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Abstract

Sparse representations of text such as bag-of-
words models or extended explicit semantic
analysis (ESA) representations are commonly
used in many NLP applications. However, for
short texts, the similarity between two such s-
parse vectors is not accurate due to the small
term overlap. While there have been multiple
proposals for dense representations of words,
measuring similarity between short texts (sen-
tences, snippets, paragraphs) requires combin-
ing these token level similarities. In this paper,
we propose to combine ESA representations
and word2vec representations as a way to gen-
erate denser representations and, consequent-
ly, a better similarity measure between short
texts. We study three densification mecha-
nisms that involve aligning sparse representa-
tion via many-to-many, many-to-one, and one-
to-one mappings. We then show the effective-
ness of these mechanisms on measuring simi-
larity between short texts.

1 Introduction

Bag-of-words model has been used for many ap-
plications as the state-of-the-art method for tasks
such as document classifications and information re-
trieval. It represents each text as a bag-of-words,
and computes the similarity, e.g., cosine value, be-
tween two sparse vectors in the high-dimensional
space. When the contextual information is insuffi-
cient, e.g., due to the short length of the document,
explicit semantic analysis (ESA) has been used as
a way to enrich the text representation (Gabrilovich
and Markovitch, 2006; Gabrilovich and Markovitch,

2007). Instead of using only the words in a doc-
ument, ESA uses a bag-of-concepts retrieved from
Wikipedia to represent the text. Then the similarity
between two texts can be computed in this enriched
concept space.

Both bag-of-words and bag-of-concepts model-
s suffer from the sparsity problem. Because both
models use sparse vectors to represent text, when
comparing two pieces of texts, the similarity can be
zero even when the text snippets are highly related,
but make use of different vocabulary. We can expect
that these two texts are related but the similarity val-
ue does not reflect that. ESA, despite augmenting
the lexical space with relevant Wikipedia concepts,
still suffers from the sparsity problem. We illustrate
this problem with the following simple experiment,
done by choosing a documents from the “rec.autos”
group in the 20-newsgroups data set1. For both doc-
uments and the label description “cars” (here we fol-
low the description shown in (Chang et al., 2008;
Song and Roth, 2014)), we computed 500 concepts
using ESA. Then we identified the concepts that ap-
pear both in the document ESA representation and
in the label ESA representation. The average sizes
of this intersection (number of overlapping concepts
in the document and label representation) are shown
in Table 1. In addition to the original documents, we
also split each document into 2, 4, 8, 16 equal length
parts, computed the ESA representation of each, and
then the intersection with the ESA representation of
the label. Table 1 shows that the number of concepts
shared by the label and the document representation
decreases significantly, even if not as significantly

1http://qwone.com/˜jason/20Newsgroups/
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Table 1: Average sizes of the intersection between the
ESA concept representations of documents and label-
s. Both documents and label are represented with 500
Wikipedia concepts. Documents are split into different
lengths.

# of split Avg. # of words per doc. Avg. # of concepts
1 209.6 23.1
2 104.8 18.1
4 52.4 13.8
8 26.2 10.6

16 13.1 8.4

as the drop in the document size. For example, there
are on average 8 concepts in the intersection of two
vectors with 500 non-zero concepts when we split
each document into 16 parts.

When there are fewer overlapping terms between
two pieces of texts, it can cause mismatch or biased
match and result in less accurate comparison. In this
paper, we propose to use unsupervised approaches
to improve the representation, along with a corre-
sponding similarity approach between these repre-
sentations. Our contribution is twofold. First, we
incorporate the popular word2vec (Mikolov et al.,
2013a; Mikolov et al., 2013b) representations into
ESA representation, and show that incorporating se-
mantic relatedness between Wikipedia titles can in-
deed help the similarity measure between short texts.
Second, we propose and evaluate three mechanism-
s for comparing the resulting representations. We
verify the superiority of the proposed methods using
three different NLP tasks.

2 Sparse Vector Densification

In this section, we introduce a way to compute
the similarity between two sparse vectors by aug-
menting the original similarity measure, i.e., co-
sine similarity. Suppose we have two vectors x =
(x1, . . . , xV )T and y = (y1, . . . , yV )T where V is
the vocabulary size. Traditional cosine similarity
computes the dot product between these two vec-
tors and normalizes it by their norms: cos(x,y) =

xT y
||x||·||y|| . This requires each dimension of x to be
aligned with the same dimension of y. Note that
for sparse vectors x and y, most of the the elements
can be zero. Aligning the indices can result in zero
similarity even though the two pieces of texts are re-
lated. Thus, we propose to align different indices of

x and y together to increase the similarity value.
We can rewrite the vectors x and y as x =
{xa1 , . . . , xanx

} and y = {yb1 , . . . , ybny
}, where ai

and bj are indices of the non-zero terms in x and y
(1 ≤ ai, bj ≤ V ). xai and ybi

are the weights asso-
ciated to the terms in the vocabulary. Suppose there
are non-zero terms nx and ny in x and y respective-
ly. Then cosine similarity can be rewritten as:

cos(x,y) =

∑nx
i=1

∑ny

j=1 δ(ai − bj)xaiybj

||x|| · ||y|| , (1)

where δ(·) is the Dirac function δ(0) = 1 and
δ(other) = 0. Suppose we can compute the simi-
larity between terms ai and bj , which is denoted as
φ(ai, bj), then the problem is how to aggregate the
similarities between all ai’s and bj’s to augment the
original cosine similarity.

2.1 Similarity Augmentation
The most intuitive way to integrate the similarities
between terms is averaging them:

SA(x,y) =
1

nx||x|| · ny||y||
nx∑
i=1

ny∑
j=1

xaiybj
φ(ai, bj).

(2)
This similarity averages all the pairwise similarities
between terms ai’s and bj’s. However, we can ex-
pect a lot of the similarities φ(ai, bj) to be close to
zero. In this case, instead of introducing the relat-
edness between nonidentical terms, it will also in-
troduce noise. Therefore, we also consider an align-
ment mechanism that we implement greedily via a
maximum matching mechanism:

SM (x,y) =
1

||x|| · ||y||
nx∑
i=1

xaiybj
max

j
φ(ai, bj).

(3)
We choose j as argmaxj′ φ(ai, bj′) and substitute
the similarity φ(ai, bj) between terms ai and bj in-
to the final similarity between x and y. Note that
this similarity is not symmetric. Thus, if one needs
a symmetric similarity, the similarity can be com-
puted by averaging two similarities SM (x,y) and
SM (y,x).

The above two similarity measurements are sim-
ple and intuitive. We can think about SA(x,y)
as leveraging term many-to-many mapping, while
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(a) rec.autos vs. sci.electronics (full doc.) (b) rec.autos vs. sci.electronics (1/16 doc.) (c) rec.autos vs. rec.motorcycles (full doc.) (d) rec.autos vs. rec.motorcycles (1/16 doc.)

Figure 1: Accuracy of dataless classification using ESA and Dense-ESA with different numbers of concepts.

SM (x,y) uses only one-to-many term mapping.
SA(x,y) can introduce small and noisy similarity
values between terms. While SM (x,y) essentially
aligns each term in x with it’s best match in y, we
run the risk that multiple components of x will se-
lect the same element in y. To ensure that all the
non-zero terms in x and y are matched, we propose
to constrain this metric by disallowing many-to-one
mapping. We do that by using a similarity metric
based on the Hungarian method (Papadimitriou and
Steiglitz, 1982). The Hungarian method is a combi-
natorial optimization algorithm that solves the bipar-
tite graph matching problem by finding an optimal
assignment matching the two sides of the graph on a
one-to-one basis. Assume that we run the Hungari-
an method on the the pair {x,y}, and let h(ai) = bj
denote the outcome of the algorithm, that is ai is
aligned with bj . (We assume here, for simplicity,
that nx = ny; we can always achieve that by adding
some zero weighted terms that are not aligned). The
we define the similarity as:

SH(x,y) =
1

||x|| · ||y||
nx∑
i=1

xaiyh(ai)φ(ai, h(ai)).

(4)

2.2 Term Similarity Measure
To evaluate the term similarity φ(·, ·), we use lo-
cal contextual similarity based on distributed rep-
resentations. We adopt the word2vec (Mikolov et
al., 2013a; Mikolov et al., 2013b) approach to ob-
tain a dense representation of words. The represen-
tation of each word is predicted based on the context
word distribution in a window around it. We trained
word2vec on the Wikipedia dump data using the de-
fault parameters (CBOW model with window size

as five). For each word, we finally obtained a 200
dimensional vector. If the term is a phrase, we sim-
ply average words’ vectors of each phrase to obtain
the representation following the original word2vec
approach (Mikolov et al., 2013a; Mikolov et al.,
2013b). We use two vectors a and b to represent the
vectors for the two terms. To evaluate the similarity
between two terms, for the average approach as E-
q. (2), we use the RBF kernel over the two vectors
exp{−||a− b||2/(0.03 · ||a|| · ||b||)} as the similari-
ty for all the experiments, since this will have a good
property to cut the terms with small similarities. For
the max and Hungarian approach as Eqs. (3) and (4),
we simply use the cosine similarity between the two
word2vec vectors. In addition, we cut off all simi-
larities below threshold γ and map them to zero.

3 Experiments

We experiment on three data sets. We use dataless
classification (Chang et al., 2008; Song and Roth,
2014) over 20-newsgroups data set to verify the cor-
rectness of our argument of short text problems, and
use two short text data sets to evaluate document
similarity measurement and event classification for
sentences.

3.1 Dataless Classification

Dataless classification uses the similarity between
documents and labels in an enriched “semantic” s-
pace to determine in which category the given doc-
ument is. In this experiment, we used the label de-
scriptions provided by (Chang et al., 2008). It has
been shown that ESA outperforms other representa-
tions for dataless classification (Chang et al., 2008;
Song and Roth, 2014). Thus, we chose ESA as our
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Table 2: Accuracy of dataless classification using ESA and Dense-ESA with 500 dimensions.

rec.autos vs. sci.electronics (easy) rec.autos vs. rec.motorcycles (difficult)
Method Full document Short (1/16 doc.) Full document Short (1/16 doc.)
ESA (Cosine) 87.75% 56.55% 80.95% 46.64%
Dense-ESA (Average) 87.80% 64.67% 81.11% 59.38%
Dense-ESA (Max) 87.10% 64.34% 84.30% 59.11%
Dense-ESA (Hungarian) 88.85% 65.95% 82.15% 59.65%

Figure 2: Boxplot of similarity scores for “rec.autos vs. sci.electronics” (easy, left) and “rec.autos vs.
rec.motorcycles” (difficult, right). For each method of ESA and Dense-ESA with max matching in Eq. (3), we com-
pute S(d, l1) and S(d, l2) between a document d and the labels l1 and l2. Then we compute S(d) = S(d, l1)−S(d, l2).
For each ground truth label, we draw the distribution of S(·) with outliers in the figures. For example, “ESA:autos”
shows the S(·)’s distribution of the data with label “rec.autos.” The t-test results show that the distributions of different
labels are significantly different (99%). We can see that Dense-ESA pulls apart the distributions of different labels and
that the separation is more significant for the more difficult problem (right).

baseline method. To demonstrate how the length of
documents affects the classification result, we used
both full documents and the 16 split parts (the part-
s are associated with the same label as the origi-
nal document). To demonstrate the impact of den-
sification, we selected two problems as an illustra-
tion: “rec.autos vs. sci.electronics” and “rec.autos
vs. rec.motorcycles.” While the former problem is
relatively easy since they belong to different super-
classes, the latter problem is more difficult since
they are under the same super-class. The value of
threshold γ for max matching and Hungarian based
densification is set to 0.85 empirically.

Figure 1 shows the results of the dataless clas-
sification using ESA and ESA with densification
(Dense-ESA) with different numbers of Wikipedia
concepts as the representation dimensionality. We
can see that Dense-ESA significantly improves the
dataless classification results. As shown in Table 2,
while the max matching and Hungarian matching
based methods are typically the best metrics the
most significant results, the improvements are more
significant for shorter documents, and for more diffi-
cult problems. Figure 2 highlights this observation.

Table 3: Spearman’s correlation of document similarity
using ESA and Dense-ESA with 500 concepts.

Method Spearman’s correlation
ESA (Cosine) 0.5665
Dense-ESA (Average) 0.5814
Dense-ESA (Max) 0.5888
Dense-ESA (Hungarian) 0.6003

3.2 Document Similarity

We used the data set provided by Lee et al.2 (Lee et
al., 2005) to evaluate pairwise short document simi-
larity. There are 50 documents and the average num-
ber of words is 80.2. We averaged all the human
annotations for the same document pair as the sim-
ilarity score. After computing the scores for pairs
of documents, we used Spearman’s correlation to e-
valuate the results. Larger correlation score mean-
s that the similarity is more consistent with human
annotation. The best word level based similarity re-
sult is close to 0.5 (Lee et al., 2005). We tried the
cosine similarity between ESA representations and

2http://faculty.sites.uci.edu/mdlee/similarity-data/
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Table 4: F1 of sentence event type classification using
ESA and Dense-ESA with 500 concepts.

Method F1 (mean±std)
ESA (Cosine) 0.469±0.011
Dense-ESA (Average) 0.451±0.010
Dense-ESA (Max) 0.481±0.008
Dense-ESA (Hungarian) 0.475±0.016

also Dense-ESA. The value of γ for max matching
based densification is set to 0.95, and for Hungari-
an based densification it is set to 0.89. We can see
that from Table 3, ESA is better than the word based
method, and that all versions of Dense-ESA outper-
form the original ESA.

3.3 Event Classification
In this experiment, we chose the ACE20053 data set
to test how well we can classify sentences into even-
t types without any training. There are eight type-
s of events: life, movement, conflict, contact, etc.
We chose all the sentences that contain event infor-
mation as the data set. Following the dataless clas-
sification protocol, we compare the similarity be-
tween sentences and label descriptions to determine
the event types. There are 3,644 unique sentences
with events, including 2,712 sentences having on-
ly one event type, 421 having two event types, and
30 having three event types. The average length of
the sentences is 23.71. Thus, this is a multi-label
classification problem. To test the approaches, we
used five-fold cross validation to select the thresh-
olds for each class to classify whether the sentence
belongs to an event type. The value of threshold γ
for both max matching and Hungarian based densifi-
cation is also set to 0.85 empirically. Then we report
the mean and standard derivation over five runs. The
results are shown in Table 4. We can see that Dense-
ESA also outperforms ESA.

4 Related Work

ESA (Gabrilovich and Markovitch, 2006;
Gabrilovich and Markovitch, 2007) and dis-
tributed word representations (Ratinov and Roth,
2009; Turian et al., 2010; Collobert et al., 2011;
Mikolov et al., 2013a; Mikolov et al., 2013b; Pen-
nington et al., 2014) are popular text representations

3http://www.itl.nist.gov/iad/mig/tests/ace/2005/

that encode world knowledge. Recently, several
representations were proposed to extend word
representations for phrases or sentences (Lu and Li,
2013; Hermann and Blunsom, 2014; Passos et al.,
2014; Kalchbrenner et al., 2014; Le and Mikolov,
2014; Hu et al., 2014; Sutskever et al., 2014; Zhao
et al., 2015). In this paper, we evaluate how to
combine two off-the-shelf representations to densify
the similarity between text data.

Yih et al. also used average matching and a dif-
ferent maximum matching for QA problem (Yih et
al., 2013). However, their sparse representation is
still at the word level while ours is based on ESA.
Interestingly, related ideas to our average matching
mechanism have been proposed also in the comput-
er vision community, which is the set kernel (or set
similarity) (Smola et al., 2007; Gretton et al., 2012;
Xiong et al., 2013).

5 Conclusion

In this paper, we study the mechanisms of com-
bining two popular representations of text, i.e., E-
SA and word2vec, to enhance computing short text
similarity. Furthermore, we proposed three differ-
ent mechanisms to compute the similarity between
these representations, and demonstrated, using three
different data sets that the proposed method outper-
forms the traditional ESA.
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