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Abstract

This paper investigates two different neural
architectures for the task of relation classi-
fication: convolutional neural networks and
recurrent neural networks. For both mod-
els, we demonstrate the effect of different ar-
chitectural choices. We present a new con-
text representation for convolutional neural
networks for relation classification (extended
middle context). Furthermore, we propose
connectionist bi-directional recurrent neural
networks and introduce ranking loss for their
optimization. Finally, we show that combin-
ing convolutional and recurrent neural net-
works using a simple voting scheme is accu-
rate enough to improve results. Our neural
models achieve state-of-the-art results on the
SemEval 2010 relation classification task.

1 Introduction

Relation classification is the task of assigning
sentences with two marked entities to a prede-
fined set of relations. The sentence “We poured
the <e1>milk</e1> into the <e2>pumpkin mix-
ture</e2>.”, for example, expresses the relation
Entity-Destination(e1,e2). While early
research mostly focused on support vector ma-
chines or maximum entropy classifiers (Rink and
Harabagiu, 2010a; Tratz and Hovy, 2010), recent
research showed performance improvements by ap-
plying neural networks (NNs) (Socher et al., 2012;
Zeng et al., 2014; Yu et al., 2014; Nguyen and Gr-
ishman, 2015; Dos Santos et al., 2015; Zhang and
Wang, 2015) on the benchmark data from SemEval
2010 shared task 8 (Hendrickx et al., 2010) .

This study investigates two different types of
NNs: recurrent neural networks (RNNs) and con-
volutional neural networks (CNNs) as well as their
combination. We make the following contributions:

(1) We propose extended middle context, a new
context representation for CNNs for relation classi-
fication. The extended middle context uses all parts
of the sentence (the relation arguments, left of the
relation arguments, between the arguments, right of
the arguments) and pays special attention to the mid-
dle part.

(2) We present connectionist bi-directional RNN
models which are especially suited for sentence clas-
sification tasks since they combine all intermediate
hidden layers for their final decision. Furthermore,
the ranking loss function is introduced for the RNN
model optimization which has not been investigated
in the literature for relation classification before.

(3) Finally, we combine CNNs and RNNs using a
simple voting scheme and achieve new state-of-the-
art results on the SemEval 2010 benchmark dataset.

2 Related Work

In 2010, manually annotated data for relation clas-
sification was released in the context of a SemEval
shared task (Hendrickx et al., 2010). Shared task
participants used, i.a., support vector machines or
maximum entropy classifiers (Rink and Harabagiu,
2010a; Tratz and Hovy, 2010). Recently, their re-
sults on this data set were outperformed by applying
NNs (Socher et al., 2012; Zeng et al., 2014; Yu et
al., 2014; Nguyen and Grishman, 2015; Dos Santos
et al., 2015).
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Zeng et al. (2014) built a CNN based only on
the context between the relation arguments and ex-
tended it with several lexical features. Kim (2014)
and others used convolutional filters of different
sizes for CNNs. Nguyen and Grishman (2015) ap-
plied this to relation classification and obtained im-
provements over single filter sizes. Dos Santos et al.
(2015) replaced the softmax layer of the CNN with a
ranking layer. They showed improvements and pub-
lished the best result so far on the SemEval dataset,
to our knowledge.

Socher et al. (2012) used another NN architecture
for relation classification: recursive neural networks
that built recursive sentence representations based
on syntactic parsing. In contrast, Zhang and Wang
(2015) investigated a temporal structured RNN with
only words as input. They used a bi-directional
model with a pooling layer on top.

3 Convolutional Neural Networks (CNN)

CNNs perform a discrete convolution on an input
matrix with a set of different filters. For NLP tasks,
the input matrix represents a sentence: Each column
of the matrix stores the word embedding of the cor-
responding word. By applying a filter with a width
of, e.g., three columns, three neighboring words (tri-
gram) are convolved. Afterwards, the results of the
convolution are pooled. Following Collobert et al.
(2011), we perform max-pooling which extracts the
maximum value for each filter and, thus, the most
informative n-gram for the following steps. Finally,
the resulting values are concatenated and used for
classifying the relation expressed in the sentence.

3.1 Input: Extended Middle Context

One of our contributions is a new input representa-
tion especially designed for relation classification.
The contexts are split into three disjoint regions
based on the two relation arguments: the left con-
text, the middle context and the right context. Since
in most cases the middle context contains the most
relevant information for the relation, we want to fo-
cus on it but not ignore the other regions completely.
Hence, we propose to use two contexts: (1) a com-
bination of the left context, the left entity and the
middle context; and (2) a combination of the mid-
dle context, the right entity and the right context.

Due to the repetition of the middle context, we force
the network to pay special attention to it. The two
contexts are processed by two independent convo-
lutional and max-pooling layers. After pooling, the
results are concatenated to form the sentence repre-
sentation. Figure 1 depicts this procedure. It shows
an examplary sentence: “He had chest pain and
<e1>headaches</e1> from <e2>mold</e2> in
the bedroom.” If we only considered the middle
context “from”, the network might be tempted to
predict a relation like Entity-Origin(e1,e2).
However, by also taking the left and right con-
text into account, the model can detect the relation
Cause-Effect(e2,e1). While this could also
be achieved by integrating the whole context into the
model, using the whole context can have disadvan-
tages for longer sentences: The max pooling step
can easily choose a value from a part of the sentence
which is far away from the mention of the relation.
With splitting the context into two parts, we reduce
this danger. Repeating the middle context increases
the chance for the max pooling step to pick a value
from the middle context.

3.2 Convolutional Layer

Following previous work (e.g., (Nguyen and Grish-
man, 2015), (Dos Santos et al., 2015)), we use 2D
filters spanning all embedding dimensions. After
convolution, a max pooling operation is applied that
stores only the highest activation of each filter. We
apply filters with different window sizes 2-5 (multi-
windows) as in (Nguyen and Grishman, 2015), i.e.
spanning a different number of input words.

4 Recurrent Neural Networks (RNN)

Traditional RNNs consist of an input vector, a his-
tory vector and an output vector. Based on the repre-
sentation of the current input word and the previous
history vector, a new history is computed. Then, an
output is predicted (e.g., using a softmax layer). In
contrast to most traditional RNN architectures, we
use the RNN for sentence modeling, i.e., we predict
an output vector only after processing the whole sen-
tence and not after each word. Training is performed
using backpropagation through time (Werbos, 1990)
which unfolds the recurrent computations of the his-
tory vector for a certain number of time steps. To
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He had chest pains and <e1>headaches</e1> from <e2>mold</e2> in the bedrooms.

... ...

convolution convolution

poolingpooling

sentence representation

concatenation

Figure 1: CNN with extended contexts

avoid exploding gradients, we use gradient clipping
with a threshold of 10 (Pascanu et al., 2012).

4.1 Input of the RNNs
Initial experiments showed that using trigrams as in-
put instead of single words led to superior results.
Hence, at timestep t we do not only give word wt to
the model but the trigram wt−1wtwt+1 by concate-
nating the corresponding word embeddings.

4.2 Connectionist Bi-directional RNNs
Especially for relation classification, the process-
ing of the relation arguments might be easier with
knowledge of the succeeding words. Therefore in
bi-directional RNNs, not only a history vector of
word wt is regarded but also a future vector. This
leads to the following conditioned probability for the
history ht at time step t ∈ [1, n]:

hft = f(Uf · wt + V · hft−1) (1)

hbt = f(Ub · wn−t+1 +B · hbt+1) (2)

ht = f(hbt + hft +H · ht−1) (3)

Thus, the network can be split into three parts:
a forward pass which processes the original sen-
tence word by word (Equation 1); a backward pass
which processes the reversed sentence word by word
(Equation 2); and a combination of both (Equation
3). All three parts are trained jointly. This is also
depicted in Figure 2.

Combining forward and backward pass by adding
their hidden layer is similar to (Zhang and Wang,
2015). We, however, also add a connection to the
previous combined hidden layer with weight H to
be able to include all intermediate hidden layers into
the final decision of the network (see Equation 3).
We call this “connectionist bi-directional RNN”.
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Figure 2: Connectionist bi-directional RNN

In our experiments, we compare this RNN with
uni-directional RNNs and bi-directional RNNs with-
out additional hidden layer connections.

5 Model Training

5.1 Word Representations

Words are represented by concatenated vectors: a
word embedding and a position feature vector.
Pretrained word embeddings. In this study, we
used the word2vec toolkit to train embeddings on an
English Wikipedia from May 2014. We only con-
sidered words appearing more than 100 times and
added a special PADDING token for convolution.
This results in an embedding training text of about
485,000 terms and 6.7 · 109 tokens. During model
training, the embeddings are updated.
Position features. We incorporate randomly ini-
tialized position embeddings similar to Zeng et al.
(2014), Nguyen and Grishman (2015) and Dos San-
tos et al. (2015). In our RNN experiments, we in-
vestigate different possibilities of integrating posi-
tion information: position embeddings, position em-
beddings with entity presence flags (flags indicating
whether the current word is one of the relation argu-
ments), and position indicators (Zhang and Wang,
2015).

5.2 Objective Function: Ranking Loss

Ranking. We applied the ranking loss function pro-
posed in Dos Santos et al. (2015) to train our models.
It maximizes the distance between the true label y+

and the best competitive label c− given a data point
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x. The objective function is

L = log(1 + exp(γ(m+ − sθ(x)y+)))
+ log(1 + exp(γ(m− + sθ(x)c−)))

(4)

with sθ(x)y+ and sθ(x)c− being the scores for the
classes y+ and c− respectively. The parameter γ
controls the penalization of the prediction errors and
m+ and m− are margins for the correct and incor-
rect classes. Following Dos Santos et al. (2015), we
set γ = 2,m+ = 2.5,m− = 0.5. We do not learn
a pattern for the class Other but increase its differ-
ence to the best competitive label by using only the
second summand in Equation 4 during training.

6 Experiments and Results

We used the relation classification dataset of the
SemEval 2010 task 8 (Hendrickx et al., 2010). It
consists of sentences which have been manually la-
beled with 19 relations (9 directed relations and one
artificial class Other). 8,000 sentences have been
distributed as training set and 2,717 sentences served
as test set. For evaluation, we applied the official
scoring script and report the macro F1 score which
also served as the official result of the shared task.

RNN and CNN models were implemented with
theano (Bergstra et al., 2010; Bastien et al., 2012).
For all our models, we use L2 regularization with a
weight of 0.0001. For CNN training, we use mini
batches of 25 training examples while we perform
stochastic gradient descent for the RNN. The ini-
tial learning rates are 0.2 for the CNN and 0.01 for
the RNN. We train the models for 10 (CNN) and
50 (RNN) epochs without early stopping. As ac-
tivation function, we apply tanh for the CNN and
capped ReLU for the RNN. For tuning the hyperpa-
rameters, we split the training data into two parts:
6.5k (training) and 1.5k (development) sentences.
We also tuned the learning rate schedule on dev.

Beside of training single models, we also report
ensemble results for which we combined the pre-
sented single models with a voting process.

6.1 Performance of CNNs
As a baseline system, we implemented a CNN sim-
ilar to the one described by Zeng et al. (2014). It
consists of a standard convolutional layer with filters
with only one window size, followed by a softmax

CNN F1
Baseline (emb dim: 50) 73.0
+ position features 78.6*
+ multi-windows features map 78.7
+ ranking layer 81.9*
+ extended middle context 82.2
+ increase emb dim to 400 83.9*
ensemble 84.2

Table 1: F1 score of CNN and its components, * indicates

statisticial significance compared to the result in the line above

(z-test, p < 0.05)

layer. As input it uses the middle context. In con-
trast to Zeng et al. (2014), our CNN does not have an
additional fully connected hidden layer. Therefore,
we increased the number of convolutional filters to
1200 to keep the number of parameters comparable.
With this, we obtain a baseline result of 73.0. After
including 5 dimensional position features, the per-
formance was improved to 78.6 (comparable to 78.9
as reported by Zeng et al. (2014) without linguistic
features).

In the next step, we investigate how this result
changes if we successively add further features to
our CNN: multi-windows for convolution (window
sizes: 2,3,4,5 and 300 feature maps each), ranking
layer instead of softmax and our proposed extended
middle context. Table 1 shows the results. Note that
all numbers are produced by CNNs with a compa-
rable number of parameters. We also report F1 for
increasing the word embedding dimensionality from
50 to 400. The position embedding dimensionality
is 5 in combination with 50 dimensional word em-
beddings and 35 with 400 dimensional word embed-
dings. Our results show that especially the ranking
layer and the embedding size have an important im-
pact on the performance.

6.2 Performance of RNNs

As a baseline for the RNN models, we apply a uni-
directional RNN which predicts the relation after
processing the whole sentence. With this model, we
achieve an F1 score of 61.2 on the SemEval test set.

Afterwards, we investigate the impact of differ-
ent position features on the performance of uni-
directional RNNs (position embeddings, position
embeddings concatenated with a flag indicating
whether the current word is an entity or not, and
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RNN F1
uni-directional (Baseline, emb dim: 50) 61.2
uni-directional + position embs 68.3*
uni-directional + position embs + entity flag 73.1*
uni-directional + position indicators 73.4
bi-directional + position indicators 74.2*
connectionist-bi-directional+position indicators 78.4*
+ ranking layer 81.4*
+ increase emb dim to 400 82.5*
ensemble 83.4

Table 2: F1 score of RNN and its components, * indicates

statisticial significance compared to the result in the line above

(z-test, p < 0.05)

position indicators (Zhang and Wang, 2015)). The
results indicate that position indicators (i.e. artificial
words that indicate the entity presence) perform the
best on the SemEval data. We achieve an F1 score
of 73.4 with them. However, the difference to using
position embeddings with entity flags is not statisti-
cally significant.

Similar to our CNN experiments, we successively
vary the RNN models by using bi-directionality,
by adding connections between the hidden layers
(“connectionist”), by applying ranking instead of
softmax to predict the relation and by increasing the
word embedding dimension to 400.

The results in Table 2 show that all of these vari-
ations lead to statistically significant improvements.
Especially the additional hidden layer connections
and the integration of the ranking layer have a large
impact on the performance.

6.3 Combination of CNNs and RNNs

Finally, we combine our CNN and RNN models us-
ing a voting process. For each sentence in the test
set, we apply several CNN and RNN models pre-
sented in Tables 1 and 2 and predict the class with
the most votes. In case of a tie, we pick one of the
most frequent classes randomly. The combination
achieves an F1 score of 84.9 which is better than the
performance of the two NN types alone. It, thus,
confirms our assumption that the networks provide
complementary information: while the RNN com-
putes a weighted combination of all words in the
sentence, the CNN extracts the most informative n-
grams for the relation and only considers their re-
sulting activations.

Classifier F1
SVM (Rink and Harabagiu, 2010b) 82.2
RNN (Socher et al., 2012) 77.6
MVRNN (Socher et al., 2012) 82.4
CNN (Zeng et al., 2014) 82.7
FCM (Yu et al., 2014) 83.0
bi-RNN (Zhang and Wang, 2015) 82.5
CR-CNN (Dos Santos et al., 2015) 84.1
R-RNN 83.4
ER-CNN 84.2
ER-CNN + R-RNN 84.9

Table 3: State-of-the-art results for relation classification

6.4 Comparison with State of the Art
Table 3 shows the results of our models ER-
CNN (extended ranking CNN) and R-RNN (ranking
RNN) in the context of other state-of-the-art models.
Our proposed models obtain state-of-the-art results
on the SemEval 2010 task 8 data set without making
use of any linguistic features.

7 Conclusion

In this paper, we investigated different features and
architectural choices for convolutional and recurrent
neural networks for relation classification without
using any linguistic features. For convolutional neu-
ral networks, we presented a new context represen-
tation for relation classification. Furthermore, we
introduced connectionist recurrent neural networks
for sentence classification tasks and performed the
first experiments with ranking recurrent neural net-
works. Finally, we showed that even a simple com-
bination of convolutional and recurrent neural net-
works improved results. With our neural models, we
achieved new state-of-the-art results on the SemEval
2010 task 8 benchmark data.
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