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Abstract

Many puns create humor through the rela-
tionship between a pun and its phonologically
similar target. For example, in “Don’t take ge-
ologists for granite” the word “granite” is a
pun with the target “granted”. The recovery of
the target in the mind of the listener is essen-
tial to the success of the pun. This work intro-
duces a new model for automatic target recov-
ery and provides the first empirical test for this
task. The model draws upon techniques for
automatic speech recognition using weighted
finite-state transducers, and leverages auto-
matically learned phone edit probabilities that
give insight into how people perceive sounds
and into what makes a good pun. The model
is evaluated on a small corpus where it is able
to automatically recover a large fraction of the
pun targets.

1 Introduction

From the high culture of Shakespeare’s plays
(Tanaka, 1992), to the depths of the YouTube com-
ments section, from advertising slogans (Keller,
2009) to conversations with nerdy parents, puns are
a versatile rhetorical device and their understand-
ing is essential to any comprehensive approach to
computational humor. Humor has been described as
“one of the most interesting and puzzling research
areas in the field of natural language understanding”
(Yang et al., 2015). Puns, in particular, offer an in-
teresting subject for study since their humor derives
from wordplay and double-meaning.

An important class of puns, known as parono-
masic puns, are those where one entity, the pun, is

phonologically similar to another, the target (Joseph,
2008). Consider an example from Crosbie (1977):

“Sign by gate to nudist colony: Come in. We
are Never Clothed.”

Here, “clothed” is the pun and “closed” is the tar-
get. Paronomasic puns are distinguished from ho-
mographic puns such as

“Two silkworms had a race. They ended up in
a tie.”

which puns on the two definitions of the word “tie”.
When the pun and target are homophonic this is
called a perfect pun, and when nearly homophonic
an imperfect pun (Zwicky and Zwicky, 1986) (or a
heterophonic pun (Hempelmann, 2003)). The fo-
cus of this work is to propose and evaluate a model
for target recovery of both perfect and imperfect
paronomasic puns, assuming that the location of the
pun word or word sequence.

Ritchie (2005) classifies puns in terms of whether
they are self-contained, i.e., based on general knowl-
edge and humorous in a variety of circumstances,
or contextually integrated, i.e. relying on a specific
context such as a visual context, knowledge of a re-
cent event or discussion. Many puns of this type are
associated with cartoons or images, e.g. a cartoon
with pies and cakes in the street having the caption

“The streets were oddly desserted”
(desserted/deserted). Contextually integrated puns
lose their humor out of context because the pun is
difficult to detect. However, target recovery is often
still possible, and thus this distinction does not play
a major role in the current study.

If a listener fails to recover the target of the pun
then the statement fails in its humor. The two chief
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clues that the listener must rely on to perform tar-
get recovery are the phonetic information and lan-
guage context. This is analogous to the way in which
someone listening to speech uses the acoustic infor-
mation and language context to recover a sequence
of words from an audio source. In the words of
Hempelmann (2003), “the recovery of the target in
heterophonic puns is just a specific case of the com-
plex task of hearing.” The similarity between hear-
ing and target recovery suggests the use of meth-
ods from automatic speech recognition in building
a model for automatic target recovery.

The goal of this paper is to develop and test a
computational model for target recovery in puns.
Sentences with the position of the pun marked are
given as input and the model must output the tar-
get word sequence. As the focus is on paronomasic
puns, the relationship between the pun and the target
is primarily phonological, but surrounding language
context is also important for recovering the target.
This work has applications in natural language un-
derstanding of texts that contain humor. Further-
more, the insights gained from our model are use-
ful for improving pun generation in computational
humor systems.

2 Prior Work

Zwicky and Zwicky (1986) provided an analysis of
the properties of paronomasic puns, especially with
regard to the markedness of phonological segments.
They assembled a corpus of 2140 instances of seg-
mental relationships from imperfect pun/target pairs
for their analysis. By counting how many times each
phoneme was used in a pun or target, the authors
observe a behavior they refer to as ousting, a strong
asymmetry in phoneme substitution likelihood. For
instance, punners will rarely replace a ‘T’ phoneme
(IPA t) in the target word with ‘TH’ (T) in the pun,
but regularly replace ‘TH’ with ‘T.’ An example of
such a pun is

“I lost my temper in a fit of whiskey”
(fit/fifth)). Because of this asymmetry, we say that
’T’ ousts ’TH.’ Zwicky and Zwicky correlate the
ousting behavior evident in their pun data with the
phonological notion of markedness. Markedness
can be defined (if oversimplified) as “the tendency
for phonetic terms to be pronounced in a simple,

natural way” with regard to physiological, acoustic,
and perceptual factors (marked segments are more
complex) (Anderson and Lightfoot, 2002). They
conclude that marked segments tend to oust un-
marked segments (e.g. voiced stops oust their voice-
less counterparts).

This is followed-up by Sobkowiak (1991), whose
manual alignment of the phoneme sequences of
3,850 pun/target pairs allows for a more careful
study of the ousting behavior. This corpus, where
whole sequences of phonemes are aligned between
puns and targets, is a much richer resource for an-
alyzing ousting than the segment-only data used in
(Zwicky and Zwicky, 1986). Sobkowiak’s improved
data provides evidence against the conclusions of
Zwicky and Zwicky (1986). Rather, “it seems that
it is not the case that ‘marked ousts unmarked’ in
paronomasic puns.” Sobkowiak goes on to show
that puns more frequently involve changes to vowels
than consonants, noting that their information load
(i.e. contribution to target recoverability) is lighter.
Our data corroborates Sobkowiak’s claims regarding
the role of markedness in punning as well as the mu-
tability of vowels, and provides more details about
the specific nature of substitutions in a large corpus
of puns.

Building off of Sobkowiak’s work, Hempelmann
(2003) studies target recoverability, arguing that a
good model for target recovery provides necessary
groundwork for effective automatic pun generation.
He proposes a preliminary phonetic edit cost table
to be one part of a scoring system. The model is
based on the phoneme edit counts from Sobkowiak
(1991) with an ad-hoc formula for transforming the
counts into substitution costs. However, Hempel-
mann makes no effort to empirically test his model at
the recovery task. The model uses a subset of 1,182
puns from the 3,850 identified by Sobkowiak. This
subset is the data used for training our phonetic edit
models and we use Hempelmann’s cost function as
a baseline.

The task of automatic target recovery of parono-
masic puns has not been previously attempted. Re-
cently, Miller and Gurevych (2015) studied meth-
ods for automatic understanding of homographic
puns using methods from word-sense disambigua-
tion. Paronomasia is intentionally excluded from
their data.
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3 Target Recovery

Following the convention of Miller and Gurevych
(2015), we assume that the position of the pun in the
input sentence is known. The target recovery task is
to identify the pun target given the pun and its left
and right word contexts.

3.1 Model

The model has three parts: a phonetic edit model,
a phonetic lexicon and a language model. The re-
covered target T ∗ is the word (or words) with the
maximum probability given the pun P according to

T ∗ = argmax
T

p(T |P ) = argmax
T

p(P |T )p(T ),

where p(P |T ) is the phonetic edit model and p(T )
is the language model. The factorization into a lan-
guage model and a phonetic edit model is similar
to the classic approach to automatic speech recogni-
tion.

The implementation of the model uses weighted
finite-state transducers (WFSTs) which have been
adopted as a useful structure for speech decoding
due to their ability to efficiently represent each of
the relevant knowledge sources, i.e. phonetic infor-
mation, phonetic lexicon and language model, in a
single framework (Mohri et al., 2002; Hori et al.,
2007). Finite-state transducers are finite-state ma-
chines with an input and an output tape. We will
use WFSTs for our pun target recovery model. Each
of the phonetic edit model (PEM), phonetic lexicon
(L) and language model (LM) can be represented as
WFSTs, which are joined together by applying the
composition operation. The weights on the PEM
and LM are negative log-likelihoods, and the lexi-
con has no weighting. Each of these models will be
explained in further detail below. The target is given
by the shortest path in the WFST:

(LC⊕ P ◦ L−1 ◦ PEM ◦ L⊕ RC) ◦ LM,

where P is the pun and LC and RC are the left and
right word contexts. The symbols −1, ◦ and ⊕ de-
note the inverse, composition, and concatenation op-
erations respectively.

The sequence of operations P ◦ L−1 ◦ PEM ◦ L
converts a pun to its phonetic form, expands it to a

lattice based on phonetic confusions, and then con-
verts the phone lattice to a lattice of possible target
words. By concatenating the left and right word con-
texts and composing with the language model, each
path through the WFST is a target word sequence
with a weight equal to the combined phonetic edit
and language model scores. The ability to handle
multi-word puns and/or targets (e.g., the word se-
quence “no bell” can be matched to “Nobel”, using
an example from (Yang et al., 2015)) is made possi-
ble because the lexicon WFST L allows multiword
sequences.

Since the scores are negative log likelihoods, the
target hypothesis is just the shortest path in the
WFST. We score the model based on its accuracy
at identifying the target which must be an exact
match, ignoring punctuation. We disallow the pos-
sibility that the pun is hypothesized as a target, i.e.
homographic puns, in order to focus on the class of
puns whose relationship with their targets is primar-
ily phonological. The OpenFst library is used to per-
form all of the WFST operations (Allauzen et al.,
2007).

3.2 Phonetic Edit Model

The purpose of the phonetic edit model is to esti-
mate the probability of the pun phoneme sequence
given a candidate target phoneme sequence. We pre-
fer to learn a model from the data rather than adopt
an existing model that relies on phonetic features
and edit costs that were derived by hand (Kondrak,
2000). As shown by Ristad and Yianilos (1998),
a memoryless WFST model can learn a probabil-
ity distribution over edit operations with a princi-
pled objective, namely, to maximize the likelihood
of the source/target sequences in the training data.
In our case, the training data is pun/target phoneme
sequences. Memoryless, in this context, refers to
the fact that the model is not conditioning on pre-
vious symbols, i.e. there is only a single state in
the WFST. The model assumes that the phoneme se-
quence of the pun is generated through the stochastic
application of insertions, deletions, and substitutions
to the target phoneme sequence. During learning,
the model estimates the function p(y|x) where y is
a phoneme from the pun and x is a phoneme from
the target. When x = ε this is an insertion of y and
when y = ε it is a deletion of x.
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Training uses the expectation-maximization algo-
rithm following the equations given by Oncina and
Sebban (2005) to estimate the conditional probabil-
ity distribution instead of the joint one as originally
derived by Ristad and Yianilos. The model is trained
to maximize the probability of the pun targets given
their sources subject to the constraint that the model
encode a probability distribution over all possible
string pairs. In the expectation step, puns are aligned
with their targets given the current model. Then,
the maximization step re-estimates the edit proba-
bilities given the current alignment. Edit probabil-
ities are initialized by giving a high probability to
keeping the same phoneme and uniform small prob-
abilities to all possible edits. (We initialized by giv-
ing ten times the probability to preserving the same
phoneme as to any possible edit operation.) Follow-
ing the convention of Sobkowiak (1991), vowels can
not align with consonants and vice-versa.

The training data consists of the 1,182 target
pun pairs taken from Appendix E of Hempelmann
(Hempelmann, 2003). These are a subset of the puns
that Sobkowiak took mostly from Crosbie’s “Dictio-
nary of Puns” and analyzed in his work.

3.3 Phonetic Lexicon

The lexicon models the pronunciation of each word
in the vocabulary. Pronunciations come from the
CMU pronunciation dictionary (Weide, 1998). This
dictionary has an inventory of 39 phonemes. If a
pun is not in the vocabulary of the dictionary, for ex-
ample if it is not a word, then its pronunciation is
generated automatically using the LOGIOS lexicon
tool.1 The same is not true for the targets, since they
are unknown beforehand. Thus, when the lexicon is
used to map puns to phonemes the vocabulary size
is essentially unlimited. But, when it is used to map
the phoneme lattice into a word lattice of potential
targets then the fixed vocabulary from the language
model is used.

The CMU dictionary includes multiple pronunci-
ations for some words. All pronunciations are used
with unweighted parallel paths. The version of the
dictionary used here includes stress markers and syl-
lable boundaries (Bartlett et al., 2009). In the sim-
plest version of our model, this information is ig-

1http://www.speech.cs.cmu.edu/tools/lextool.html

nored in order to reduce the number of learned pa-
rameters in the PEM.

After composing with the phonetic edit model and
the lexicon, we do a conservative pruning of the
WFST to remove highly improbable word sequences
based on the phonetic score and run epsilon removal
on the resulting lattice. This reduces the memory
footprint and allows use of a larger language model.

3.4 Language Model

A 230 million word corpus was formed from com-
ments obtained from Reddit, an online discussion
forum. These comments were collected from a wide
variety of forums, known as subreddits. Reddit con-
tributors tend to use a casual conversational style
that is a good match for the language used in com-
mon puns. All of the text data from Reddit was
tokenized using the NLTK tokenizer (Bird et al.,
2009). The tokenizer splits contractions into two to-
kens but we kept these as a single token to match
the pronunciation dictionary. We remove case infor-
mation. Punctuation is removed when evaluating the
correctness of the hypothesized targets, but punctu-
ation symbols are included in the language model.
It provides a useful context break in punning rid-
dles where the pun/target typically follows a ques-
tion mark or other punctuation.

The vocabulary is set by intersecting the vocab-
ulary from the CMU pronunciation dictionary with
the set of tokens that occur at least 30 times in the
language model training data. This gives us a 36,175
word vocabulary. As Sobkowiak (1991) observed,
the target tends to have a much higher unigram prob-
ability than the pun. This means that the vocabulary
size need not be too large to cover most of the tar-
gets.

The language model is a trigram model with mod-
ified Kneser-Ney smoothing (Chen and Goodman,
1999). Entropy pruning is used to reduce the size
of the language model (Stolcke, 2000). It is impor-
tant to perform the determinization and minimiza-
tion operations on the LM after converting it into
the FST representation, in order to reduce the size of
the model (Mohri et al., 2008). Because we are us-
ing a trigram model, only two words of context are
needed on each side of the pun.
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3.5 Extending the Phoneme Edit Model with
Syllable Structure and Stress

For a listener to recognize the phonological distinct-
ness of the pun and the target, they should prefer-
ably differ in a perceptually salient position such as
a stressed syllable. In particular, we expect that puns
would take advantage of the increased acoustic en-
ergy in the onset and nucleus of a stressed syllable
and utilize these positions for phoneme changes.

To analyze this effect we used a syllabified ver-
sion of the CMU pronunciation dictionary (Bartlett
et al., 2009). We took the 1-best phonetic align-
ment of the training data and split it according to the
syllable boundaries of the pun. Then we computed
the probability of a phoneme change according to
the position in the syllable and the stress. Conso-
nants in the onset of a stressed syllable have a 40.3%
probability of changing between the target and pun.
The nucleus of a stressed syllable of has a 36.8%
probability of substitution. This is compared to a
31.8% probability of substitution for phonemes in
unstressed syllables and coda positions.

To incorporate this into an extension of the pho-
netic edit model, we created a three state model.
There is one default state and two special states for
the stressed syllable onset and nucleus respectively.
The phoneme edit probabilities p(y|x) were scaled
according to the state s and renormalized so that
p(y|x, s) is a valid probability distribution. When
a substitution does occur, we assume that the choice
of target phoneme is independent of the syllable po-
sition and stress. The net effect of the syllable ex-
tension to the PEM is to encourage substitution of
onsets and nuclei of stressed syllables and discour-
age it otherwise.

4 Experiments

4.1 Data

We collected 75 puns from various joke websites
such as Tumblr, Reddit, and Twitter and soliciting
examples from friends and colleagues.2 These were
collected without reference to the sources used by
Sobkowiak to assemble the puns used in building the
phonetic edit model. This data was used for test data
only and is completely separate from the training

2Data available at http://ssli.ee.washington.edu/data/puns.

data used by the language model and the phonetic
edit model. (It would be nice to have used some of
the 1,182 puns from Sobkowiak for test data but only
the isolated pun/target pairs were provided without
the necessary word contexts.) Pun locations were
marked in each sentence as the minimal set of words
that change between the pun and the target.

Note that the phonetic edit model is trained on ex-
clusively imperfect puns but it is tested on both per-
fect and imperfect puns (24 perfect and 51 imper-
fect). This creates a mismatch between the training
data and the test data. Target recovery is harder on
imperfect puns but having a mix of both types better
reflects what is commonly found in the wild.

4.2 Baseline Model

As a baseline model we replace our phonetic edit
model with the cost function proposed by Hempel-
mann, which we replicated based on details given
in Appendix G of his thesis (Hempelmann, 2003).
This cost function, which Hempelmann refers to as
“preliminary,” is the only published phonetic edit
model for paronomasic puns. The cost table is based
on the phoneme pair alignment counts from the
1,182 training pairs that were aligned by hand. The
phoneme alignment counts are converted to costs by
using simple ad-hoc equations. Vowel pair counts
are transformed to costs using cost = 0.3 − 0.3 ∗
count/161 and other pairs use cost = count−0.6.
Our model improves upon the baseline by avoiding
heuristic transformations. Since the phoneme sym-
bol set used by Hempelmann (based on (Sobkowiak,
1991)) differs from that used in the CMU dictio-
nary, the Hempelmann costs are mapped to match
the CMU inventory.

4.3 Results

We report the performance of our model in Table
1 using accuracy and mean reciprocal rank as met-
rics. If the correct target did not appear in our n-
best list then we use a value of zero for its recipro-
cal rank. Ties are broken randomly. The baseline
uses Hempelmann’s phonetic cost model plus the
LM, and we include two ablation models that use
just the LM or just the PEM. The other two models
use the LM with either the memoryless PEM or the
PEM with the syllable extension.
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Accuracy
Model Perfect Imperfect Overall MRR

LM Only 13.0% 7.7% 9.3% 0.127
PEM Only 43.5% 9.6% 20.0% 0.282
LM + Hempelmann 47.8% 7.7% 29.3% 0.389
LM + PEM 73.9% 65.4% 68.0% 0.729
LM + Syll. PEM 73.9% 65.4% 68.0% 0.733

Table 1: Accuracy and mean reciprocal rank (MRR) for target recovery

Using the language model only gives poor perfor-
mance. It is only able to recover the target when the
target happens to be an idiomatic expression. The
PEM-only model does significantly better than using
the LM only, highlighting the importance of phonet-
ics in paronomasic puns. In the full system, Hempel-
mann’s cost matrix does not fare well compared to
the PEM model. The Hempelmann cost matrix does
a poor job of separating likely targets from the rest
of the vocabulary. Thus, many times the true tar-
get is pruned before the application of the language
model.

The LM + PEM model recovers the target more
than two-thirds of the time and has a mean reciprocal
rank of 0.729. When using the syllable extension to
the PEM, the results agree on the rank of the target
for all but five puns. For those five, the model with
the syllable extension improves the rank compared
to the basic PEM. Two puns from that set of five are

“If you’ve seen one shopping center you’ve
seen a mall”
“How does Moses make his tea? Hebrews it.”

(a mall/‘em all and Hebrews/he brews, respectively).
The hypothesized targets “immoral” and “he abuse”
outrank the true target for these puns in the basic
PEM model but not in the syllable one because they
change more phonemes in unstressed syllables.

Perfect puns are easier to recover than imperfect
ones. The LM + PEM model does well on both per-
fect and imperfect puns. As to be expected, the PEM
only model does very poorly on imperfect puns and
the LM only model does equally poorly on both per-
fect and imperfect.

Table 2 shows the top ranked hypothesis for a
sample pun using the LM + PEM model, where the
cost in this table is the negative log-likelihood. In
this case, the top ranked hypothesis was correct. The
second highest ranked hypothesis is a misspelling of

the target that is common enough for the language
model to also give it a high score.

An example where the model makes a mistake is:
“A Freudian slip is where you say one thing but
mean your mother”

The pattern of “one thing . . . another” is common in
English but, in this case, the target “another” is too
far away from “one thing” for the relationship to be
captured by the tri-gram language model.

5 Analysis

A consequence of using a stochastic model for pho-
netic edit costs is that there is a non-zero edit cost
between a phoneme and itself and that cost is differ-
ent depending on the phoneme. This highlights the
fact that we model the edit (or transformation) prob-
abilities of the pun/target corpus rather than phono-
logical similarity (which would be a symmetric cost
function). The analysis below shows that the edit
model is in fact capturing more than simple phono-
logical similarity.

5.1 Phoneme Edit Probabilities

Figures 1 and 2 show the probability of observing
a source phoneme (i.e. a phoneme appearing in the
pun) given each target phoneme for the vowel and
consonant pairs respectively. The numbers are to be
interpreted as percentages and values less than 1 are
not shown. The ‘.’ symbol is used for epsilon transi-
tions and indicates segment insertions and deletions.

Vowels. Regarding vowels, our data corroborates
some of the findings of Sobkowiak (1991). The
lower numbers along the diagonal in Figure 1 rel-
ative to Figure 2 indicates the violability of vowels
(39%) relative to consonants (34%) in paronoma-
sic puns. Our data also confirms that, where puns
are concerned, marked segments do not necessarily
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Rank Cost Hypothesis
1 21.0 ... ONLY GOT MYSELF TO BLAME
2 23.2 ... ONLY GOT MY SELF TO BLAME
3 24.2 ... ONLY GOT A MYSELF TO BLAME
4 24.2 ... ONLY GOT MY YOURSELF TO BLAME

Source ... ONLY GOT MY SHELF TO BLAME

Table 2: Top ranked target LM + PEM hypotheses for the pun “A book fell on my head. I’ve only got my shelf to blame.”

Figure 1: Edit probabilities for vowels based on the LM + PEM

model.

oust unmarked. According to Zwicky and Zwicky
(1986), if “marked ousts unmarked” we would ex-
pect to see that tense vowels oust lax vowels. Rather,
what we find in this data is that the majority of vow-
els and diphthongs are ousted by AH (@), widely
considered an unmarked vowel. Puns demonstrating
this phenomenon include

“The pun is mightier than the sword”
“He’s an honest geologist, you can trust what
he sediment”

(pun/pen and sediment/said he meant, respectively).
We hypothesize that the low cost for substituting AH
for other vowels is due in part to the fact parono-
masic puns originally were a spoken phenomenon,
and so the substitution possibilities for a given tar-
get vowel depend significantly on the variety of re-
alizations of that vowel in speech. It is well at-
tested cross-linguistically that vowels undergo re-
duction in unstressed positions (Crosswhite, 2004).
In English running speech, this reduced form most

closely resembles AH (Burzio, 2007). The data pre-
sented here suggests that punners take advantage of
the commonality of running speech vowel reduction
when considering target recoverability, resulting in
the availability of AH as a replacement for most tar-
get vowels. Our model captures this fact by assign-
ing low cost to such a substitution.

Our data provides other insights into the nature
of vowel substitutions in puns. For instance, we see
that IY (i) is less likely to change in a pun than other
monophthongs, indicating a significant perceptual
distance between IY and its neighbors. Most likely
to change are the vowels AO (O) and UH (U). The
violability of AO is likely due to the AO/AA merger
present in many American English Dialects (Labov
et al., 2006), and in fact we see targets with AO fre-
quently mapping to puns with AA. The mutability of
UH is also interesting: while it, like other monoph-
thongs, is ousted by AH, it is also ousted by a closely
articulated marked counterpart, UW (u). This seems
to be the sole example in our data of marked vowels
ousting an unmarked vowel to a significant degree.

Another interesting feature of this data is the sub-
stitutability of ER (3~) and OY (OI), as in puns like

“The British used to dress their sandwiches
with earl and vinegar”
“In cooking class this week we’re loining how
to prepare tuna”

(earl/oil and loining/learning, respectively). These
edits seem to indicate punners’ awareness of rhotic-
ity variation among English dialects (Labov, 1972).

Consonants. In Figure 2, we see several expected
trends. D (d) ousting DH (D), T (t) ousting TH (T),
and V (v) ousting W (w) are all as expected accord-
ing to the “marked ousting unmarked” hypothesis of
Zwicky and Zwicky (1986). Yet we also see S (s)
ousting Z (z), which is an instance of the unmarked
voiceless alveolar fricative ousting the voiced, as
well as N (n) ousting NG (N), an instance of the
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unmarked coronal ousting the marked velar. These
oustings, like the case of AH ousting other vowels,
are likely conditioned by segment frequency. For
N ousting NG, syllable structure may play a role as
well, as NG is restricted to codas whereas N is not.

An interesting feature of our consonant data is
the extreme violability of interdentals TH and DH,
which are more likely to map to T and D respectively
than to retain their identity in a paronomasic pun. In
addition to the “fit of whiskey” example mentioned
earlier, we have

“Disgusting wind knocked over my trash cans”
(disgusting/this gusting). This phenomenon is
known as “th-stopping” and is a common dialectal
feature of many variants of English, from those of
Philadelphia and New York to the Caribbean (Wells,
1982). This substitution supports the hypothesis that
the substitution possibilities for a segment depend
on the realizations of that segment which are com-
monly encountered in speech. Notably, T is signifi-
cantly more likely to replace TH than is F (f), despite
that the articulatory and acoustic similarity between
TH and F is greater.

Figure 2: Edit probabilities for consonants based on the LM +

PEM model.

5.2 Correlation with Human Ratings

Our phonetic edit model allows us to empirically
verify an untested assumption with respect to phono-
logical similarity from Fleischhacker (2002) “that

degree of representation in the pun corpus corre-
lates with pun goodness.” In another paper, she
repeats this assumption and adds the explanation
“Truly funny puns are generally those in which the
phonological relationship between pun and target is
. . . subtle but quickly recognizable” (Fleischhacker,
2005). Hempelmann writes that this assumption is
“unlikely” to be true.

We conducted a survey of native English speak-
ers where respondents were asked to rate 17 puns on
a five point scale: hilarious, funny, okay, bad, ter-
rible. The puns were selected from the test set to
have a variety of phonemic edit distances. Respon-
dents also had the option to indicate that they did not
understand the pun, in which case their answer was
ignored. A phonetic edit score was calculated for
each pun-target pair by averaging the log-likelihood
value from our model over the phonemes in the pun.
The order of the questions was randomized for each
respondent. Advertising for the survey was done us-
ing /r/SampleSize, a Reddit forum for recruiting sur-
vey participants. The 435 respondents gave us 7,135
ratings in total.

The relationship between phonetic edit cost and
goodness was measured using ordinal regression,
with clustered standard errors to account for the
fact that responses from the same person are not in-
dependent. We use the RMS package in R (Har-
rell Jr., 2015). The regression coefficient indicates
that decreased phonetic edit cost is indeed asso-
ciated with higher perceived goodness of the pun
with p < 0.0001. For visualization purposes we
mapped the categorical goodness ratings onto a nu-
meric scale from 1-5 to create an average goodness
rating for each pun. In Figure 3, we depict the pho-
netic edit cost vs. the average goodness rating for
each of the 17 puns. The line shown in that figure is
an outlier resistant linear regression.

The biggest outlier is

“They say a Freudian slip is when you say one
thing but really mean your mother.”

The pun is on “your mother” with “another” as the
target. This pun has the highest phonetic edit cost in
our sample but it makes up for it with more interest-
ing semantics than average.
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Figure 3: Relationship between the LM + PEM phonetic edit

cost and goodness of the pun.

6 Conclusions and Future Work

The quality of our phonetic edit model is evident
from its performance at the target recovery task, as
well as the fact that it captures known linguistic phe-
nomena such as vowel reduction and dialectal fea-
tures. Furthermore, by collecting human ratings we
are able to empirically verify the previously untested
assumption that lower phonetic edit costs in puns
correlate with pun goodness.

The strength of the model can be leveraged to im-
prove the quality of pun generation and humor clas-
sification systems that have used weaker phonetic
edit models (Binsted, 1996; Valitutti, 2011; Raz,
2012). Some pun generation systems are limited to
exact homophones. In this work, we did not con-
sider homographic puns. In principle, our algorithm
can handle these by introducing an LM weight to
control the balance of PEM/LM scores. Pun genera-
tion is much more complicated than target recovery
as reflected in the complexity of proposed systems
for humor generation. However, improved under-
standing of puns by way of progress in the target
recovery task should also lead to corresponding im-
provements in the task of pun generation.

Our syllable extension to the PEM gave the best
performance, but only by a small margin. Extend-
ing the edit model further is a fruitful area for future
work but will likely require additional data.

In this work, we assume that the pun is given. Of
interest for future work is joint recognition of the

pun and its target. Preliminary experiments indicate
that the unigram word probabilities are a somewhat
strong feature for pun recognition but further work
is needed. For contextually-integrated puns, iden-
tifying the pun is likely to be more difficult, and
for some cases it would be useful to integrate image
cues.
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