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Abstract

Context representations are a key element in
distributional models of word meaning. In
contrast to typical representations based on
neighboring words, a recently proposed ap-
proach suggests to represent a context of a tar-
get word by a substitute vector, comprising the
potential fillers for the target word slot in that
context. In this work we first propose a vari-
ant of substitute vectors, which we find partic-
ularly suitable for measuring context similar-
ity. Then, we propose a novel model for rep-
resenting word meaning in context based on
this context representation. Our model outper-
forms state-of-the-art results on lexical substi-
tution tasks in an unsupervised setting.

1 Introduction

Following the distributional hypothesis (Firth,
1957), distributional models represent the meaning
of a word type as an aggregation of its contexts.
A recent line of work addresses polysemy of word
types by representing the meaning (or sense) of each
word instance individually as induced by its partic-
ular context. The context-sensitive meaning of a
word instance is commonly called the word meaning
in context, as opposed to the word meaning out-of-
context of a word type.

A key element of distributional models is the
choice of context representation. A context of
a word instance is typically represented by an
unordered collection of its first-order neighboring
words, called bag-of-words (BOW). In contrast, Yat-
baz et al. (2012) proposed to represent this context
as a second-order substitute vector. Instead of the
neighboring words themselves, a substitute vector

our proposals will unlock new ways of raising
the finance needed to develop businesses.

representations of context
BOW proposals, raising, unlock, ways
substitutes alternate, proposing, infinite, various

representation of word meaning in context
paraphrases new, innovative, different,

alternative, novel

Table 1: Example for BOW and substitute vector repre-
sentations for a context of the target word new. The para-
phrase vector is the representation learned by our model
for the meaning of new in this context. Only the first few
entries for each vector are shown.

includes the potential filler words for the target word
slot, weighted according to how ‘fit’ they are to fill
the target slot given the neighboring words. For ex-
ample, the substitute vector representing the con-
text “I my smartphone.” (target slot underlined),
would typically include potential slot fillers such as
love, lost, upgraded, etc.

Melamud et al. (2014) argued that substitute vec-
tors are potentially more informative than tradi-
tional context representations since the fitness of
the fillers is estimated using an n-gram language
model, thereby capturing information embedded in
the neighboring word order. They showed promising
results on measuring word similarity out-of-context
with a distributional model based on this approach.

In this paper we first propose a variant of sub-
stitute vectors as a context representation, which
we find particularly suitable for measuring context
similarity. Then, we extend the work in Mela-
mud et al. (2014) by proposing a novel distribu-
tional model for representing word meaning in con-
text, based on this context representation. Like sub-
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stitute vectors, the word representations learned by
our model are second-order vectors, which we call
paraphrase vectors. Table 1 illustrates the difference
between BOW and substitute vector context repre-
sentations, as well as our representation for a word
in context. Our model outperforms state-of-the-art
results on lexical substitution tasks while learning
from plain text in an unsupervised setting. 1

2 Background

A key element in distributional models of word
meaning is the choice of context representation. Tra-
ditional out-of-context distributional models aggre-
gate the observed contexts of a target word type to
derive its representation. More recent models of
word meaning in context typically bias such a word
type representation towards the context of each par-
ticular word instance using context similarity mea-
sures. The typical choice for context representation
is a bag-of-words (BOW) context vector. In this vec-
tor each neighboring word type is assigned with a
weight, such as its count (Erk and Padó, 2010) or tf-
idf (Reisinger and Mooney, 2010). A more recent
variant of this approach is the continuous bag-of-
words (CBOW) vector, where context is represented
as an average, or tf-idf weighted average, of dense
low dimensional vector representations of the neigh-
boring words (Huang et al., 2012). Context similar-
ity is typically computed using vector Cosine.

Several types of models of word meaning in con-
text were recently proposed in the literature, mostly
based on variants of BOW context representations.
Thater et al. (2011) aggregate the contexts of a tar-
get word type into a sparse syntax-based context fea-
ture vector. Then, they generate a biased vector rep-
resentation by reducing the weight of each context
feature the less similar it is to the context of the
given word instance. Reisinger and Mooney (2010)
and Huang et al. (2012) use context clustering to in-
duce multiple word senses for a target word type,
where each sense is represented by a different con-
text feature vector. Then, they choose for each word
instance the sense vector most similar to its given
context. Ó Séaghdha and Korhonen (2014) use LDA
(Blei et al., 2003) to aggregate word collocations to

1Our source code is publicly available at: www.cs.biu.
ac.il/nlp/resources/downloads/word2parvec/

distributions over topics. Then, word meaning is
represented by distributions that can be conditioned
on (and hence biased towards) the given context.

3 Substitute Vectors

In this work we propose to use a little-known context
modeling paradigm, representing a context word
window as a substitute vector (Yatbaz et al., 2012).
Unlike traditional context representations, a substi-
tute vector does not comprise the first-order neigh-
boring words of the target word. Instead it includes
the second-order potential fillers for the target word
slot, weighted according to how ‘fit’ they are to fill
the target slot given the neighboring words. More
formally, we denote a word window context around
a target word slot as c, and the substitute vector rep-
resenting c as ~sc. ~sc[v] is the fitness weight of word
v to fill the target slot in context c, for every word v
in the target word vocabulary. For example, the sub-
stitute vector ~sc = [big 0.35, good 0.28, bold 0.05,
...] may represent the context c = “It’s a move.”.

Yatbaz et al. (2012) used a Kneser-Ney smoothed
n-gram language model (Kneser and Ney, 1995) to
estimate conditional probability as the fitness weight
~sc[v] = p(v|c). Using a smoothed language model is
essential since context-word collocation counts are
too sparse when the context considered is an entire
word window. We note that given the nature of n-
gram language models this representation is sensi-
tive to word order. This property makes it appealing
as it is potentially more informative than the tradi-
tional unordered BOW context representations.

4 A Model for Word Meaning in Context

The main contribution of this paper is in propos-
ing a model for word meaning in context, which
is based on substitute vector context representations
instead of the traditional bag-of-words representa-
tions. To achieve this we first propose a variant
of substitute vectors as our context representation.
Then, we consider an out-of-context representation
for a word type as the average of the substitute vector
representations of its observed contexts. Finally, the
in-context representation for a given word instance
is a weighted average of its observed contexts. In
this weighted average, contexts are weighted higher
the more similar they are to the given context, using
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... the very essence or heart of being a coach .
c ... the very essence or heart of being a .
~sc christian, non-smoker, traitor, grandparent
~pu coach, bus, train, boat
~pu,c coach, teacher, writer, manager

Table 2: The substitute vector ~sc for context c, the out-of-
context paraphrase vector ~pu for the word type u = coach,
and the in-context paraphrase vector ~pu,c for u in con-
text c, as learned by our model. Only the first few vector
entries (weights omitted) are shown. ~sc, ~pu and ~pu,c are
defined formally in sections 4.1 and 4.2.

a substitute vector similarity measure. Intuitively,
with this weighting scheme, we wish to consider
mostly the word type contexts that induce a sense
similar to that of the given word instance, under the
premise that similar contexts induce similar word
senses. The resulting word representation is biased
towards the given context on one hand due to the
context weighting scheme, and is bounded to the tar-
get word type spectrum of meanings on the other
hand as only contexts of that word type are taken
into consideration.

Table 2 exemplifies a context substitute vector and
both out-of-context and in-context word representa-
tions learned by our model for a word instance. It
is evident in this case that our in-context represen-
tation comprises suitable paraphrases in contrast to
the out-of-context representation. We evaluate these
word representations quantitatively in Section 6. We
next describe our model in more detail.

4.1 Context representation

We wish the context representation in our model
to be optimized for measuring context similarity,
which is typically used to bias in-context word rep-
resentations towards a given context.

For the purpose of measuring similarity between
contexts, we consider in this section the contexts
as ‘targets’. Accordingly, we observe that the sub-
stitute vector of a word window context c can be
considered as a vector of first-order co-occurrence
features of c, as it consists of slot filler words that
are likely to co-occur with this context. Hence, we
follow prior work and propose to use Positive PMI
(PPMI) as our substitute vector feature weights, in-
stead of the conditional probabilities used by Yat-
baz et al. (2012), and vector Cosine as our context

Q: the transcendental meditation people advertised
this: meditation can fix many sicknesses.
substitutes relieve, circumvent, alleviate
Rsub: use the results of your analysis to suggest
design changes that would fix these problems.
substitutes overcome, solve, alleviate
Rcbow: fix in your mind a picture of
heavenly worship that is real and eternal.
substitutes echoing, send, stick

Table 3: Example for a context of the word fix, Q, and the
two contexts of fix, Rsub and Rcbow, most similar to it,
based on substitute vector and CBOW similarity, respec-
tively. The substitute vectors are illustrated below each
context (selected substitutes in the top-10 entries shown).

similarity function (Bullinaria and Levy, 2007):

~sc[v] = PPMI(c, v) = max(0, PMI(c, v)) (1)

sim(c, c′) = cos(~sc, ~sc′) (2)

where ~sc[v] is the fitness weight for word v in the
substitute vector of context c, PMI is point-wise
mutual information (Church and Hanks, 1990), and
sim(c, c′) is our context similarity measure. We
note that a context c in our setting stands for an en-
tire word window rather than a single context word.
We therefore follow Yatbaz et al. (2012) using an
n-gram language model to estimate PMI(c, v), as
detailed in Section 5.

Table 3 illustrates an example of a given context
and the contexts most similar to it, as retrieved by
our substitute vector and continuous bag-of-words
context similarity measures. It is evident in this case
that our measure correlates with the induced senses
better than the bag-of-words measure. We suggest
this context similarity measure as a standalone con-
tribution, which may be useful in other settings as
well. We evaluate it quantitatively in Section 5.

4.2 Modeling word meaning
Word meaning out-of-context We first define our
out-of-context representation for target word type u,
as an average of the substitute vectors of its contexts:

(3)~pu =
1
|Cu|

∑
i∈Cu

~si

where Cu is a collection of the contexts observed
for target word type u in a learning corpus, and ~si

are their substitute vectors.
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Word meaning in context Next, following Erk
and Padó (2010), to represent the meaning of word u
in context c, we would like to alter the out-of-context
representation by theoretically averaging only over
contexts that induce a word sense similar to that of
the given context. To approximate this objective we
use a weighted average of all contexts of u, where
contexts are weighted according to their similarity
to the given context:

(4)~pu,c =
1
Z

∑
i∈Ccu

sim(c, i) · ~si

where Ccu = Cu ∪ c (u’s corpus contexts plus the
given context) and Z is a normalization factor.

~pu,c[v] = 1
Z

∑
i∈Ccu

sim(c, i) · ~si[v] is the av-
erage fitness of v within the contexts of u, biased
to those similar to c. We consider this a context-
sensitive similarity score, indicative of the likeli-
hood of v to be a paraphrase of u in context c.2 Thus,
we name our in-context representation for a word in-
stance as its paraphrase vector.

Finally, ~p m
u,c denotes a word representation as de-

fined in Equation (4), where only the top-m percent
of the contexts in Ccu most similar to c are averaged.
Using low values for m means injecting a stronger
bias in our model towards the given context.

5 Evaluating Context Representations

As described in Section 4, our model for word mean-
ing in context utilizes a context similarity measure
under the premise that similar contexts induce simi-
lar target word senses. In this section we describe a
focused evaluation of our proposed similarity mea-
sure and prior methods with respect to this objective.
This evaluation suggests that our measures may be
useful as a component in other models as well.

5.1 Task description
Given a word window context c of a target word u,
we wish to evaluate context similarity measures on
their ability to retrieve other contexts of u from Cu

that induce a similar sense. To perform such an eval-
uation we want a dataset of target words with thou-
sands of sense tagged contexts in Cu for each tar-
get word u. Since available manually sense-tagged

2This can be considered an in-context extension of the out-
of-context similarity score proposed by Melamud et al. (2014).

datasets, such as SemCor (Mihalcea, 1998), are not
large enough for this purpose, we adopted a pseudo-
word approach, with which we can automatically
generate as many tagged contexts as we wish.

Pseudo-word methods consider a set of real
words as pseudo-senses of an artificial pseudo-word
(Pilehvar and Navigli, 2014). Specifically, we
adopted a simple approach following Otrusina and
Smrz (2010) to generate our pseduo-words. First,
we sampled 100 words randomly from our learn-
ing corpus, ukWaC (Ferraresi et al., 2008). Then
we constructed a pseudo-word based on each of
these words as follows. We used WordNet (Fell-
baum, 2010) to identify all of the word’s synsets.
Next, for each synset we chose the surface word
which is the least polysemous yet occurs in our
learning corpus at least 1,000 times, as a represen-
tative for this synset. Then, we created a pseudo-
word whose pseudo-senses are the set of the rep-
resentative words. For example, the pseudo-word
that was generated based on the word promote
is elevate encourage advertise. Finally, we sam-
pled from our learning corpus 1,000 contexts for
each pseudo-sense word, and for each pseudo-word
we mixed together all contexts of its pseudo-sense
words. The original pseudo-sense word for each
context was recorded as its sense tag.

Next, for each pseudo-word, we sampled a single
query context from all of its mixed contexts and then
ranked the remaining contexts according to each of
the compared context similarity measures. We com-
puted precision at top-1, top-1% and average pre-
cision for the ranked lists, where a true-positive is
a context with an identical sense tag as the query
context. We repeated this procedure, sampling 100
different query contexts and computed the mean pre-
cision values. Finally, we report for each compared
method, the average of the mean precision values
for all 100 pseudo-words. Our pseudo-word dataset
consists on average around 4.5 senses and 4,500
tagged contexts per pseudo-word. 3

5.2 Compared methods

All compared methods are unsupervised and use the
plain text of ukWaC (Ferraresi et al., 2008), a two

3Our pseudo-word dataset is available at: www.cs.biu.
ac.il/nlp/resources/downloads/word2parvec/
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billion word web corpus, as their learning corpus.
We converted every word that occurs less than 100
times in the corpus to a special rare-word token, and
all numbers to a special number token, obtaining a
vocabulary of a little under 200K word types.

5.2.1 Substitute vector similarity
We learned a 5-gram Kneser-Ney language model

from our learning corpus using KenLM (Heafield
et al., 2013). Following Yatbaz et al. (2012),
we used FASTSUBS (Yuret, 2012) with this lan-
guage model to efficiently generate substitute vec-
tors pruned to their top-n substitutes, v1..vn, and
normalized such that

∑
i=1..n p(vi|c) = 1. In or-

der to make our substitute vectors compatible with
the pseudo-word setting, for each substitute vec-
tor we replaced the entries of all of the pseudo-
sense words with a single pseudo-word entry, and
assigned it with the sum of the conditional proba-
bilities of the pseudo-sense words. Next, we com-
puted the Positive PMI weights for the substitutes,
~sc[vi] = PPMI(vi, c) = max(0, log(p(vi|c)

p(vi)
)),

where p(vi) is the unigram probability of the word vi

in our learning corpus. The unigram probability of
a pseudo-word is the sum of the probabilities of its
pseudo-sense words. Finally, we computed context
similarity as substitute vector Cosine.

SUBweight,n denotes our similarity measure,
where n is the pruning factor and weight ∈
{cond, ppmi} denotes conditional probabilities and
PPMI fitness weights, respectively. We note that by
using a 5-gram language model we consider a con-
text word window of 4 words on each side of the
target word.

5.2.2 Bag-of-words similarity
Bag-of-words similarity between two context

word windows is computed as vector Cosine be-
tween their bag-of-words vector representations.
We use BOWweight,l to denote these context sim-
ilarity measures, where l is the size of the con-
text word window on each side of the target word
(we use sent to denote the entire sentence), and
weight ∈ {tf, tfidf} stands for term frequency and
tf-idf weights, respectively. CBOWweight,l is used
to denote the same for the continuous bag-of-words
method, which is based on averaging the dense
vector word representations. We used word2vec

Method P@1 P@1% AvgPrec
SUB · CBOW 80.6 67.1 44.5
SUBppmi,1000 73.1 60.0 44.0
SUBppmi,100 74.5 61.0 42.8
CBOWtfidf,8w 68.4 58.0 43.5
SUBcond,1000 63.6 53.0 38.6
SUBcond,100 63.1 52.7 38.5
BOWtfidf,sent 62.8 51.3 34.6
Random 30.4 30.4 30.4

Table 4: Precision values for compared context similarity
measures. Only the best performing configurations for
BOW and CBOW are shown.

(Mikolov et al., 2013) to learn these dense vectors.4

5.3 Results

The results presented in Table 4 support our hypoth-
esis that our proposed substitute vector similarity
measure is particularly suitable for measuring con-
text similarity, at least in our setting. Our similarity
measures outperform both CBOW and BOW base-
lines on P@1 and P@1%, with statistical signifi-
cance at p < 0.01 for SUBppmi,100, and p < 0.05
for SUBppmi,1000, on a paired t-test. On average
precision they perform similarly to CBOW. Within
the substitute vector measures, our proposed PPMI
weights significantly outperform the previously used
conditional probabilities, and the choice of pruning
factor has a small impact. Within the bag-of-words
measures, the CBOW measure significantly outper-
forms the BOW measure, with an optimal window
size of 8 (on each side). This suggests that CBOW’s
ability to capture context word similarities via its
dense word representations is beneficial.

Finally, SUB·CBOW denotes a combined simi-
larity measure, which is the geometrical mean be-
tween the scores of the best configurations of the
respective methods. We see that this combination
yields substantial improvement, outperforming all
other baselines across all precision categories, with
p < 0.0001 for P@1 and P@1%. We hypothesize
that this is due to the synergy between the word or-
der sensitivity of SUB and the word similarities and
larger window size captured by CBOW.

4We experimented with various parameters of word2vec,
observing small differences in performance. We report here the
results with the best configuration (cbow 1, negative sampling
15, window size 8).
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6 Evaluating Word Representations

Models of word meaning in context are commonly
evaluated in lexical substitution tasks on predict-
ing paraphrases of a target word that preserve its
meaning in a given context. Conveniently, our para-
phrase vector representations for words include ex-
actly these predictions. We evaluated our model on
two lexical substitution datasets under two types of
tasks and compared it to the state-of-the-art as de-
scribed next.

6.1 Lexical substitution datasets

The dataset introduced in the lexical substitution
task of SemEval 2007 (McCarthy and Navigli,
2007), denoted here LS07, is the most widely used
for the evaluation of lexical substitution. It consists
of 10 sentences extracted from a web corpus for each
of 201 target words (nouns, verbs, adjectives and ad-
verbs), or altogether 2,010 word instances in senten-
tial context, split into 300 trial sentences and 1,710
test sentences. The gold standard provided with this
dataset is a weighted lemmatized paraphrase list for
each word instance, based on manual annotations.

A more recent dataset (Kremer et al., 2014), de-
noted LS14, provides the same kind of data as LS07,
but instead of target words that were specifically se-
lected to be ambiguous as in LS07, the target words
here are simply all the content words in text doc-
uments extracted from news and fiction corpora.
LS14 is also much larger than LS07 with over 15K
target word instances.

6.2 Predicting lexical substitutions

6.2.1 Task description
In SemEval 2007 the lexical substitution task or-

ganizers evaluated participant systems on their abil-
ity to predict the paraphrases in the gold standard of
the LS07 test-set in a few subtasks (1) best and best-
mode - evaluate the quality of the best predictions
(2) oot and oot-mode (out of ten) - evaluate the cov-
erage of the gold paraphrase list by the top ten best
predictions.5 We performed this evaluation on both
the LS07 and LS14 datasets.

5For brevity we do not describe the details of these subtasks.
We report only recall scores as in this task recall=precision for
all methods that predict paraphrases to all of the instances in the
dataset, as we did.

6.2.2 Compared methods

We used the same learning corpus and substitute
vector generation procedure as described in Sec-
tion 5. For every target word type u (not lemma-
tized) in the LS07 and LS14 datasets, we sampled a
collection of 20K sentence contexts from our learn-
ing corpus (or less for word types with lower fre-
quency), denoted Cu.6 Next, we generated substi-
tute vectors, pruned to top-100 entries, for these con-
texts. For every target word type u, we discarded
the contexts in Cu where u itself is not in the top-
100 predicted substitutes, assuming that either these
contexts are not typical to u, or that the quality of
the predicted substitutes is low. This omits approx-
imately 25% of all contexts. Finally, we generated
top-100 and top-1000 substitute vectors for all of the
instances in the LS07 and LS14 datasets.

We used a generalization of PPMI, called Shifted
PPMI (Levy and Goldberg, 2014), as our substi-
tute vector fitness weights: SPPMI(v, c; s) =
max(0, PPMI(v, c) − s), where s is a global shift
constant. Levy and Goldberg (2014) showed that
SPPMI outperformed PPMI on various semantic
tasks. We tuned the value of s ∈ {0.0, 1.0, 2.0, 3.0}
on the trial portion of the LS07 dataset and used the
best value, 2.0, on the LS07 test set and on LS14.
We omit results based on conditional probability
weights for brevity as they were substantially worse.
Next, for every LS07/LS14 instance of word u in
context c we generated a paraphrase vector accord-
ing to Equation (4). We used the paraphrase vectors
sorted by entry scores as our paraphrase predictions.
P in

n (in-context) denotes this method, where n is the
pruning factor used for generating the substitute vec-
tors of the lexical substitution datasets.7

As baseline, we generated our meaning out-
of-context paraphrase vectors according to Equa-
tion (3), denoted P out. We also used word2vec
(Mikolov et al., 2013) to generate dense word vec-
tors for all word types in our learning corpus.8 Para-

6In general, we observed that the results improve the more
contexts are sampled up to ∼ 10K contexts per word type.

7For the learning corpus contexts we always used top-100
substitute vectors to reduce computational complexity.

8We experimented with 600-dimension vectors, negative
sampling value 15, both skip and cbow options, and various
window sizes, and tuned these parameters on the trial portion of
the LS07 dataset.
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phrase predictions for this baseline, denoted w2vout,
were computed as the words most similar to the tar-
get word based on dense vector Cosine similarities,
ignoring the context (out-of-context).

In the best subtasks we used only the top ranked
lemmatized paraphrase (best prediction) suggested
by each of the compared methods. In the oot sub-
tasks we used the top-10 lemmatized paraphrases.

To the best of our knowledge, Biemann and
Riedl (2013) is the only prior work that attempted
to perform the original SemEval 2007 task on the
LS07 dataset, learning only from corpus data like
we do. They merged Gigaword (Parker et al., 2011)
and LLC (Richter et al., 2006) as their learning cor-
pus, which is similar in size to ours. We denote by
Biemannin and Biemannout the reported results for
their in-context and out-of-context methods, respec-
tively. There is no previously reported result for this
task on LS14.

6.2.3 Results
The results are shown in Table 5. First, we note

that our out-of-context method significantly out-
performs the out-of-context word2vec baseline on
all subtasks in both LS07 and LS14, showing that
our model performs well on predicting paraphrases
even out-of-context. Furthermore, our meaning in-
context methods show significant additional gains in
performance on LS07, with top-1000 pruning per-
forming a little better than top-100. On LS14 we
see smaller gains, which may be due to the fact that
its target words are less ambiguous by construction.
This behavior is consistent with similar findings in
Kremer et al. (2014). Finally, both Biemannout and
Biemannin exhibit substantially lower performance
on LS07 than our methods, achieving scores that are
close to the word2vec baseline.

We note that all ten systems that participated in
the original SemEval 2007 task on the LS07 dataset
followed a two-step scheme (1) generating para-
phrase candidates using a manually constructed the-
saurus, such as WordNet; (2) ranking the candidates
according to the given context based on data from
various learning corpora. We stress that in con-
trast to all these systems, our model does not uti-
lize manually constructed thesauri, and therefore ad-
dresses a much harder problem of predicting para-
phrase substitutes out of the entire vocabulary, rather

Method best best-m oot oot-m
LS07 test-set

P in
1000 12.72 21.71 36.37 52.03

P in
100 12.25 20.73 35.54 50.98

P out 10.68 18.29 32.58 46.34
w2vout

skip,4w 8.25 13.41 29.27 39.92
Biemannin n/a n/a 27.48 37.19
Biemannout n/a n/a 27.02 37.35

LS14 all
P in

1000 8.07 17.37 26.67 46.23
P in

100 7.93 16.97 26.24 45.58
P out 7.80 16.90 25.57 44.66
w2vout

skip,4w 5.99 12.21 22.66 36.98

Table 5: best and oot subtasks scores for all compared
methods. best-m and oot-m stand for the mode scores.

than merely ranking a small given set of candidates.
Even so, in the best subtasks we achieve top results
with respect to the reported score range of these sys-
tems, 2.98-12.90 for best, and 4.72-20.73 for best-
mode. In comparison to the reported oot score range,
our results are lower than average.

6.3 Ranking lexical substitutions

6.3.1 Task description
Most works that used the LS07 dataset after Se-

mEval 2007, as well as the results reported for LS14,
focused only on candidate ranking. Instead of us-
ing a thesaurus, they obtained the set of paraphrase
candidates for each target type by pooling the an-
notated gold-standard paraphrases from all of its in-
stances.9 The quality of the rankings with respect to
the gold standard was measured using Generalized
Average Precision (GAP) (Kishida, 2005). Further-
more, all of the works compared in this section dis-
carded multi-word expression substitutes from the
original gold standard, and omitted instances who
thus remained with no gold paraphrases. We follow
the same evaluation settings for this task.

6.3.2 Compared methods
We observe that in this task, the objective is

to rank candidates that are known to be semanti-
cally similar to the target word in some context.
Therefore, we hypothesize that possibly more fo-
cus should be given in this case to assessing the

9A target type is defined as the pair (word lemma, pos),
where pos ∈ {noun, verb, adjective, adverb}.
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compatibility between the candidates and the given
context versus their semantic similarity to the target
word. To this end, we explore strategies with differ-
ent points of balance between these two factors. On
one hand we evaluate the scores assigned to the can-
didates by our out-of-context paraphrase vector rep-
resentation, which is based only on semantic simi-
larity. Similarly, we also evaluate rankings based on
word2vec similarity scores, with a range of learn-
ing parameters (same range as used in Section 6.2)
and report the best results that we were able to ob-
tain. On the other hand, we ignore the target word
identity and consider only context compatibility by
ranking candidates based on their conditional prob-
abilities to fill the target word slot, as reflected in
the respective context substitute vector representa-
tion, denoted Scond,1000.

Finally, we rank the candidates using the scores in
our in-context paraphrase vectors from Section 6.2.
However, this time we check the effect of injecting
a stronger bias towards the given context c, by aver-
aging only the top-m percent contexts most similar
to c, for m ∈ {1%, 5%, 10%, 100%}, as described
in Section 4.2. We denote this as P in,m

n . We do
not report results based on conditional probability
weights, as they perform substantially worse than
our SPPMI weights. We also report the most recent
state-of-the-art results on both LS07 and LS14. On
LS07, we report our results both on the test-set and
on the entire dataset (trial+test).

6.3.3 Results
The results are shown in Table 6. Looking first

at the results on the LS07 dataset, we see that not
surprisingly both our out-of-context method, P out,
and the word2vec baseline, w2vout

skip,2w, which ig-
nore the given context, achieve relatively low results.
Scond,1000 that considers only the context compati-
bility performs a little better. Next, we see that our
in-context method, P in,100%

1000 outperforms all of the
above, but P in,5%

1000 , which is more strongly biased
to context compatibility performs even better. For
brevity, we report only the results for m = 5%,
which performed best on the trial portion of LS07,
but the results are almost as good for m = 1% and
m = 10%. This supports our hypothesis that in the
ranking task more focus is to be given to context
compatibility. As in the prediction task in Section

Method Resources LS07 LS07 LS14
test all all

P in,5%
1000 UW 55.2 55.1 50.2

P in,100%
1000 52.0 51.7 50.0

Scond,1000

UW
48.6 48.4 46.4

P out 46.6 45.9 47.9
w2vout

skip,2w 45.2 45.2 46.5
Random 29.7 30.0 33.8
Kremer, GW n/a 52.5 47.8
2014†

Thater, GW n/a 51.7 n/a
2011
Séaghdha, WP,BN n/a 49.5 n/a
2014
Moon, UW,BN,WN n/a 47.1 n/a
2013 GW,WN n/a 46.7 n/a
Szarvas, LLC,WN n/a 55.0* n/a
2013b
Szarvas, LLC,WN n/a 52.4* n/a
2013a

Table 6: GAP scores for compared methods.
UW = ukWaC; GW = Gigaword; WP = Wikipedia;
WN = WordNet; BN = British National Corpus (Aston
and Burnard, 1998).
† A re-implementation of the model in Thater, 2011.
* Obtained by a supervised method.

6.2, the pruning factor of 100 performed slightly (up
to half a point) worse than 1000.

In comparison to previous results, our method
achieves the best reported GAP score to date, on par
with Szarvas et al. (2013b). However, we note that
both Szarvas et al. (2013b) and Szarvas et al. (2013a)
follow a supervised approach, training on the LS07
gold standard with 10-fold cross validation, as well
as incorporate features from WordNet. Therefore,
they cannot be directly compared with unsupervised
models, such as our own. Our model and previous
works used different learning corpora that are sim-
ilar in size. Moon and Erk (2013) reported results
for both Gigaword and ukWaC, showing minor dif-
ferences in performance.

The results on LS14 exhibit a similar behavior
with our method outperforming the state-of-the-art.
However, as also reported in Kremer et al. (2014),
the performance gain achieved by taking the given
context into consideration is smaller than in LS07.
Again, this seems to be due to the nature of LS14,
which is not biased to ambiguous target words.
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Benchmark Orig 1000 100
best 12.7 12.1 11.2
best-m 21.7 20.9 19.7
oot 36.3 34.8 32.5
oot-m 52.0 50.4 46.4
GAP test 55.2 52.0 50.9
GAP all 55.1 51.8 50.7

Table 7: The effect of context clustering on our model’s
performance on LS07. Orig stands for best configuration
of our model with no clustering, and 1000/100 stand for
the same configuration with that number of clusters.

6.4 Computational efficiency and clustering

To generate our in-context paraphrase predictions
for an instance of a target word u, our model per-
forms a weighted average over all of its context sub-
stitute vectors in Cu. The run-time complexity of
this procedure is reasonably efficient at O(|Cu|·n),
where n is the vector pruning factor. This is com-
parable to the complexity of the state-of-the-art al-
gorithm before this work (Thater et al., 2011) and
even to word2vec’s dense vector computations. As
a point of reference, in our experiments it took
∼300 msec to generate an in-context paraphrase
vector for a given word instance on a modest sin-
gle core, which was only about 3 times slower than
the word2vec computation.

Memory consumption of our model is not an issue
when operating in an ‘offline’ mode. In this mode all
the target word instances in a test set (such as LS07
or LS14), can first be sorted according to their word
type. Then, while processing all instances of the
same word type u one after the other, only the sub-
stitute vectors in Cu need to be loaded into memory.
In contrast, in an ‘online’ mode, to be ready for any
arbitrary word instance input, our model would need
to keep in memory substitute vectors for all the word
types in the vocabulary V . The space complexity in
this case is O(|Cu|·n · |V |), which can easily reach
memory consumptions in the order of ∼100 GB or
more, requiring a large-scale server.

To address this challenge, we present a more
coarse-grained variant of our model, where for each
word type u we keep only k substitute vectors
instead of all individual context vectors, thereby
bounding the memory consumption to O(k ·n · |V |).
To this end, for each word type u we used spheri-
cal k-means to cluster the ∼20,000 substitute vec-

tors in Cu into either 100 or 1000 clusters. Then, in-
stead of Cu, we used the collection of its cluster cen-
troids, pruned to their top-100 entries. Table 7 shows
the results when applying this to our best perform-
ing configurations on the LS07 dataset. The results
show relative performance degradation when fewer
clusters are used, indicating that some relevant in-
formation may be lost in this process. However, ab-
solute performance remains competitive, suggesting
that this is a viable option when memory consump-
tion is a concern. The results on the LS14 dataset
show similar trends.

7 Discussion and Future Work

We proposed a model for word meaning in context
whose main novelty is in representing contexts as
substitute vectors. Our model outperformed state-
of-the-art baselines in both predicting and ranking
paraphrases of words in context in two different lex-
ical substitution tasks. As another potential contri-
bution, the context similarity measures used in our
model performed well on a targeted evaluation, sug-
gesting that they may be useful as a component in
other applications as well.

Substitute vectors were successfully used earlier
for performing part-of-speech and word sense induc-
tion tasks (Baskaya et al., 2013; Yatbaz et al., 2014),
not addressed in this work. These works took a dif-
ferent approach, embedding words in a low dimen-
sional space, based on target-substitute pairs sam-
pled from substitute vectors. It would be interesting
to explore how our approach applies to these tasks.

Finally, a preliminary qualitative analysis showed
that low quality substitute vectors may be a factor
limiting our model’s performance. This suggests
that generating substitute vectors with better lan-
guage models, such as neural language models, is
a potential path to further improvements.
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