college names for younger users, southern
cities for Republican users), while follower con-
straints tend to learn models dominated by follower
features (“thenation” for Democrats, “glennbeck”
for Republicans). Similarly, name constraints result
in models dominated by name features. This anal-
ysis helps explain how combining constraint types
can improve overall accuracy, since each type em-
phasizes different subsets of features.

This difference between constraint types is further
shown in Table 3, which lists the top features for the
semi-greedy constraint selection algorithm, fit using
different subsets of constraints. In this table, the ital-
icized words are the words from the description field
of the user’s profile, the underlined words are fol-
lowed accounts, and the bold words are the words
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age under 25 above 25

County athens tech uga
virginia georgia

airport
nashvillescene
at theonion and

Follow

altpress
colourlovers

hotnewhiphop
planetminecraft

me

newsobserver
baseballamerica
peopleenespanol

breakingnews
hogshaven

Name
katherine

diana me my
this

debra lori
sandra janet

No Desc

politician Democratic Republican

County
oregon eugene
oregon nesn
university

colts beach
tahoe indiana
jgfortwayne

Follow

keithellison
repjohnlewis
sensanders

thinkprogres
thenation

gopleader
senmikelee

senrandpaul gop
glennbeck

Table 3: Top features learned by label regularization
for the age and politician datasets using semi-greedy
constraint selection. Models were fit separately for
each constraint type (county, follow, name). Ital-
icized words are from the description field, bold
words are from the name field, and underlined words
are followed accounts.

from the name field of the user profile. In the first
row, we display the top features for a model fit us-
ing only county constraints. College names appear
as top features for younger users, and “airport” and
@NashvilleScene (a newspaper) are for older users.
The second row of Table 3 shows the top features for
following constraints; some news channels are ap-
pear for younger (Alternative Press) and older (The
News & Observer) users. The third row shows the
top features for name constraints, and some names
are in the top features for younger (Katherine and
Diana) and older (Debra, Lori, Sandra, and Janet).
In addition, the absence of a profile description is
indicative of older users.

The bottom of Table 3 shows top features for
the politician dataset. The first row shows that
some colleges, a sports network in New England,

and locations in the Pacific Northwest are indica-
tive of Democrats. Indiana-related terms are strong
indicators of Republicans: indiana, the Indianapo-
lis Colts (an American football team), and ‘jgfort-
wayne’ (The Journal Gazette, a newspaper in Fort
Wayne, Indiana). This aligns with the strong sup-
port of the Republican party in Indiana.7 The sec-
ond row shows top-ranked following features. Ac-
counts ‘keithellison’ and ‘repjohnlewis’ are top fea-
tures for Democratic Party; these belong to Keith
Ellison and John Robert Lewis, members of the
Democratic leadership of the House of Representa-
tives. On other hand, the ‘gopleader’ (the official
account for the Republican’s majority leader in the
House) and ‘senmikelee’ (Republican Senator Mike
Lee from Utah) are the top features for Republicans.

7 Conclusions and Future work

While label regularization has been used on a num-
ber of NLP tasks, we have presented evidence that
it is applicable to latent attribute inference even us-
ing many noisy, heterogeneous constraints. We have
compared a number of constraint selection algo-
rithms and found they can make label regularization
more robust to noisy constraints, allowing develop-
ers to combine many rich constraint types without
reducing accuracy.

There are many avenues for future work. Most
pressing is the need to directly address the sampling
bias created when constraints derived from the over-
all population are applied to online users. We plan to
explore alternative optimization strategies to explic-
itly address this issue. Finally, additional research
should quantify how responsive label regularization
approaches are to the changing linguistic patterns
common in online data.

References
F Al Zamal, W Liu, and D Ruths. 2012. Homophily and

latent attribute inference: Inferring latent attributes of
twitter users from neighbors. In ICWSM.
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