
Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 1227–1231,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

Automatic cognate identification with gap-weighted string subsequences.

Taraka Rama
Språkbanken

University of Gothenburg
Box 200, Gothenburg, Sweden

taraka.rama.kasicheyanula@gu.se

Abstract

In this paper, we describe the problem of cog-
nate identification in NLP. We introduce the
idea of gap-weighted subsequences for dis-
criminating cognates from non-cognates. We
also propose a scheme to integrate phonetic
features into the feature vectors for cognate
identification. We show that subsequence
based features perform better than state-of-
the-art classifier for the purpose of cognate
identification. The contribution of this paper
is the use of subsequence features for cognate
identification.

1 Introduction

Cognates are words across languages whose ori-
gin can be traced back to a common ancestral lan-
guage. For example, English ∼ German night ∼
Nacht ‘night’ and English hound ∼ German Hund
‘dog’ are cognates whose origin can be traced back
to Proto-Germanic. Sometimes, cognates are not
revealingly similar but have changed substantially
over time such that they do not share form simi-
larity. An example of such a cognate pair is the
English wheel and Sanskrit chakra ‘wheel’, which
can be traced back to Proto-Indo-European (PIE)
∗kwekwelo.

Automatic cognate identification, in NLP, refers
to the application of string similarity or phonetic
similarity algorithms either independently, or in tan-
dem with machine learning algorithms for determin-
ing if a given word pair is cognate or not (Inkpen
et al., 2005). In NLP, even borrowed words (loan-
words) are referred to as cognates. In contrast, his-

torical linguistics makes a stark distinction between
loanwords and cognates. For example, English beef
is a loanword from Norman French.

In this paper, we use cognates to refer to those
words whose origin can be traced back to a com-
mon ancestor. We use string subsequence based fea-
tures (motivated from string kernels) for automatic
cognate identification. We show that subsequence-
based features outperform word similarity measures
at the task of automatic cognate identification. We
motivate the use of subsequence based features in
terms of linguistic examples and then proceed to
formulate the subsequence based features that can
be derived from string kernels (Shawe-Taylor and
Cristianini, 2004). In information retrieval litera-
ture, string subsequences go under the name of skip-
grams (Järvelin et al., 2007).

2 Related work

The approaches developed by Kondrak and Sherif
(2006) and Inkpen et al. (2005) supply different
string distances between a pair of words as features
to a linear classifier. Usually, a linear classifier such
as SVM is trained on labeled positive (“cognates”)
and negative (“non-cognates”) examples and tested
on a held-out dataset. Basic vocabulary lists such
as the ones devised by Morris Swadesh (Swadesh,
1952), provide a suitable testing ground for apply-
ing machine learning algorithms to automatically
identify cognates. Some standardized word lists
come with cognate information and, subsequently,
can used to infer the relationship between the lan-
guages (Dyen et al., 1992).

1227

Ellison and Kirby (2006) use scaled edit distance
(normalized by average length) to measure the intra-
lexical divergence in a language. The inter-language
distance matrix is supplied to a clustering algorithm
to infer a tree for the Indo-European language fam-
ily. The authors only perform a qualitative evalua-
tion of the inferred tree. The authors mention string
kernels but do not pursue this line of research fur-
ther.

Bouchard-Côté et al. (2013) employ a graphical
model to reconstruct the proto-word forms from the
synchronic word-forms for the Austronesian lan-
guage family. They compare their automated re-
constructions with the ones reconstructed by his-
torical linguists and find that their model beats an
edit-distance baseline. However, their model has a
requirement that the tree structure between the lan-
guages under study has to be known beforehand.

Hauer and Kondrak (2011) – referred to as HK –
supply different string similarity scores as features
to a SVM classifier for determining if a given word
pair is a cognate or not. The authors also employ
an additional binary language-pair feature – that is
used to weigh the language distance – and find that
the additional feature assists the task of semantic
clustering of cognates. In this task, the cognacy
judgments given by a linear classifier is used to flat
cluster the lexical items belonging to a single con-
cept. The clustering quality is evaluated against the
gold standard cognacy judgments. Unfortunately,
the experiments of these scholars cannot be repli-
cated since the partitioning details of their training
and test datasets is not available.

In our experiments, we compare our system’s per-
formance with the performance of the classifiers
trained from HK-based features. In the next section,
we will describe string similarity measures, subse-
quences features, dataset, and results.

3 Cognate identification

3.1 String similarity features and issues

Edit distance counts the minimum number of inser-
tions, deletions, and substitutions required to trans-
form one word into another word. Identical words
have 0 edit distance. For example, the edit dis-
tance between two cognates English hound and Ger-
man hund is 1. Similarly, the edit distance between

Swedish i and Russian v ‘in’, which are cognates,
is 1. The edit distance treats both of the cognates
at the same level and does not reflect the amount of
change which has occurred in the Swedish and Rus-
sian words from the PIE word.

Dice is another string similarity measure that de-
fines similarity between two strings as the ratio be-
tween the number of common bigrams to the total
number of bigrams. The similarity between Lusatian
dolhi and Czech dluhe ‘long’ is 0 since they do not
share any common bigrams and the edit distance be-
tween the two strings is 3. Although the two words
share all the consonants, the Dice score is 0 due to
the intervening vowels.

Another string similarity measure, Longest Com-
mon Subsequence (LCS) measures the length of
the longest common subsequence between the two
words. The LCS is 4 (hund), 0 (i and v), and 3
(dlh) for the above examples. One can put forth
a number of examples which are problematical for
the commonly-used string similarity measures. Al-
ternatively, string kernels in machine learning re-
search offer a way to exploit the similarities between
two words without any restrictions on the length and
character similarity.

3.2 Subsequence features
Subsequences as formulated below weigh the sim-
ilarity between two words based on the number of
dropped characters and combine phoneme classes
seamlessly. Having motivated why subsequences
seems to be a good idea, we formulate subsequences
below.

We follow the notation given in Shawe-Taylor and
Cristianini (2004) to formulate our representation of
a string (word). Let Σ denote the set of phonetic al-
phabet. Given a string s over Σ, the subsequence
vector Φ(s) is defined as follows. The string s
can be decomposed as s1, . . . , s|s| where |s| denotes

the length of the string. Let
−→
I denote a sequence

of indices (i1, . . . , i|u|) where, 1 ≤ i1 < . . . <
i|u| ≤ |s|. Then, a subsequence u is a sequence

of characters s[
−→
I]. Note that a subsequence can

occur multiple times in a string. Then, the weight
of u, φu(s) is defined as

∑
−→
I :u=s[

−→
I]
λl(
−→
I) where,

l(
−→
I) = i|u|− i1 +1 and λ ∈ (0, 1) is a decay factor.
The subsequence vector Φ(s) is composed of

1228

φu(s) ∀u ∈ ⋃p
n=1 Σn, where 1 ≤ n ≤ p is the

length of u and p is the maximum length of the sub-
sequences. As λ → 0, a subsequence is constrained
to a substring. As λ → 1, φu(s) counts the fre-
quency of u in s. We also experiment with different
values of λ in this paper.

The λ factor is exponential and penalizes u over
long gaps in a string. Due to the above formula-
tion, the frequency of a subsequence u in a single
string is also taken into account. The subsequence
formulation also allows for the incorporation of a
class-based features easily. For instance, each σ
in u can be mapped to its Consonant/Vowel class:
σ 7→ {C, V }. The subsequence formulation also al-
lows us to map each phonetic symbol (for example,
from International Phonetic Alphabet [IPA]) to an
intermediary phonetic alphabet also. Unfortunately,
the current dataset is not transcribed in IPA to con-
vert it into an intermediary broader format. In this
paper, we map each string s into its C, V sequence
scv and then compute the subsequence weights.1

A combined subsequence vector Φ(s+scv) is fur-
ther normalized by its norm, ‖Φ(s+ scv)‖, to trans-
form into a unit vector. The common subsequence
vector Φ(s1, s2) is composed of all the common sub-
sequences between s1 and s2. The weight of a com-
mon subsequence is φu(s1) + φu(s2).

Moschitti et al. (2012) list the features of the
above weighting scheme.
• Longer subsequences receive lower weights.
• Characters can be omitted (called gaps).
• The exponent of λ penalizes recurring subse-

quences with longer gaps.
For a string of length m and subsequence length
n, the computational complexity is in the order of
O(mn).

On a linguistic note, gaps are consistent with the
prevalent sound changes such as sound loss, sound
gain, and assimilation,2 processes which alter word
forms in an ancestral language causing the daugh-
ter languages to have different surface forms. The λ
factor weighs the number of gaps found in a sub-
sequence. For instance, the Sardinian word form
for ‘fish’ pissi has the subsequence ps occurring

1V = {a, e, i, o, u, y}, C = Σ \ V .
2A sound can assimilate to a neighboring sound. Sanskrit

agni > Prakrit aggi ‘fire’. Compare the Latin form ignis with
the Sanskrit form.

twice but with different weights: λ3, λ4. Hence, ps’s
weight is λ3 + λ4. On another note, the idea of gap
subsequences subsumes the definitions of different
n-gram similarities introduced by Kondrak (2005).

The combined feature vector, for a word pair, is
used to train a SVM classifier. In our experiments,
we use the LIBLINEAR package (Fan et al., 2008)
to solve the primal problem with L2-regularization
and L2-loss. The next subsection describes the
makeup of the dataset. We use the default SVM pa-
rameters since we did not observe any difference in
our development experiments.

3.3 Dataset and results

In this section, we will present the dataset, HK fea-
tures, and results of our experiments.

Dataset. We used the publicly available3 Indo-
European dataset (Dyen et al., 1992) for our experi-
ments. The dataset has 16, 520 lexical items for 200
concepts and 84 language varieties. Each word form
is assigned to a unique CCN (Cognate Class Num-
ber). There are more than 200 identical non-cognate
pairs in the dataset. For the first experiment, we ex-
tracted all word pairs for a concept and assigned a
positive label if the word pair has an identical CCN;
a negative label, if the word pair has different CCNs.
We extracted a total of 619, 635 word pairs out of
which 145, 145 are cognates. The dataset is tran-
scribed in a broad romanized phonetic alphabet.

We explored if we could use two other word list
databases: ASJP (Brown et al., 2008) and Ringe
et al. (2002) for our experiments. Although the
ASJP database has word lists for more than half
of the world’s languages, it has cognacy judgments
for few selected languages and is limited to 40 con-
cepts. Moreover, the ASJP database does not have
cognacy judgments for Indo-European family. The
other dataset of Ringe et al. (2002) has items for 24
Indo-European languages which are transcribed in
an orthographic format and not in a uniform pho-
netic alphabet.4 Moreover, there are a number of
missing items for some of the languages. Hence, we
did not use Ringe et al.’s dataset in our experiments.
In contrast, Dyen’s dataset is much larger and tran-
scribed in an uniform format. Now, we proceed to

3http://www.wordgumbo.com/ie/cmp/iedata.txt
4http://www.cs.rice.edu/ nakhleh/CPHL/ie-wordlist-07.pdf

1229

describe the previous best-performing system.

HK’s system. We compare the performance of
subsequence features against the SVM classifier sys-
tem trained on the following word-similarity fea-
tures from Hauer and Kondrak (2011):
• Edit distance.
• Length of longest common prefix.
• Number of common bigrams.
• Lengths of individual words.
• Absolute difference between the lengths of the

words.

Cross-Validation experiment. As a first step, we
perform a random ten-fold cross-validation of the
dataset and report the accuracies for various val-
ues of λ and p. The results of this experiment are

Figure 1: Ten-fold cross-validation accuracy for incre-
mental λ and p. The accuracy of the system of HK is
82.61%.

shown in figure 1. The best results are obtained at
λ = 0.8, p = 3. The accuracies increase with an
increment in the value of λ until 0.8 for all p > 1
(non-unigram models). This experiment is mainly
designed to test the robustness of subsequence fea-
tures against random splits in the dataset which turns
out to be robust. The subsequence features outper-
form HK-based classifier in this experiment.

positive negative
training 111, 918 353, 957
test 33, 227 120, 533

Table 1: Number of positive and negative examples in
the training and test sets. The ratio of positive to negative
examples is 1 : 3.62.

Concepts experiment. In this experiment, we
split our dataset into two sets by concepts; and train

on one set and test on the other. To replicate our
dataset, we performed an alphabetical sort of the
concepts and split the concepts into training and test-
ing datasets with a ratio of 3 : 1. Now, we extract
positive and negative examples from each subset of
concepts; and train and test on each concepts’ sub-
set. We also performed a 3-fold cross-validation on
the training set to tune c (SVM hyperparameter). We
observed that the value of c did not effect the cross-
validation accuracy on the training dataset. Hence
we fixed c at 1. We also experimented with radial-
basis function kernel and polynomial kernels but did
not find any improvement over the linear kernel clas-
sifier. The composition of the training and test sets
is given in table 1.

Figure 2: F1-score for different values of p and λ. The
F1-score of the system of HK is 0.46.

In this experiment, we report the F1-score, de-
fined as 2PR

P+R (Precision and Recall), for different
values of λ and p. The results of this experiment
are shown in figure 2. The F1-score of the system
of HK is 0.46 whereas the best performing subse-
quence system (λ = 0.7, p = 2) has a score of
0.5. Our system performs better than the system of
HK in terms of cross-validation accuracy as well as
F1-score. Overall, all non-unigram models perform
better than the system of HK at cross-validation and
concepts experiments.

4 Conclusion

In this paper, we proposed a string kernel based ap-
proach for the purpose of cognate identification. We
formulated an approach to integrate phonetic fea-
tures of a phonetic symbol into the feature vector
and showed that it beats the system of HK at cog-

1230

nate identification at cross-validation and concepts
subsets experiments.

In future, we plan to make a larger dataset of
cognacy judgments for other language families in a
richer phonetic transcription and integrate articula-
tory phonetic features into the feature vectors for the
purpose of cognate identification. We also plan on
testing with different feature vector combinations.

Acknowledgments
I thank the three anonymous reviewers for the com-
ments that helped improve the paper. I thank Søren
Wichmann, Richard Johansson, Gerlof Bouma,
Prasanth Kolachina, and Johann-Mattis List for all
the discussions and comments that helped improve
the paper. This research was supported by Univer-
sity of Gothenburg through its support of the Centre
for Language Technology and Språkbanken.

References
Alexandre Bouchard-Côté, David Hall, Thomas L. Grif-

fiths, and Dan Klein. 2013. Automated reconstruc-
tion of ancient languages using probabilistic models of
sound change. Proceedings of the National Academy
of Sciences, 110(11):4224–4229.

Cecil H. Brown, Eric W. Holman, Søren Wichmann, and
Viveka Velupillai. 2008. Automated classification of
the world’s languages: A description of the method
and preliminary results. Sprachtypologie und Univer-
salienforschung, 61(4):285–308.

Isidore Dyen, Joseph B. Kruskal, and Paul Black. 1992.
An Indo-European classification: A lexicostatistical
experiment. Transactions of the American Philosoph-
ical Society, 82(5):1–132.

T. Mark Ellison and Simon Kirby. 2006. Measur-
ing language divergence by intra-lexical comparison.
In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
pages 273–280, Sydney, Australia, July. Association
for Computational Linguistics.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874.

Bradley Hauer and Grzegorz Kondrak. 2011. Cluster-
ing semantically equivalent words into cognate sets
in multilingual lists. In Proceedings of 5th Interna-
tional Joint Conference on Natural Language Process-
ing, pages 865–873, Chiang Mai, Thailand, Novem-
ber. Asian Federation of Natural Language Processing.

Diana Inkpen, Oana Frunza, and Grzegorz Kondrak.
2005. Automatic identification of cognates and false
friends in French and English. In Proceedings of the
International Conference Recent Advances in Natural
Language Processing, pages 251–257.

Anni Järvelin, Antti Järvelin, and Kalervo Järvelin. 2007.
s-grams: Defining generalized n-grams for informa-
tion retrieval. Information Processing & Management,
43(4):1005–1019.

Grzegorz Kondrak and Tarek Sherif. 2006. Evaluation
of several phonetic similarity algorithms on the task of
cognate identification. In Proceedings of ACL Work-
shop on Linguistic Distances, pages 43–50. Associa-
tion for Computational Linguistics.

Grzegorz Kondrak. 2005. N-gram similarity and dis-
tance. In String Processing and Information Retrieval,
pages 115–126. Springer.

Alessandro Moschitti, Qi Ju, and Richard Johansson.
2012. Modeling topic dependencies in hierarchical
text categorization. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 759–767. Associa-
tion for Computational Linguistics.

Don Ringe, Tandy Warnow, and Ann Taylor. 2002. Indo-
European and computational cladistics. Transactions
of the Philological Society, 100(1):59–129.

John Shawe-Taylor and Nello Cristianini. 2004. Kernel
methods for pattern analysis. Cambridge university
press.

Morris Swadesh. 1952. Lexico-statistic dating of prehis-
toric ethnic contacts: with special reference to North
American Indians and Eskimos. Proceedings of the
American philosophical society, 96(4):452–463.

1231

