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Abstract

Obtaining common sense knowledge using
current information extraction techniques is
extremely challenging. In this work, we in-
stead propose to derive simple common sense
statements from fully annotated object detec-
tion corpora such as the Microsoft Common
Objects in Context dataset. We show that
many thousands of common sense facts can
be extracted from such corpora at high quality.
Furthermore, using WordNet and a novel sub-
modular k-coverage formulation, we are able
to generalize our initial set of common sense
assertions to unseen objects and uncover over
400k potentially useful facts.

1 Introduction

How can we discover that bowls can hold broc-
coli, that if a knife touches a cake then a person
is probably cutting cake, or that cutlery can be on
dining tables? We propose to leverage the effort of
computer vision researchers in creating large scale
datasets for object detection and use these resources
instead to extract symbolic representations of visual
common sense. The knowledge we compile is phys-
ical, not commonly covered in text and more exhaus-
tive than what people can usually produce.

Our focus is particularly on visual common sense,
defined as the information about spatial and func-
tional properties of entities in the world. We pro-
pose to extract three types of knowledge from the
Microsoft Common Objects in Context dataset (Lin
et al., 2014) (MS-COCO), consisting of 300,000
images, covering 80 objects, with object segments

and natural language captions. First, we find spa-
tial relations, e.g. holds(bed, dog), from outlines
of co-occurring objects. Next, we construct entail-
ment rules like holds(bed, dog) ⇒ laying-on(dog,
bed) by associating spatial relations with text in
captions. Finally, we uncover general facts such
as holds(furniture, domestic animal), applicable to
object types not present in MS-COCO by using
WordNet (Miller, 1995) and a novel submodular k-
coverage formulation.

Evaluations using crowdsourcing show our meth-
ods can discover many thousands of high qual-
ity explicit statements of visual common sense.
While some of this knowledge can be potentially ex-
tracted from text (Vanderwende, 2005), we found
that from our top 100 extracted spatial relations,
e.g. holds(bed, dog), only 4 are present in some
form in the AtLocation relations in the popular Con-
ceptNet (Speer and Havasi, 2013) knowledge base.
This shows that the knowledge we derive provides
complimentary information for other more general
knowledge bases. Such common sense facts have
proved useful for query expansion (Kotov and Zhai,
2012; Bouchoucha et al., 2013) and could benefit en-
tailment (Dagan et al., 2010), grounded entailment
(Bowman et al., 2015), or visual recognition tasks
(Zhu et al., 2014).

2 Related Work

Common sense knowledge has been predominately
created directly from human input or extracted from
text (Lenat et al., 1990; Liu and Singh, 2004; Carl-
son et al., 2010). In contrast, our work is focused on
visual common sense extracted from images anno-
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a touches b
b touches a

a holds b
b inside a

a besides b
b besides a

a above b
b under a

b on a

a disconnected from b
b disconnected from a

Less than 10 % of 
pixels from a overlap 
with b.

The angle between the 
centroid of a and the 
centroid of b lies 
between 315° and 45°, 
or 135° and 225°.

The angle between the 
centroid of a and the 
centroid of b lies 
between 225° and 315°, 
or 45° and 135°.

The entire extents of 
object b are inside the 
extents of object a.

There is more than 50% 
of pixels in object b 
overlapping with the 
extents of object a.

No intersection

Figure 1: We define 6 types of unique relationships:
{touches, above, besides, holds, on, disconnected}.

tated with regions and descriptions.

There has also been recent interest in the vi-
sion community to build databases of visual com-
mon sense knowledge. Efforts have focused on a
small set of relations, such as similar to or part
of (Chen et al., 2013). Webly supervised tech-
niques (Divvala et al., 2014; Chen et al., 2013) have
also been used to test whether a particular object-
relation-object triplet occurs in images (Sadeghi et
al., 2015). In contrast, we use seven spatial relations
and allow natural language relations that represent a
larger array of higher level semantics. We also lever-
age existing efforts on annotating large scale image
datasets instead of relying on the noisy outputs of a
computer vision system.

On a technical level, our methods for extracting
common sense facts from images rely on Pointwise-
Mutual Information (PMI), analogous to other rule
extraction systems based on text (Lin and Pantel,
2001; Schoenmackers et al., 2010). We view ob-
jects as an analogy for words, images as documents,
and object-object configurations as typed bigrams.
Our methods for generalizing relations are inspired

by work that tries to predict a class label for an im-
age given a hierarchy of concepts (Deng et al., 2012;
Ordonez et al., 2013; Ordonez et al., 2015). Yet
our work is the first to deal with visual relations be-
tween pairs of concepts in the hierarchy by using a
sub-modular formulation that maximizes the amount
of coverage of subordinate categories while avoid-
ing contradictions with an initial set of discovered
common-sense assertions.

3 Methods

We assume the availability of an object-level anno-
tated image dataset D containing a set of images
with textual descriptions. Each object in an image
must be annotated with: (1) a mask or polygon out-
lining the extents of the object, and (2) the category
of the object from a set of categories V and (3) an
overall description of the image.

We produce three types of common sense facts,
each with an associated scoring function: (1)
Object-object relationships implicitly encoded in the
relative configurations between objects in the anno-
tated image data, i.e. on(bed, dog) (sec 3.1) , (2)
Entailment relations encoded in the relationships be-
tween object-object configurations and textual de-
scriptions i.e. on(bed, dog) ⇒ laying-on(bed, dog)
(sec 3.2), and (3) Generalized relations induced by
using the semantic hierarchy of concepts in Word-
Net, i.e. on(furniture , domestic-animal) (sec 3.3).

3.1 Mining Object-Object Relations

Our objective in this section is to score and rank
a set of relations S1 = {r(o1, o2)}, where r is a
object-object relation and o1, o2 ∈ V , using a func-
tion γ1 : S1 → R. First, we define a vocabulary
R of object-object relations between pairs of anno-
tated objects. Our relations are inspired by Region
Connection Calculus (Randell et al., 1992), and the
Visual Dependency Grammar of (Elliott et al., 2014;
Elliott and de Vries, 2015), details in Figure 1.

For every image, we record the instances of each
of these object-object relations r(o1, o2) between all
co-occurring objects in D1. We use Point-wise Mu-
tual Information (PMI) to estimate the evidence for

1For symmetric relations like above(o1, o2), and under(o1,
o2) we only record one of the relations.
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holds(person, o2)

holds(person, tie) 

holds(person, toothbrush) 
holds(person, cellphone) 
holds(person, baseball glove) 
holds(person, remote) 

…

holds(person, bench)
holds(person, dining table)
holds(person, car)

holds(o1, person)

holds(bus, person) 

holds(train, person) 
holds(airplane, person) 
holds(boat, person) 
holds(tv, person) 

…

holds(dining table, person)
holds(cell phone, person)
holds(chair, person)

r(o1, frisbee)

touches(dog, frisbee) 

touches(person, frisbee)
holds(dog, frisbee)
holds(person, frisbee)
besides(umbrella, frisbee)

…

besides(person, frisbee)
above(car, frisbee)
above(person, frisbee)

r(o1, o2)

holds(pizza, broccoli) 

holds(person, tie) 
holds(dining table, sandwich) 
holds(dining table, broccoli) 

holds(dining table, pizza)

…

holds(cell_phone, person)
above(person, bus)
above(bicycle, car)

Q
ua

lit
y

Figure 2: Example of our extracted object-object relations. The first column contains the overall 3 best and worst
relations ranked by PMI, the following columns show similar results for the queries: what does a person hold? what
holds a person?, and what interacts with a frisbee?

each relationship triplet:

γ1(r(o1, o2)) = log
p[r(o1, o2)]
p[r]p[(o1, o2)]

, (1)

We estimate these probabilities by counting
object-object-relation co-ocurrences using existen-
tial quantifiers for every image. This means every
image can at most contribute one to the count of
r(o1, o2) so that we do not exacerbate the results by
images with many identical object types taken from
unusual viewpoints. In Figure 2, we provide exam-
ples of our extracted object-object relations.

3.2 Mining Entailment Relations
In this section we combine our relation-based tu-
ples mined from visual annotations (section 2) with
more than 400k textual descriptions included in MS-
COCO. We generate a set of entailments S2 =
{r(o1, o2) ⇒ z}, where r(o1, o2) is an element
from S1 and z is a consequent obtained from tex-
tual descriptions. Similarly as in the previous sec-
tion, we rank the relations in S2 using a function
γ2 : S2 → R.

We start by generating an exhaustive list of can-
didate consequents z. We first pre-process the im-
age captions with the part-of-speech tagger and lem-
matizer from the Stanford Core NLP toolkit (Man-
ning et al., 2014), and remove stop words. Then
we generate a list of n-length skipgrams in each
caption. The set of n-skipgrams are filtered based
on predefined lexical patterns2, and redundancies

2〈noun, verb〉, 〈noun,*, verb,*, noun〉, 〈noun,*, preposition,
*, noun〉, 〈noun,*, verb, preposition,*,noun〉

are removed3. Skipgrams, z, are then paired with
co-occurring relations, r(o1, o2), removing pairs
with the disconnected-from spatial relation (see Fig-
ure 1). Pairs are scored with the conditional proba-
bility:

γ2(r(o1, o2)⇒ z) =
P [z, r(o1, o2)]
P [r(o1, o2)]

(2)

The consequent z can take the form q, q(o1),
q(o2), or q(o1, o2), by performing a simple align-
ment with the arguments in the antecedent. We
perform this alignment by mapping the object cat-
egories in the antecedent r(o1, o2) to WordNet
synsets, and matching any word in z to any word
in the gloss set of the predicate arguments o1 and
o2. The unmatched words in z form the relation,
whereas matched words form arguments. We pro-
duce the form q if there are no matches, q(o1),
or q(o2) when one argument word matches, and
q(o1, o2) when both match. Examples of discovered
entailments are in Figure 3.

3.3 Generalizing Relations using WordNet

In this section we present an approach to general-
ize an initial set of relations, S, to objects not found
in the original vocabulary V . Using WordNet we
construct a superset G containing all possible parent
relations for the relations in S by replacing their ar-
guments o1, o2 by all their possible hypernyms. Our
objective is to select a subset T from G that con-
tains high quality and diverse generalized relations.

3〈noun,*, verb, *, noun〉 are collapsed to 〈noun,*, verb,
preposition,*,noun〉.
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holds(chair, cat) on(cat, chair)

holds(suitcase, cat) in(cat, suitcase)

holds(person, donut) eating(person)

on(knife, cake) person-cutting(cake)

touches(cat, dining table) on(cat, table) 

touches(bird, chair) on(bird, chair) besides(cat, umbrella) under(cat, umbrella)

touches(cat, teddy bear) stuffed(cat)

above(sink, bowl) person-in-kitchen

touches(tie, teddy bear) teddy(bears)

above(kite, backpack) people-flying

on(pizza, oven) in(pizza, oven)

[misinterpreted object-object relations based on geometry alone]

[misinterpreted object-object relation based on geometry alone]

[poor n-skipgram assertion candidate]

[too general implication]

[mis-alignment and poor n-skipgram assertion due to compound nouns]

[poor n-skipgram assertion candidate and implication]

[corrected language interpretation of the proposed geometric relation]

[corrected language interpretation of the proposed geometric relation]

[inverse-functional relation discovered]

[implication involving only the first argument of the relation]

[implication involving only the second argument of the relation]

[implication involving both arguments and successful alignment of compund word]

Figure 3: Left: correctly identified entailment relations and right: failure cases.

Note that elements in G can be too general and con-
tradict statements in S while others could be correct
but add little new knowledge. To balance these con-
cerns, we formulate the selection as an optimization
problem by maximizing a fitness function L:

max
T
L(T ), such that |T | = k, and T ⊆ G, (3)

L(T ) = λlog(1+ψ(T ))+
∑
t∈T

log(1+φ(t, S)), (4)

where ψ is a coverage term that computes the total
number of facts implied through hyponym relation-
ships by the elements in T . The second term φ is a
consistency term that measures the compatibility of
a generalized relation t with the relations in S. We
assume that if a relation is missing from S, then it
is false (this corresponds to a closed world assump-
tion over the domain of S). Thus, φ is the ratio of
the scores of relations in S consistent with relation
t (i.e. evidence for t based on S), and a value that
is proportional to the number of missing relations
from S (i.e. the amount of counter-evidence). More
concretely:

φ(t, S) =
∑

s:t⇒s∧s∈S γ(s)
µ · (1 +

∑
s:t⇒s∧s/∈S 1) · d(t, S)

, (5)

where µ is a constant and d is the product of the
WordNet distances of the synsets involved in t to
their nearest synset in S. This penalizes relations
that are far away from categories in S. The opti-
mization defined in Equation 3 is an instance of the
submodular k-coverage problem. We use a greedy
algorithm that adds elements to T that maximize L,
which due to the submodular nature of the problem
approximates the solution up to a constant factor.

4 Experimental Setup
Object-Object Relations: We filter out from the ini-
tial set of candidate relations the ones that occur
less than 20 times. We extract more than 3.1k
unique statements (6k including symmetric spatial
relations). Entailment Relations: We use skipgrams
of length 2-6 allowing at most 6 skips, filter can-
didates such that they occur at least 5 times, and
return the top 10 most likely entailments per spa-
tial relation. Overall, 6.3k unique statements are ex-
tracted (10k including symmetric relations). Gen-
eralized Relations: We optimize Equation 4 only
for object-object relations because the closed world
assumption makes counts for implications sparse.
The parameter µ is set to the average of the scores,
λ = 0.05 and k = 200.

5 Evaluation

We evaluated the quality of the common sense we
derive on Amazon Mechanical Turk. Annotators
are presented with possible facts and asked to grade
statements on a five point scale. Each fact was eval-
uated by 10 workers and we normalize their average
responses to a scale from 0 to 1. Figure 4 shows
plots of quality vs. coverage, where coverage means
the top percent of relations sorted by our predicted
quality scores.

Object-Object Relations As a baseline, 1000 ran-
domly sampled relations have a quality of 0.225.
Figure 4a shows our PMI measure ranks many high
quality facts at the top, with the top quintile of the
ranking being rated above 0.63 in quality. Facts
about persons are higher quality, likely because this
category is in over 50% of the images in MS-COCO.
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(a) Object-object relations
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(b) Entailment relations
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(c) Generalizations
Figure 4: Quality of extracted common sense, as judged by people. Legends show total relations covered at 100% for
a few high level types in MS-COCO.

Entailment Relations Turkers were instructed to
assign the lowest score when they could not un-
derstand the consequent of the entailment relation.
As a baseline, 1000 randomly sampled implications
that meet our patterns have a quality of 0.33. Fig-
ure 4b shows that extracting high quality entailment
is harder than object-object relations likely because
supposition and consequent need to coordinate. Re-
lations involving furniture are rated higher and man-
ual inspection revealed that many relations about
furniture imply stative verbs or spatial terms.

Generalized Relations To evaluate generaliza-
tions, Figure 4c, we also present users with defini-
tions4. As a baseline, 200 randomly sampled gen-
eralizations from our 3k object-object relations have
a quality of 0.53. Generalizations we find are high
quality and cover over 400k objects facts not present
in MS-COCO. Examples from the 200 we derive in-
clude: holds(dining-table, cutlery), holds(bowl, edi-
ble fruit) or on(domestic animal, bed).

6 Conclusion

In this work, we use an existing object detection
dataset to extract 16k common sense statements
about annotated categories. We also show how to
generalize using WordNet and induced hundreds of
thousands of facts about unseen objects. The infor-
mation we extracted is visual, large scale and good
quality. It has the potential to be useful for both vi-
sual recognition and entailment applications.

4sometimes rules involve abstract concepts, for example
vessel, any object that can be used as a container
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