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Abstract

Machine learning has been popularly used in
numerous natural language processing tasks.
However, most machine learning models are
built using a single dataset. This is often re-
ferred to as one-shot learning. Although this
one-shot learning paradigm is very useful, it
will never make an NLP system understand
the natural language because it does not ac-
cumulate knowledge learned in the past and
make use of the knowledge in future learn-
ing and problem solving. In this thesis pro-
posal, I first present a survey of lifelong ma-
chine learning (LML). I then narrow down to
one specific NLP task, i.e., topic modeling. I
propose several approaches to apply lifelong
learning idea in topic modeling. Such capabil-
ity is essential to make an NLP system versa-
tile and holistic.

1 Introduction

Machine learning serves as a prevalent approach
for research in many natural language processing
tasks. However, most of existing machine learning
approaches are built using a single dataset, which
is often referred to as one-shot learning. This kind
of one-shot approach is useful but it does not usu-
ally perform well to various datasets or tasks. The
main shortcoming of such one-short approach is the
lack of continuous learning ability, i.e., learning and
accumulating knowledge from past tasks and lever-
aging the knowledge for future tasks and problem
solving in a lifelong manner.

To overcome the above shortcoming, lifelong ma-
chine learning (LML) has attracted researchers’
attention. The term was initially introduced in
1990s (Thrun, 1995, Caruana, 1997). LML aims to
design and develop computational systems and algo-
rithms that learn as humans do, i.e., retaining the re-
sults learned in the past, abstracting knowledge from

them, and using the knowledge to help future learn-
ing. The motivation is that when faced with a new
situation, we humans always use our previous expe-
rience and learned knowledge to help deal with and
learn from the new situation, i.e., we learn and ac-
cumulate knowledge continuously. The same ratio-
nale can be applied to computational models. When
a model is built using a single dataset for a task,
its performance is limited. However, if the model
sees more datasets from the same or similar tasks,
it should be able to adjust its learning algorithm for
better performance. There are four components in a
LML framework: knowledge representation, knowl-
edge extraction, knowledge transfer, and knowledge
retention and maintenance. These components are
closely connected. I will illustrate each component
using examples from topic modeling in Section 3.

Compared to the significant progress of machine
learning theory and algorithm, there is relatively
little study on lifelong machine learning. One of
the most notable works is Never-Ending Language
Learner (NELL) (Carlson et al., 2010) which was
proposed to extract or read information from the
web to expand the knowledge base in an endless
manner, aiming to achieve better performance in
each day than the previous day. Recently, we pro-
posed lifelong Topic Modeling (LTM) that extracts
knowledge from topic modeling results of many do-
mains and utilizes the knowledge to generate co-
herent topics in the new domains (Chen and Liu,
2014b). In (Ruvolo and Eaton, 2013), the authors
proposed a method that tackles online multi-task
learning in the lifelong learning setting. Some other
LML related works include (Silver, 2013, Raina et
al., 2007, Pentina and Lampert, 2014, Kamar et al.,
2013, Kapoor and Horvitz, 2009). Note that LML is
different from transfer learning which usually con-
siders one single source domain where the knowl-
edge is coming from and one target domain where
the knowledge is applied on (Pan and Yang, 2010).
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In this thesis proposal, I narrow down the scope
and focus on LML in topic modeling. Topic model-
ing has been successfully applied to extract semantic
topics from text data. However, the majority of ex-
isting topic models (one exception is the LTM model
mentioned before) belong to the one-shot approach,
i.e., they are proposed to address a specific problem
without any knowledge accumulation. To leverage
the idea of LML, I propose several new approaches
to advance topic modeling. I believe that the pro-
posed approaches can significantly advance LML in
topic modeling. More broadly, this thesis proposal
aims to encourage the community to apply LML in
a variety of NLP tasks.

This thesis proposal makes the following three
contributions:
1. It studies and discusses lifelong machine learn-

ing (LML) in natural language processing. It
identifies several important components in LML:
knowledge representation, knowledge extraction,
knowledge transfer, knowledge retention and
maintenance. As there is relatively little study
on LML compared to classic machine learning,
I believe this thesis proposal will shed some light
on the area and encourage the NLP community to
advance the area of LML.

2. It reviews the LTM model and discusses the
model in terms of LML components. In each
component, the model mechanism as well as the
shortcomings are discussed.

3. It proposes several new approaches to improve
LML in the context of topic modeling. It pro-
poses to enrich the knowledge representation, ad-
dress knowledge conflicts, select domains and
make the algorithm scalable. It further proposes
new evaluation frameworks for LTM.

2 Background of Topic Modeling

Topic modeling, such as LDA (Blei et al., 2003) and
pLSA (Hofmann, 1999), have been popularly used
in many NLP tasks such as opinion mining (Chen
et al., 2014), machine translation (Eidelman et al.,
2012), word sense disambiguation (Boyd-Graber et
al., 2007), phrase extraction (Fei et al., 2014) and
information retrieval (Wei and Croft, 2006). In gen-
eral, topic models assume that each document is
a multinomial distribution over topics, where each

topic is a multinomial distribution over words. The
two types of distributions in topic modeling are
document-topic distributions and topic-word distri-
butions respectively. The intuition is that words are
more or less likely to be present given the topics of
a document. For example, “sport” and “player” will
appear more often in documents about sports, “rain”
and “cloud” will appear more frequently in docu-
ments about weather.

My work is mainly related to knowledge-based
topic models (Chen and Liu, 2014a, Andrzejewski et
al., 2009) which incorporate different types of prior
knowledge into topic models. Supervised label in-
formation was considered in (Blei and McAuliffe,
2010, Ramage et al., 2009). Some works also en-
able the user to specify prior knowledge as seed
words/terms for some topics (Mukherjee and Liu,
2012). Interactive topic modeling was proposed
in (Hu et al., 2011) to improve topics with the in-
teractive help from the user. However, these works
require labeled data or user manual guidance while
my proposed approaches do not.

3 Lifelong Topic Modeling

This section introduces the LTM model (Chen and
Liu, 2014b). It first presents the overall algorithm
of LTM. Then it reviews the model using the four
components in the LML framework: knowledge rep-
resentation, knowledge extraction, knowledge trans-
fer, and knowledge retention and maintenance.

3.1 Overall Algorithm

The basic idea of LTM is that it extracts knowl-
edge from the topic results obtained by topic models
in the previous domains or tasks. The knowledge
should reflect the correct semantic relationship by
investigating different topic model results. By ex-
ploiting such knowledge, the LTM model can gener-
ate more coherent topics. It consists of 3 main steps:
1. Given a set of document corpora D =
{D1, . . . , Dn} from n domains, LTM runs a topic
model (e.g., LDA) on each Di ∈ D to produce a
set of topics Si. Such topics are called the prior
topics (or p-topics for short), forming the topic
base in LTM.

2. A set of pk-sets (prior knowledge sets) K are
mined from all the p-topics S = ∪iSi in the topic
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base. The knowledge base in LTM is composed
of such pk-sets.

3. The knowledge, i.e., pk-sets K, is used in LTM
to generate topics for a test document collection
Dt (Dt may or may not be from D).

3.2 Knowledge Representation

The prior knowledge set (pk-sets)K for LTM is rep-
resented by must-links, i.e., if a pair of words form
a must-link, they are more likely to belong to the
same topic. For example, words “price” and “expen-
sive” can form a must-link. Such knowledge rep-
resentation is also used in other topic models such
as (Andrzejewski et al., 2009). However, they did
not model in the lifelong setting. The must-links in-
dicate a positive semantic relationship while some
other existing models (Chen and Liu, 2014a, An-
drzejewski et al., 2009) also used the negative re-
lationship called cannot-links. Cannot-links express
that two words do not share the semantic meaning,
e.g., words “price” and “beauty”. Note that for topic
modeling, semantics related knowledge is mostly
beneficial as topic modeling tries to group words
into topics with different semantics.

3.3 Knowledge Extraction

To extract pk-sets from all the prior topics (Step 2
in Section 3.1, LTM utilizes frequent itemset min-
ing (FIM) (Agrawal and Srikant, 1994). The goal
of FIM is to identify all itemsets (an itemset is a set
of items) that satisfy some user-specified frequency
threshold (also called minimum support) in a set of
transactions. The identified itemsets are called fre-
quent itemsets. In the context of LTM, an item is a
word and an itemset is a set of words. Each transac-
tion consists of the top words in a past topic. Note
that top words ranked by the topic-word distribution
from topic modeling are more likely to represent the
true semantics embedded in the latent topic. The fre-
quent itemsets of length 2 are used as pk-sets. The
rationale for using frequency-based approach is that
a piece of knowledge is more reliable when it ap-
pears frequent in the prior topics.

3.4 Knowledge Transfer

For topic modeling, Gibbs sampling is a popular
inference technique (Griffiths and Steyvers, 2004).

The Gibbs sampler for LDA corresponds to the sim-
ple Pólya urn (SPU) model (Mimno et al., 2011).
In SPU, a ball of a color (each color denotes each
word) is randomly drawn from an urn (each urn cor-
responds to each topic) and then two balls of the
same color are put back into the urn. It increases
the probability of seeing a ball of the drawn color in
the future, which is known as “the rich get richer”.

LTM instead uses the generalized Pólya urn
(GPU) model (Mahmoud, 2008). The difference is
that after sampling the ball of a certain color, two
balls of that color are put back along with a certain
number of balls of some other colors. This flexibility
is able to change the probability of multiple colors in
each sampling step. Based on the GPU model, LTM
increases the probabilities of both words in a pk-
set when seeing either of them. For example, given
the pk-set {price, expensive}, seeing word “price”
under topic t will increase the probability of see-
ing word “expensive” under topic t; and vice versa.
In other words, word “price” promotes word “ex-
pensive” under topic t. The extent of promotion of
words is determined by the promotion scale param-
eter µ. This mechanism can transfer the information
from the knowledge to the topics generated by LTM.

Since the knowledge is automatically extracted,
to ensure the knowledge quality, LTM proposes two
additional mechanisms. First, for each topic in the
current domain, it uses KL-Divergence to find the
matched topics from the topic base. Note that in
topic modeling, a topic is a distribution over words.
In addition, LTM proposes to use Pointwise Mutual
Information (PMI) to estimate the correctness of the
knowledge towards the current task/domain. The in-
tuition is that if a piece of knowledge, i.e., must-link,
is appropriate, both words in the must-link should
have reasonable occurrences in the corpus of the cur-
rent domain, which means the PMI value of both
words is positive. On the other hand, a non-positive
PMI value indicates little or no semantic correlation,
and thus making the knowledge unreliable.

3.5 Knowledge Retention and Maintenance

LTM simply retains knowledge by adding the topics
of a new domain into the topic base which contains
all prior topics (Step 1 in Section 3.1). Then, the
knowledge is extracted from the new topic base by
using FIM mentioned in Section 3.3. There is no
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knowledge maintenance.

4 Shortcomings of LTM

This section presents the shortcomings of LTM that
corresponds to each of the four LML components.

4.1 Knowledge Representation
There are two shortcomings in terms of knowledge
representations in LTM:
1. Since must-links only contain two words, the in-

formation contained is limited. The knowledge in
the form of sets (containing multiple words) may
be more informative.

2. The knowledge does not have a confidence value.
The prior knowledge is represented and treated
equally. Due to the different frequency of each
piece of knowledge (i.e., each pk-set), there
should be an additional value indicating confi-
dence attached to each pk-set.

4.2 Knowledge Extraction
Knowledge extraction in LTM also has two main
shortcomings:
1. The frequent itemset mining (FIM) used in LTM

only extracts frequent itemsets that appear more
than a uniformed support threshold. However,
due to the power law distribution of natural lan-
guage (Zipf, 1932), only a small portion of words
in the vocabulary appears very frequently while
the majority of words are relatively rare. Since
the frequencies of words are different, the cor-
responding support threshold should also be dis-
tinct.

2. FIM cannot easily produce knowledge of richer
forms. For example, as mentioned above, each
piece of knowledge should contain an additional
value, e.g., confidence. It is unclear how FIM
generates such value, especially if the value
needs to be a probability.

4.3 Knowledge Transfer
The shortcoming here is that depending on the pro-
motion scale parameter µ set by the user (Sec-
tion 3.4), the GPU model may over-promote or
under-promote the words in the pk-sets. That means
that if the promotion scale parameter µ is set too low,
the knowledge may not influence the topics much. In
contrast, if this parameter is set too high, the words

in the knowledge may dominate the topics resulting
inscrutable topics. So the manual setting of this pa-
rameter requires expertise from the user.

4.4 Knowledge Retention and Maintenance

Since LTM does not focus on this component, it has
three main issues:
1. It is unclear how to retrieve knowledge efficiently

when the number of prior topics is huge. This
issue is ignored in the LTM model.

2. How a user interacts with the knowledge base
(i.e., pk-sets) to improve the quality of knowl-
edge base is also unknown. Since the knowledge
is automatically extracted in LTM, the assistance
from human beings should contribute to improv-
ing the quality of the knowledge base.

3. If the time factor is considered, the new added
topics in the topic base may better represent
emerging topics while old prior topics may not
fit the new tendency anymore. In that case, the
knowledge base should weight the new topics
more than old topics.

5 Proposed Approaches

The previous section pointed out the shortcomings
of LTM. In this section, I propose several approaches
to address some of them. Additional strategies are
proposed to deal with issues beyond the knowledge
components.

5.1 Expanding Knowledge Base

As mentioned above, each piece of knowledge in the
knowledge base (i.e., pk-set) is stored and treated
equally. However, a piece of knowledge may be
more reliable if it gets supports from a large num-
ber of domains or it is extracted from the domains
or data of higher quality with less noise. In such
case, it is more informative to assign a value to the
knowledge to indicate its confidence. I propose to
add this additional value to each piece of knowl-
edge in the knowledge base. The value is obtained
from the normalized support of the knowledge, i.e.,
the normalized frequency of the knowledge in mul-
tiple domains. This expansion can also benefit the
knowledge estimation part because the confidence
field can provide the prior information to the model
for knowledge filtering and estimation.
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Another useful expansion is to consider cannot-
links with confidence value (Chen and Liu, 2014a,
Andrzejewski et al., 2009). Cannot-links express
the negative semantic relationship between words,
which can lead the model to separate them in differ-
ent topics. Same as for must-links, cannot-links can
also be attached with a confidence value, indicating
its prior reliability.

5.2 Knowledge Conflict
After expanding the knowledge base, knowledge re-
tention and maintenance needs additional attention.
As we know, must-links express positive semantic
correlations while cannot-links express the negative
correlations, which means must-links and cannot-
links are completely exclusive. Apparently, two
words can form a must-link or cannot-link, but not
both. The extracted knowledge can contain noise
due to 3 reasons below:
1. The corpora which topic models are built on con-

tain noise. This becomes a more serious problem
if the corpora are coming from social media with
informal languages.

2. Topic modeling is an unsupervised learning
method and thus it can generate illogical top-
ics containing words without any semantic cor-
relation. Such topics will then produce incorrect
knowledge.

3. The knowledge extraction step is not perfect ei-
ther. The knowledge extracted using frequency-
based FIM approach may include noisy must-
links as some words are very frequent that their
pairs can also pass the support threshold and form
must-links.
The noise in knowledge base means that the

newly extracted knowledge may have conflict with
the ones in knowledge base. For example, the
knowledge base contains the must-link {A, B}.
However, the new knowledge contains cannot-link
{A, B}. In such a case, we should not simply merge
such knowledge into the knowledge base as it will
make the knowledge base nonsensical. It requires us
to propose a new strategy when such conflict hap-
pens. I propose two approaches to deal with the
above situations:
1. Leverage the confidence assigned to each piece

of knowledge. Intuitively, when a must-link and a
cannot-link forms a conflict, the knowledge base

should remain the type of knowledge (must-link
or cannot-link) if its confidence is significantly
higher than the conflicted one. By doing so,
I make sure that the knowledge base does not
contain conflicted knowledge and the knowledge
piece in the knowledge base has the highest con-
fidence among its conflicted ones.

2. If the confidence is same or similar between two
types of knowledge having conflicts, I use the
words that share must-links to make the decision.
Let us say the must-link is {A, B}, I denote the
set of words in which each word shares a must-
link with A (or B) as SA (or SB). Then I use the
overlapping percentage of SA and SB as estima-
tion that how likely wordsA andB share the pos-
itive semantic correlation. This is intuitive since
if words A and B are truly semantically corre-
lated, they should share a lot of words in their
must-links. For instance, words “price” and “ex-
pensive” can form must-links with words such as
“cheap”, “cost”, “pricy”, etc.

5.3 Domain Selection

I also notice an important issue that LTM strug-
gles with, i.e., LTM uses all the domains as the
source from which the knowledge is extracted. In
other words, LTM assumes all the domains are rel-
evant and helpful to the current domain. However,
this assumption may not always hold. For example,
the topics from the domain “Politics” may not con-
tribute much to the domain “Laundry” as they are
very different in terms of both word usage and word
semantics. Simply using all the domains as LTM has
two major drawbacks:
1. The knowledge extracted from all the domains

may contain some inappropriate knowledge to-
wards a particular domain. Although LTM has a
mechanism to estimate and filter knowledge, it is
still not perfect. For a more effective knowledge
transfer, a domain selection step is indispensable
to make sure the knowledge is more relevant and
beneficial.

2. Extracting knowledge from all the domains can
be time-consuming given a huge number of do-
mains. Many of the extracted knowledge is use-
less as a particular domain only contains a lim-
ited set of words. So domain selection can also
improve the knowledge extraction efficiency.
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To select domains, I propose to measure the do-
main distance by utilizing JS-Divergence. Given
two distributions P and Q, JS-Divergence between
them is defined as below:

JS(P,Q) =
1
2
KL(P,M) +

1
2
KL(Q,M) (1)

M =
1
2
(P +Q) (2)

KL(P,Q) =
∑

i

ln

(
P (i)
Q(i)

)
P (i) (3)

Since each topic produced by topic models is a
distribution over words, I can use JS-Divergence to
measure the distance between topics. The problem
is defined as given two domains D1 and D2, the
goal is to estimate the domain distance by estimat-
ing their corresponding topic distance. I propose the
following algorithm: for each topic t in domain D1,
I find the most similar topic (say t′) in domain D2

that has the smallest JS-Divergence with t. I denote
this smallest JS-Divergence by e(t). Then, the dis-
tance between domainD1 and domainD2 is defined
as below:

DIST (D1, D2) =
∑
t∈D1

e(t) +
∑

t′∈D2

e(t′) (4)

Note that to make the distance symmetric, I cal-
culate function e() for each topic in domain D1 as
well as domain D2. After the domain distance is
calculated, given a new domain D′, I can rank all
existing domains by Equation 4 and pick up top K
most relevant domains.

5.4 Scalability
In this sub-section, I also consider the scalability is-
sue. There are generally 2 bottlenecks in LTM.

The first one is frequent itemset mining (FIM).
There are some proposed scalable versions of FIM
such as (Chester et al., 2009, Moens et al., 2013).

The second one is Gibbs sampling in topic mod-
els. Gibbs sampling (Griffiths and Steyvers, 2004)
is a popular inference technique for topic model-
ing. However, it is not scalable to large datasets
as it needs to make pass over the corpus many
times. Some promising frameworks have been pro-
posed (Yao et al., 2009, Zhai et al., 2012, Hu et al.,
2014) to solve this issue. Since the GPU model used

in LTM is a natural extension to that in LDA, these
proposed methods are also applicable to LTM.

6 Evaluation
This section proposes a new evaluation framework
that suits our proposed approaches. In (Chen and
Liu, 2014b), the evaluation measurements are Topic
Coherence (Mimno et al., 2011) and Precision@n
which asks annotators to label both topics and
words. A more comprehensive evaluation frame-
work can contain the following two measurements:
1. Knowledge Evaluation. In order to evaluate each

piece of knowledge (must-link or cannot-link) in
the knowledge base, PMI score of both words us-
ing a large standard text corpus (Newman et al.,
2010) can be applied. Human annotation can also
be used to label the correctness of each piece of
knowledge. This is to evaluate the effectiveness
of knowledge handling in the model.

2. Domain Evaluation. As mentioned in 5.3, not
all the prior domains are suitable to a new do-
main. It is important to evaluate the model per-
formance by providing different sets of prior do-
mains. There could be three main sets of prior
domains for an extensive evaluation: 1) all rele-
vant; 2) all irrelevant; 3) a combination of both.
The relevance of domains should be defined by
experts that are familiar with these domains.

7 Conclusions
This thesis proposal studied lifelong machine learn-
ing in topic modeling. It first introduced lifelong
machine learning and its important components.
Then, it reviewed the LTM model and pointed out
its drawbacks. The corresponding approaches were
proposed to address the issues and further advance
the problem. For future direction, I would like to fur-
ther integrate lifelong machine learning in the con-
text of other NLP tasks, such as word sense disam-
biguation. I believe that the lifelong machine learn-
ing capacity is essential to a robust NLP system to
overcome the dynamics and complexity of natural
language, and for the purpose of a deeper under-
standing of natural language.
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